keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +52 -0
- keras_hub/api/__init__.py +27 -0
- keras_hub/api/layers/__init__.py +47 -0
- keras_hub/api/metrics/__init__.py +24 -0
- keras_hub/api/models/__init__.py +249 -0
- keras_hub/api/samplers/__init__.py +29 -0
- keras_hub/api/tokenizers/__init__.py +35 -0
- keras_hub/src/__init__.py +13 -0
- keras_hub/src/api_export.py +53 -0
- keras_hub/src/layers/__init__.py +13 -0
- keras_hub/src/layers/modeling/__init__.py +13 -0
- keras_hub/src/layers/modeling/alibi_bias.py +143 -0
- keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
- keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
- keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
- keras_hub/src/layers/modeling/position_embedding.py +123 -0
- keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
- keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
- keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
- keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
- keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
- keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
- keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
- keras_hub/src/layers/preprocessing/__init__.py +13 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
- keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
- keras_hub/src/layers/preprocessing/random_swap.py +267 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
- keras_hub/src/metrics/__init__.py +13 -0
- keras_hub/src/metrics/bleu.py +394 -0
- keras_hub/src/metrics/edit_distance.py +197 -0
- keras_hub/src/metrics/perplexity.py +181 -0
- keras_hub/src/metrics/rouge_base.py +204 -0
- keras_hub/src/metrics/rouge_l.py +97 -0
- keras_hub/src/metrics/rouge_n.py +125 -0
- keras_hub/src/models/__init__.py +13 -0
- keras_hub/src/models/albert/__init__.py +20 -0
- keras_hub/src/models/albert/albert_backbone.py +267 -0
- keras_hub/src/models/albert/albert_classifier.py +202 -0
- keras_hub/src/models/albert/albert_masked_lm.py +129 -0
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/albert/albert_preprocessor.py +206 -0
- keras_hub/src/models/albert/albert_presets.py +70 -0
- keras_hub/src/models/albert/albert_tokenizer.py +119 -0
- keras_hub/src/models/backbone.py +311 -0
- keras_hub/src/models/bart/__init__.py +20 -0
- keras_hub/src/models/bart/bart_backbone.py +261 -0
- keras_hub/src/models/bart/bart_preprocessor.py +276 -0
- keras_hub/src/models/bart/bart_presets.py +74 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
- keras_hub/src/models/bart/bart_tokenizer.py +124 -0
- keras_hub/src/models/bert/__init__.py +23 -0
- keras_hub/src/models/bert/bert_backbone.py +227 -0
- keras_hub/src/models/bert/bert_classifier.py +183 -0
- keras_hub/src/models/bert/bert_masked_lm.py +131 -0
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/bert/bert_preprocessor.py +184 -0
- keras_hub/src/models/bert/bert_presets.py +147 -0
- keras_hub/src/models/bert/bert_tokenizer.py +112 -0
- keras_hub/src/models/bloom/__init__.py +20 -0
- keras_hub/src/models/bloom/bloom_attention.py +186 -0
- keras_hub/src/models/bloom/bloom_backbone.py +173 -0
- keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
- keras_hub/src/models/bloom/bloom_decoder.py +206 -0
- keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
- keras_hub/src/models/bloom/bloom_presets.py +121 -0
- keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
- keras_hub/src/models/causal_lm.py +383 -0
- keras_hub/src/models/classifier.py +109 -0
- keras_hub/src/models/csp_darknet/__init__.py +13 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
- keras_hub/src/models/deberta_v3/__init__.py +24 -0
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
- keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
- keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
- keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
- keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
- keras_hub/src/models/densenet/__init__.py +13 -0
- keras_hub/src/models/densenet/densenet_backbone.py +210 -0
- keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
- keras_hub/src/models/distil_bert/__init__.py +26 -0
- keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
- keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
- keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
- keras_hub/src/models/electra/__init__.py +20 -0
- keras_hub/src/models/electra/electra_backbone.py +247 -0
- keras_hub/src/models/electra/electra_preprocessor.py +154 -0
- keras_hub/src/models/electra/electra_presets.py +95 -0
- keras_hub/src/models/electra/electra_tokenizer.py +104 -0
- keras_hub/src/models/f_net/__init__.py +20 -0
- keras_hub/src/models/f_net/f_net_backbone.py +236 -0
- keras_hub/src/models/f_net/f_net_classifier.py +154 -0
- keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
- keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
- keras_hub/src/models/f_net/f_net_presets.py +43 -0
- keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
- keras_hub/src/models/falcon/__init__.py +20 -0
- keras_hub/src/models/falcon/falcon_attention.py +156 -0
- keras_hub/src/models/falcon/falcon_backbone.py +164 -0
- keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
- keras_hub/src/models/falcon/falcon_presets.py +30 -0
- keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
- keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
- keras_hub/src/models/feature_pyramid_backbone.py +73 -0
- keras_hub/src/models/gemma/__init__.py +20 -0
- keras_hub/src/models/gemma/gemma_attention.py +250 -0
- keras_hub/src/models/gemma/gemma_backbone.py +316 -0
- keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
- keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
- keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
- keras_hub/src/models/gemma/gemma_presets.py +248 -0
- keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
- keras_hub/src/models/gemma/rms_normalization.py +40 -0
- keras_hub/src/models/gpt2/__init__.py +20 -0
- keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
- keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
- keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
- keras_hub/src/models/image_classifier.py +90 -0
- keras_hub/src/models/llama/__init__.py +20 -0
- keras_hub/src/models/llama/llama_attention.py +225 -0
- keras_hub/src/models/llama/llama_backbone.py +188 -0
- keras_hub/src/models/llama/llama_causal_lm.py +327 -0
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
- keras_hub/src/models/llama/llama_decoder.py +246 -0
- keras_hub/src/models/llama/llama_layernorm.py +48 -0
- keras_hub/src/models/llama/llama_preprocessor.py +189 -0
- keras_hub/src/models/llama/llama_presets.py +80 -0
- keras_hub/src/models/llama/llama_tokenizer.py +84 -0
- keras_hub/src/models/llama3/__init__.py +20 -0
- keras_hub/src/models/llama3/llama3_backbone.py +84 -0
- keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
- keras_hub/src/models/llama3/llama3_presets.py +69 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
- keras_hub/src/models/masked_lm.py +101 -0
- keras_hub/src/models/mistral/__init__.py +20 -0
- keras_hub/src/models/mistral/mistral_attention.py +238 -0
- keras_hub/src/models/mistral/mistral_backbone.py +203 -0
- keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
- keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
- keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
- keras_hub/src/models/mistral/mistral_presets.py +48 -0
- keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
- keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
- keras_hub/src/models/mix_transformer/__init__.py +13 -0
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
- keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
- keras_hub/src/models/opt/__init__.py +20 -0
- keras_hub/src/models/opt/opt_backbone.py +173 -0
- keras_hub/src/models/opt/opt_causal_lm.py +301 -0
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
- keras_hub/src/models/opt/opt_preprocessor.py +188 -0
- keras_hub/src/models/opt/opt_presets.py +72 -0
- keras_hub/src/models/opt/opt_tokenizer.py +116 -0
- keras_hub/src/models/pali_gemma/__init__.py +23 -0
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
- keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
- keras_hub/src/models/phi3/__init__.py +20 -0
- keras_hub/src/models/phi3/phi3_attention.py +260 -0
- keras_hub/src/models/phi3/phi3_backbone.py +224 -0
- keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/phi3/phi3_decoder.py +260 -0
- keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
- keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
- keras_hub/src/models/phi3/phi3_presets.py +50 -0
- keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
- keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
- keras_hub/src/models/preprocessor.py +207 -0
- keras_hub/src/models/resnet/__init__.py +13 -0
- keras_hub/src/models/resnet/resnet_backbone.py +612 -0
- keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
- keras_hub/src/models/roberta/__init__.py +20 -0
- keras_hub/src/models/roberta/roberta_backbone.py +184 -0
- keras_hub/src/models/roberta/roberta_classifier.py +209 -0
- keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
- keras_hub/src/models/roberta/roberta_presets.py +43 -0
- keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
- keras_hub/src/models/seq_2_seq_lm.py +54 -0
- keras_hub/src/models/t5/__init__.py +20 -0
- keras_hub/src/models/t5/t5_backbone.py +261 -0
- keras_hub/src/models/t5/t5_layer_norm.py +35 -0
- keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
- keras_hub/src/models/t5/t5_presets.py +95 -0
- keras_hub/src/models/t5/t5_tokenizer.py +100 -0
- keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
- keras_hub/src/models/task.py +419 -0
- keras_hub/src/models/vgg/__init__.py +13 -0
- keras_hub/src/models/vgg/vgg_backbone.py +158 -0
- keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
- keras_hub/src/models/vit_det/__init__.py +13 -0
- keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
- keras_hub/src/models/vit_det/vit_layers.py +565 -0
- keras_hub/src/models/whisper/__init__.py +20 -0
- keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
- keras_hub/src/models/whisper/whisper_backbone.py +305 -0
- keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
- keras_hub/src/models/whisper/whisper_decoder.py +141 -0
- keras_hub/src/models/whisper/whisper_encoder.py +106 -0
- keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
- keras_hub/src/models/whisper/whisper_presets.py +148 -0
- keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
- keras_hub/src/models/xlm_roberta/__init__.py +26 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
- keras_hub/src/models/xlnet/__init__.py +13 -0
- keras_hub/src/models/xlnet/relative_attention.py +459 -0
- keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
- keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
- keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
- keras_hub/src/samplers/__init__.py +13 -0
- keras_hub/src/samplers/beam_sampler.py +207 -0
- keras_hub/src/samplers/contrastive_sampler.py +231 -0
- keras_hub/src/samplers/greedy_sampler.py +50 -0
- keras_hub/src/samplers/random_sampler.py +77 -0
- keras_hub/src/samplers/sampler.py +237 -0
- keras_hub/src/samplers/serialization.py +97 -0
- keras_hub/src/samplers/top_k_sampler.py +92 -0
- keras_hub/src/samplers/top_p_sampler.py +113 -0
- keras_hub/src/tests/__init__.py +13 -0
- keras_hub/src/tests/test_case.py +608 -0
- keras_hub/src/tokenizers/__init__.py +13 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
- keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
- keras_hub/src/tokenizers/tokenizer.py +235 -0
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
- keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
- keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
- keras_hub/src/utils/__init__.py +13 -0
- keras_hub/src/utils/keras_utils.py +130 -0
- keras_hub/src/utils/pipeline_model.py +293 -0
- keras_hub/src/utils/preset_utils.py +621 -0
- keras_hub/src/utils/python_utils.py +21 -0
- keras_hub/src/utils/tensor_utils.py +206 -0
- keras_hub/src/utils/timm/__init__.py +13 -0
- keras_hub/src/utils/timm/convert.py +37 -0
- keras_hub/src/utils/timm/convert_resnet.py +171 -0
- keras_hub/src/utils/transformers/__init__.py +13 -0
- keras_hub/src/utils/transformers/convert.py +101 -0
- keras_hub/src/utils/transformers/convert_bert.py +173 -0
- keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
- keras_hub/src/utils/transformers/convert_gemma.py +187 -0
- keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
- keras_hub/src/utils/transformers/convert_llama3.py +136 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
- keras_hub/src/version_utils.py +23 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,205 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
import keras
|
17
|
+
|
18
|
+
from keras_hub.src.api_export import keras_hub_export
|
19
|
+
from keras_hub.src.layers.preprocessing.multi_segment_packer import (
|
20
|
+
MultiSegmentPacker,
|
21
|
+
)
|
22
|
+
from keras_hub.src.models.preprocessor import Preprocessor
|
23
|
+
from keras_hub.src.models.xlm_roberta.xlm_roberta_tokenizer import (
|
24
|
+
XLMRobertaTokenizer,
|
25
|
+
)
|
26
|
+
from keras_hub.src.utils.keras_utils import (
|
27
|
+
convert_inputs_to_list_of_tensor_segments,
|
28
|
+
)
|
29
|
+
|
30
|
+
|
31
|
+
@keras_hub_export("keras_hub.models.XLMRobertaPreprocessor")
|
32
|
+
class XLMRobertaPreprocessor(Preprocessor):
|
33
|
+
"""An XLM-RoBERTa preprocessing layer which tokenizes and packs inputs.
|
34
|
+
|
35
|
+
This preprocessing layer will do three things:
|
36
|
+
|
37
|
+
1. Tokenize any number of input segments using the `tokenizer`.
|
38
|
+
2. Pack the inputs together using a `keras_hub.layers.MultiSegmentPacker`.
|
39
|
+
with the appropriate `"<s>"`, `"</s>"` and `"<pad>"` tokens, i.e., adding
|
40
|
+
a single `"<s>"` at the start of the entire sequence, `"</s></s>"` at the
|
41
|
+
end of each segment, save the last and a `"</s>"` at the end of the
|
42
|
+
entire sequence.
|
43
|
+
3. Construct a dictionary with keys `"token_ids"` and `"padding_mask"`,
|
44
|
+
that can be passed directly to an XLM-RoBERTa model.
|
45
|
+
|
46
|
+
This layer can be used directly with `tf.data.Dataset.map` to preprocess
|
47
|
+
string data in the `(x, y, sample_weight)` format used by
|
48
|
+
`keras.Model.fit`.
|
49
|
+
|
50
|
+
Args:
|
51
|
+
tokenizer: A `keras_hub.tokenizers.XLMRobertaTokenizer` instance.
|
52
|
+
sequence_length: The length of the packed inputs.
|
53
|
+
truncate: The algorithm to truncate a list of batched segments to fit
|
54
|
+
within `sequence_length`. The value can be either `round_robin` or
|
55
|
+
`waterfall`:
|
56
|
+
- `"round_robin"`: Available space is assigned one token at a
|
57
|
+
time in a round-robin fashion to the inputs that still need
|
58
|
+
some, until the limit is reached.
|
59
|
+
- `"waterfall"`: The allocation of the budget is done using a
|
60
|
+
"waterfall" algorithm that allocates quota in a
|
61
|
+
left-to-right manner and fills up the buckets until we run
|
62
|
+
out of budget. It supports an arbitrary number of segments.
|
63
|
+
|
64
|
+
Call arguments:
|
65
|
+
x: A tensor of single string sequences, or a tuple of multiple
|
66
|
+
tensor sequences to be packed together. Inputs may be batched or
|
67
|
+
unbatched. For single sequences, raw python inputs will be converted
|
68
|
+
to tensors. For multiple sequences, pass tensors directly.
|
69
|
+
y: Any label data. Will be passed through unaltered.
|
70
|
+
sample_weight: Any label weight data. Will be passed through unaltered.
|
71
|
+
|
72
|
+
Examples:
|
73
|
+
|
74
|
+
Directly calling the layer on data.
|
75
|
+
```python
|
76
|
+
preprocessor = keras_hub.models.XLMRobertaPreprocessor.from_preset(
|
77
|
+
"xlm_roberta_base_multi"
|
78
|
+
)
|
79
|
+
|
80
|
+
# Tokenize and pack a single sentence.
|
81
|
+
preprocessor("The quick brown fox jumped.")
|
82
|
+
|
83
|
+
# Tokenize a batch of single sentences.
|
84
|
+
preprocessor(["The quick brown fox jumped.", "اسمي اسماعيل"])
|
85
|
+
|
86
|
+
# Preprocess a batch of sentence pairs.
|
87
|
+
# When handling multiple sequences, always convert to tensors first!
|
88
|
+
first = tf.constant(["The quick brown fox jumped.", "اسمي اسماعيل"])
|
89
|
+
second = tf.constant(["The fox tripped.", "الأسد ملك الغابة"])
|
90
|
+
preprocessor((first, second))
|
91
|
+
|
92
|
+
# Custom vocabulary.
|
93
|
+
def train_sentencepiece(ds, vocab_size):
|
94
|
+
bytes_io = io.BytesIO()
|
95
|
+
sentencepiece.SentencePieceTrainer.train(
|
96
|
+
sentence_iterator=ds.as_numpy_iterator(),
|
97
|
+
model_writer=bytes_io,
|
98
|
+
vocab_size=vocab_size,
|
99
|
+
model_type="WORD",
|
100
|
+
unk_id=0,
|
101
|
+
bos_id=1,
|
102
|
+
eos_id=2,
|
103
|
+
)
|
104
|
+
return bytes_io.getvalue()
|
105
|
+
ds = tf.data.Dataset.from_tensor_slices(
|
106
|
+
["the quick brown fox", "the earth is round"]
|
107
|
+
)
|
108
|
+
proto = train_sentencepiece(ds, vocab_size=10)
|
109
|
+
tokenizer = keras_hub.models.XLMRobertaTokenizer(proto=proto)
|
110
|
+
preprocessor = keras_hub.models.XLMRobertaPreprocessor(tokenizer)
|
111
|
+
preprocessor("The quick brown fox jumped.")
|
112
|
+
```
|
113
|
+
|
114
|
+
Mapping with `tf.data.Dataset`.
|
115
|
+
```python
|
116
|
+
preprocessor = keras_hub.models.XLMRobertaPreprocessor.from_preset(
|
117
|
+
"xlm_roberta_base_multi"
|
118
|
+
)
|
119
|
+
|
120
|
+
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
|
121
|
+
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
|
122
|
+
label = tf.constant([1, 1])
|
123
|
+
|
124
|
+
# Map labeled single sentences.
|
125
|
+
ds = tf.data.Dataset.from_tensor_slices((first, label))
|
126
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
127
|
+
|
128
|
+
# Map unlabeled single sentences.
|
129
|
+
ds = tf.data.Dataset.from_tensor_slices(first)
|
130
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
131
|
+
|
132
|
+
# Map labeled sentence pairs.
|
133
|
+
ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
|
134
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
135
|
+
|
136
|
+
# Map unlabeled sentence pairs.
|
137
|
+
ds = tf.data.Dataset.from_tensor_slices((first, second))
|
138
|
+
# Watch out for tf.data's default unpacking of tuples here!
|
139
|
+
# Best to invoke the `preprocessor` directly in this case.
|
140
|
+
ds = ds.map(
|
141
|
+
lambda first, second: preprocessor(x=(first, second)),
|
142
|
+
num_parallel_calls=tf.data.AUTOTUNE,
|
143
|
+
)
|
144
|
+
```
|
145
|
+
"""
|
146
|
+
|
147
|
+
tokenizer_cls = XLMRobertaTokenizer
|
148
|
+
|
149
|
+
def __init__(
|
150
|
+
self,
|
151
|
+
tokenizer,
|
152
|
+
sequence_length=512,
|
153
|
+
truncate="round_robin",
|
154
|
+
**kwargs,
|
155
|
+
):
|
156
|
+
super().__init__(**kwargs)
|
157
|
+
|
158
|
+
self.tokenizer = tokenizer
|
159
|
+
self.packer = None
|
160
|
+
self.truncate = truncate
|
161
|
+
self.sequence_length = sequence_length
|
162
|
+
|
163
|
+
def build(self, input_shape):
|
164
|
+
# Defer packer creation to `build()` so that we can be sure tokenizer
|
165
|
+
# assets have loaded when restoring a saved model.
|
166
|
+
self.packer = MultiSegmentPacker(
|
167
|
+
start_value=self.tokenizer.start_token_id,
|
168
|
+
end_value=self.tokenizer.end_token_id,
|
169
|
+
sep_value=[self.tokenizer.end_token_id] * 2,
|
170
|
+
pad_value=self.tokenizer.pad_token_id,
|
171
|
+
truncate=self.truncate,
|
172
|
+
sequence_length=self.sequence_length,
|
173
|
+
)
|
174
|
+
self.built = True
|
175
|
+
|
176
|
+
def get_config(self):
|
177
|
+
config = super().get_config()
|
178
|
+
config.update(
|
179
|
+
{
|
180
|
+
"sequence_length": self.sequence_length,
|
181
|
+
"truncate": self.truncate,
|
182
|
+
}
|
183
|
+
)
|
184
|
+
return config
|
185
|
+
|
186
|
+
def call(self, x, y=None, sample_weight=None):
|
187
|
+
x = convert_inputs_to_list_of_tensor_segments(x)
|
188
|
+
x = [self.tokenizer(segment) for segment in x]
|
189
|
+
token_ids, _ = self.packer(x)
|
190
|
+
x = {
|
191
|
+
"token_ids": token_ids,
|
192
|
+
"padding_mask": token_ids != self.tokenizer.pad_token_id,
|
193
|
+
}
|
194
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
195
|
+
|
196
|
+
@property
|
197
|
+
def sequence_length(self):
|
198
|
+
"""The padded length of model input sequences."""
|
199
|
+
return self._sequence_length
|
200
|
+
|
201
|
+
@sequence_length.setter
|
202
|
+
def sequence_length(self, value):
|
203
|
+
self._sequence_length = value
|
204
|
+
if self.packer is not None:
|
205
|
+
self.packer.sequence_length = value
|
@@ -0,0 +1,43 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
"""XLM-RoBERTa model preset configurations."""
|
15
|
+
|
16
|
+
backbone_presets = {
|
17
|
+
"xlm_roberta_base_multi": {
|
18
|
+
"metadata": {
|
19
|
+
"description": (
|
20
|
+
"12-layer XLM-RoBERTa model where case is maintained. "
|
21
|
+
"Trained on CommonCrawl in 100 languages."
|
22
|
+
),
|
23
|
+
"params": 277450752,
|
24
|
+
"official_name": "XLM-RoBERTa",
|
25
|
+
"path": "xlm_roberta",
|
26
|
+
"model_card": "https://github.com/facebookresearch/fairseq/blob/main/examples/xlmr/README.md",
|
27
|
+
},
|
28
|
+
"kaggle_handle": "kaggle://keras/xlm_roberta/keras/xlm_roberta_base_multi/2",
|
29
|
+
},
|
30
|
+
"xlm_roberta_large_multi": {
|
31
|
+
"metadata": {
|
32
|
+
"description": (
|
33
|
+
"24-layer XLM-RoBERTa model where case is maintained. "
|
34
|
+
"Trained on CommonCrawl in 100 languages."
|
35
|
+
),
|
36
|
+
"params": 558837760,
|
37
|
+
"official_name": "XLM-RoBERTa",
|
38
|
+
"path": "xlm_roberta",
|
39
|
+
"model_card": "https://github.com/facebookresearch/fairseq/blob/main/examples/xlmr/README.md",
|
40
|
+
},
|
41
|
+
"kaggle_handle": "kaggle://keras/xlm_roberta/keras/xlm_roberta_large_multi/2",
|
42
|
+
},
|
43
|
+
}
|
@@ -0,0 +1,191 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
from keras_hub.src.api_export import keras_hub_export
|
17
|
+
from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
|
18
|
+
SentencePieceTokenizer,
|
19
|
+
)
|
20
|
+
from keras_hub.src.utils.tensor_utils import tensor_to_list
|
21
|
+
|
22
|
+
try:
|
23
|
+
import tensorflow as tf
|
24
|
+
except ImportError:
|
25
|
+
tf = None
|
26
|
+
|
27
|
+
|
28
|
+
@keras_hub_export("keras_hub.models.XLMRobertaTokenizer")
|
29
|
+
class XLMRobertaTokenizer(SentencePieceTokenizer):
|
30
|
+
"""An XLM-RoBERTa tokenizer using SentencePiece subword segmentation.
|
31
|
+
|
32
|
+
This tokenizer class will tokenize raw strings into integer sequences and
|
33
|
+
is based on `keras_hub.tokenizers.SentencePieceTokenizer`. Unlike the
|
34
|
+
underlying tokenizer, it will check for all special tokens needed by
|
35
|
+
XLM-RoBERTa models and provides a `from_preset()` method to automatically
|
36
|
+
download a matching vocabulary for an XLM-RoBERTa preset.
|
37
|
+
|
38
|
+
Note: If you are providing your own custom SentencePiece model, the original
|
39
|
+
fairseq implementation of XLM-RoBERTa re-maps some token indices from the
|
40
|
+
underlying sentencepiece output. To preserve compatibility, we do the same
|
41
|
+
re-mapping here.
|
42
|
+
|
43
|
+
If input is a batch of strings (rank > 0), the layer will output a
|
44
|
+
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
45
|
+
|
46
|
+
If input is a scalar string (rank == 0), the layer will output a dense
|
47
|
+
`tf.Tensor` with static shape `[None]`.
|
48
|
+
|
49
|
+
Args:
|
50
|
+
proto: Either a `string` path to a SentencePiece proto file or a
|
51
|
+
`bytes` object with a serialized SentencePiece proto. See the
|
52
|
+
[SentencePiece repository](https://github.com/google/sentencepiece)
|
53
|
+
for more details on the format.
|
54
|
+
|
55
|
+
Examples:
|
56
|
+
```python
|
57
|
+
tokenizer = keras_hub.models.XLMRobertaTokenizer.from_preset(
|
58
|
+
"xlm_roberta_base_multi",
|
59
|
+
)
|
60
|
+
|
61
|
+
# Unbatched inputs.
|
62
|
+
tokenizer("the quick brown fox")
|
63
|
+
|
64
|
+
# Batched inputs.
|
65
|
+
tokenizer(["the quick brown fox", "الأرض كروية"])
|
66
|
+
|
67
|
+
# Detokenization.
|
68
|
+
tokenizer.detokenize(tokenizer("the quick brown fox"))
|
69
|
+
|
70
|
+
# Custom vocabulary
|
71
|
+
def train_sentencepiece(ds, vocab_size):
|
72
|
+
bytes_io = io.BytesIO()
|
73
|
+
sentencepiece.SentencePieceTrainer.train(
|
74
|
+
sentence_iterator=ds.as_numpy_iterator(),
|
75
|
+
model_writer=bytes_io,
|
76
|
+
vocab_size=vocab_size,
|
77
|
+
model_type="WORD",
|
78
|
+
unk_id=0,
|
79
|
+
bos_id=1,
|
80
|
+
eos_id=2,
|
81
|
+
)
|
82
|
+
return bytes_io.getvalue()
|
83
|
+
|
84
|
+
ds = tf.data.Dataset.from_tensor_slices(
|
85
|
+
["the quick brown fox", "the earth is round"]
|
86
|
+
)
|
87
|
+
proto = train_sentencepiece(ds, vocab_size=10)
|
88
|
+
tokenizer = keras_hub.models.XLMRobertaTokenizer(proto=proto)
|
89
|
+
```
|
90
|
+
"""
|
91
|
+
|
92
|
+
def __init__(self, proto, **kwargs):
|
93
|
+
# List of special tokens.
|
94
|
+
self._vocabulary_prefix = ["<s>", "<pad>", "</s>", "<unk>"]
|
95
|
+
|
96
|
+
# IDs of special tokens.
|
97
|
+
self.start_token_id = 0 # <s>
|
98
|
+
self.pad_token_id = 1 # <pad>
|
99
|
+
self.end_token_id = 2 # </s>
|
100
|
+
self.unk_token_id = 3 # <unk>
|
101
|
+
|
102
|
+
super().__init__(proto=proto, **kwargs)
|
103
|
+
|
104
|
+
def set_proto(self, proto):
|
105
|
+
super().set_proto(proto)
|
106
|
+
if proto is not None:
|
107
|
+
self.mask_token_id = self.vocabulary_size() - 1
|
108
|
+
else:
|
109
|
+
self.mask_token_id = None
|
110
|
+
|
111
|
+
def vocabulary_size(self):
|
112
|
+
"""Get the size of the tokenizer vocabulary."""
|
113
|
+
return super().vocabulary_size() + 2
|
114
|
+
|
115
|
+
def get_vocabulary(self):
|
116
|
+
"""Get the size of the tokenizer vocabulary."""
|
117
|
+
self._check_vocabulary()
|
118
|
+
vocabulary = tensor_to_list(
|
119
|
+
self._sentence_piece.id_to_string(
|
120
|
+
tf.range(super().vocabulary_size())
|
121
|
+
)
|
122
|
+
)
|
123
|
+
return self._vocabulary_prefix + vocabulary[3:] + ["<mask>"]
|
124
|
+
|
125
|
+
def id_to_token(self, id):
|
126
|
+
"""Convert an integer id to a string token."""
|
127
|
+
self._check_vocabulary()
|
128
|
+
|
129
|
+
if id == self.mask_token_id:
|
130
|
+
return "<mask>"
|
131
|
+
|
132
|
+
if id < len(self._vocabulary_prefix) and id >= 0:
|
133
|
+
return self._vocabulary_prefix[id]
|
134
|
+
|
135
|
+
if id - 1 >= super().vocabulary_size() or id - 1 < 0:
|
136
|
+
raise ValueError(
|
137
|
+
f"`id` must be in range [0, {self.vocabulary_size() - 1}]. "
|
138
|
+
f"Received: {id}"
|
139
|
+
)
|
140
|
+
|
141
|
+
return tensor_to_list(self._sentence_piece.id_to_string(id - 1))
|
142
|
+
|
143
|
+
def token_to_id(self, token):
|
144
|
+
"""Convert a string token to an integer id."""
|
145
|
+
self._check_vocabulary()
|
146
|
+
|
147
|
+
if token in self._vocabulary_prefix:
|
148
|
+
return self._vocabulary_prefix.index(token)
|
149
|
+
|
150
|
+
spm_token_id = self._sentence_piece.string_to_id(token)
|
151
|
+
|
152
|
+
# OOV token
|
153
|
+
spm_unk_token_id = self._sentence_piece.string_to_id("<unk>")
|
154
|
+
if spm_token_id == spm_unk_token_id:
|
155
|
+
return self.unk_token_id
|
156
|
+
|
157
|
+
return int(spm_token_id.numpy()) + 1
|
158
|
+
|
159
|
+
def tokenize(self, inputs):
|
160
|
+
self._check_vocabulary()
|
161
|
+
tokens = super().tokenize(inputs)
|
162
|
+
|
163
|
+
# Correct `unk_token_id` (0 -> 3). Note that we do not correct
|
164
|
+
# `start_token_id` and `end_token_id`; they are dealt with in
|
165
|
+
# `XLMRobertaPreprocessor`.
|
166
|
+
tokens = tf.where(tf.equal(tokens, 0), self.unk_token_id - 1, tokens)
|
167
|
+
|
168
|
+
# Shift the tokens IDs right by one.
|
169
|
+
return tf.add(tokens, 1)
|
170
|
+
|
171
|
+
def detokenize(self, inputs):
|
172
|
+
self._check_vocabulary()
|
173
|
+
tokens = tf.ragged.boolean_mask(
|
174
|
+
inputs, tf.not_equal(inputs, self.mask_token_id)
|
175
|
+
)
|
176
|
+
|
177
|
+
# Shift the tokens IDs left by one.
|
178
|
+
tokens = tf.subtract(tokens, 1)
|
179
|
+
|
180
|
+
# Correct `unk_token_id`, `end_token_id`, `start_token_id`, respectively.
|
181
|
+
# Note: The `pad_token_id` is taken as 0 (`unk_token_id`) since the
|
182
|
+
# proto does not contain `pad_token_id`. This mapping of the pad token
|
183
|
+
# is done automatically by the above subtraction.
|
184
|
+
tokens = tf.where(tf.equal(tokens, self.unk_token_id - 1), 0, tokens)
|
185
|
+
tokens = tf.where(tf.equal(tokens, self.end_token_id - 1), 2, tokens)
|
186
|
+
tokens = tf.where(tf.equal(tokens, self.start_token_id - 1), 1, tokens)
|
187
|
+
|
188
|
+
# Note: Even though we map `"<s>" and `"</s>"` to the correct IDs,
|
189
|
+
# the `detokenize` method will return empty strings for these tokens.
|
190
|
+
# This is a vagary of the `sentencepiece` library.
|
191
|
+
return super().detokenize(tokens)
|
@@ -0,0 +1,13 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|