keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,205 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
20
+ MultiSegmentPacker,
21
+ )
22
+ from keras_hub.src.models.preprocessor import Preprocessor
23
+ from keras_hub.src.models.xlm_roberta.xlm_roberta_tokenizer import (
24
+ XLMRobertaTokenizer,
25
+ )
26
+ from keras_hub.src.utils.keras_utils import (
27
+ convert_inputs_to_list_of_tensor_segments,
28
+ )
29
+
30
+
31
+ @keras_hub_export("keras_hub.models.XLMRobertaPreprocessor")
32
+ class XLMRobertaPreprocessor(Preprocessor):
33
+ """An XLM-RoBERTa preprocessing layer which tokenizes and packs inputs.
34
+
35
+ This preprocessing layer will do three things:
36
+
37
+ 1. Tokenize any number of input segments using the `tokenizer`.
38
+ 2. Pack the inputs together using a `keras_hub.layers.MultiSegmentPacker`.
39
+ with the appropriate `"<s>"`, `"</s>"` and `"<pad>"` tokens, i.e., adding
40
+ a single `"<s>"` at the start of the entire sequence, `"</s></s>"` at the
41
+ end of each segment, save the last and a `"</s>"` at the end of the
42
+ entire sequence.
43
+ 3. Construct a dictionary with keys `"token_ids"` and `"padding_mask"`,
44
+ that can be passed directly to an XLM-RoBERTa model.
45
+
46
+ This layer can be used directly with `tf.data.Dataset.map` to preprocess
47
+ string data in the `(x, y, sample_weight)` format used by
48
+ `keras.Model.fit`.
49
+
50
+ Args:
51
+ tokenizer: A `keras_hub.tokenizers.XLMRobertaTokenizer` instance.
52
+ sequence_length: The length of the packed inputs.
53
+ truncate: The algorithm to truncate a list of batched segments to fit
54
+ within `sequence_length`. The value can be either `round_robin` or
55
+ `waterfall`:
56
+ - `"round_robin"`: Available space is assigned one token at a
57
+ time in a round-robin fashion to the inputs that still need
58
+ some, until the limit is reached.
59
+ - `"waterfall"`: The allocation of the budget is done using a
60
+ "waterfall" algorithm that allocates quota in a
61
+ left-to-right manner and fills up the buckets until we run
62
+ out of budget. It supports an arbitrary number of segments.
63
+
64
+ Call arguments:
65
+ x: A tensor of single string sequences, or a tuple of multiple
66
+ tensor sequences to be packed together. Inputs may be batched or
67
+ unbatched. For single sequences, raw python inputs will be converted
68
+ to tensors. For multiple sequences, pass tensors directly.
69
+ y: Any label data. Will be passed through unaltered.
70
+ sample_weight: Any label weight data. Will be passed through unaltered.
71
+
72
+ Examples:
73
+
74
+ Directly calling the layer on data.
75
+ ```python
76
+ preprocessor = keras_hub.models.XLMRobertaPreprocessor.from_preset(
77
+ "xlm_roberta_base_multi"
78
+ )
79
+
80
+ # Tokenize and pack a single sentence.
81
+ preprocessor("The quick brown fox jumped.")
82
+
83
+ # Tokenize a batch of single sentences.
84
+ preprocessor(["The quick brown fox jumped.", "اسمي اسماعيل"])
85
+
86
+ # Preprocess a batch of sentence pairs.
87
+ # When handling multiple sequences, always convert to tensors first!
88
+ first = tf.constant(["The quick brown fox jumped.", "اسمي اسماعيل"])
89
+ second = tf.constant(["The fox tripped.", "الأسد ملك الغابة"])
90
+ preprocessor((first, second))
91
+
92
+ # Custom vocabulary.
93
+ def train_sentencepiece(ds, vocab_size):
94
+ bytes_io = io.BytesIO()
95
+ sentencepiece.SentencePieceTrainer.train(
96
+ sentence_iterator=ds.as_numpy_iterator(),
97
+ model_writer=bytes_io,
98
+ vocab_size=vocab_size,
99
+ model_type="WORD",
100
+ unk_id=0,
101
+ bos_id=1,
102
+ eos_id=2,
103
+ )
104
+ return bytes_io.getvalue()
105
+ ds = tf.data.Dataset.from_tensor_slices(
106
+ ["the quick brown fox", "the earth is round"]
107
+ )
108
+ proto = train_sentencepiece(ds, vocab_size=10)
109
+ tokenizer = keras_hub.models.XLMRobertaTokenizer(proto=proto)
110
+ preprocessor = keras_hub.models.XLMRobertaPreprocessor(tokenizer)
111
+ preprocessor("The quick brown fox jumped.")
112
+ ```
113
+
114
+ Mapping with `tf.data.Dataset`.
115
+ ```python
116
+ preprocessor = keras_hub.models.XLMRobertaPreprocessor.from_preset(
117
+ "xlm_roberta_base_multi"
118
+ )
119
+
120
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
121
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
122
+ label = tf.constant([1, 1])
123
+
124
+ # Map labeled single sentences.
125
+ ds = tf.data.Dataset.from_tensor_slices((first, label))
126
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
127
+
128
+ # Map unlabeled single sentences.
129
+ ds = tf.data.Dataset.from_tensor_slices(first)
130
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
131
+
132
+ # Map labeled sentence pairs.
133
+ ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
134
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
135
+
136
+ # Map unlabeled sentence pairs.
137
+ ds = tf.data.Dataset.from_tensor_slices((first, second))
138
+ # Watch out for tf.data's default unpacking of tuples here!
139
+ # Best to invoke the `preprocessor` directly in this case.
140
+ ds = ds.map(
141
+ lambda first, second: preprocessor(x=(first, second)),
142
+ num_parallel_calls=tf.data.AUTOTUNE,
143
+ )
144
+ ```
145
+ """
146
+
147
+ tokenizer_cls = XLMRobertaTokenizer
148
+
149
+ def __init__(
150
+ self,
151
+ tokenizer,
152
+ sequence_length=512,
153
+ truncate="round_robin",
154
+ **kwargs,
155
+ ):
156
+ super().__init__(**kwargs)
157
+
158
+ self.tokenizer = tokenizer
159
+ self.packer = None
160
+ self.truncate = truncate
161
+ self.sequence_length = sequence_length
162
+
163
+ def build(self, input_shape):
164
+ # Defer packer creation to `build()` so that we can be sure tokenizer
165
+ # assets have loaded when restoring a saved model.
166
+ self.packer = MultiSegmentPacker(
167
+ start_value=self.tokenizer.start_token_id,
168
+ end_value=self.tokenizer.end_token_id,
169
+ sep_value=[self.tokenizer.end_token_id] * 2,
170
+ pad_value=self.tokenizer.pad_token_id,
171
+ truncate=self.truncate,
172
+ sequence_length=self.sequence_length,
173
+ )
174
+ self.built = True
175
+
176
+ def get_config(self):
177
+ config = super().get_config()
178
+ config.update(
179
+ {
180
+ "sequence_length": self.sequence_length,
181
+ "truncate": self.truncate,
182
+ }
183
+ )
184
+ return config
185
+
186
+ def call(self, x, y=None, sample_weight=None):
187
+ x = convert_inputs_to_list_of_tensor_segments(x)
188
+ x = [self.tokenizer(segment) for segment in x]
189
+ token_ids, _ = self.packer(x)
190
+ x = {
191
+ "token_ids": token_ids,
192
+ "padding_mask": token_ids != self.tokenizer.pad_token_id,
193
+ }
194
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
195
+
196
+ @property
197
+ def sequence_length(self):
198
+ """The padded length of model input sequences."""
199
+ return self._sequence_length
200
+
201
+ @sequence_length.setter
202
+ def sequence_length(self, value):
203
+ self._sequence_length = value
204
+ if self.packer is not None:
205
+ self.packer.sequence_length = value
@@ -0,0 +1,43 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """XLM-RoBERTa model preset configurations."""
15
+
16
+ backbone_presets = {
17
+ "xlm_roberta_base_multi": {
18
+ "metadata": {
19
+ "description": (
20
+ "12-layer XLM-RoBERTa model where case is maintained. "
21
+ "Trained on CommonCrawl in 100 languages."
22
+ ),
23
+ "params": 277450752,
24
+ "official_name": "XLM-RoBERTa",
25
+ "path": "xlm_roberta",
26
+ "model_card": "https://github.com/facebookresearch/fairseq/blob/main/examples/xlmr/README.md",
27
+ },
28
+ "kaggle_handle": "kaggle://keras/xlm_roberta/keras/xlm_roberta_base_multi/2",
29
+ },
30
+ "xlm_roberta_large_multi": {
31
+ "metadata": {
32
+ "description": (
33
+ "24-layer XLM-RoBERTa model where case is maintained. "
34
+ "Trained on CommonCrawl in 100 languages."
35
+ ),
36
+ "params": 558837760,
37
+ "official_name": "XLM-RoBERTa",
38
+ "path": "xlm_roberta",
39
+ "model_card": "https://github.com/facebookresearch/fairseq/blob/main/examples/xlmr/README.md",
40
+ },
41
+ "kaggle_handle": "kaggle://keras/xlm_roberta/keras/xlm_roberta_large_multi/2",
42
+ },
43
+ }
@@ -0,0 +1,191 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
18
+ SentencePieceTokenizer,
19
+ )
20
+ from keras_hub.src.utils.tensor_utils import tensor_to_list
21
+
22
+ try:
23
+ import tensorflow as tf
24
+ except ImportError:
25
+ tf = None
26
+
27
+
28
+ @keras_hub_export("keras_hub.models.XLMRobertaTokenizer")
29
+ class XLMRobertaTokenizer(SentencePieceTokenizer):
30
+ """An XLM-RoBERTa tokenizer using SentencePiece subword segmentation.
31
+
32
+ This tokenizer class will tokenize raw strings into integer sequences and
33
+ is based on `keras_hub.tokenizers.SentencePieceTokenizer`. Unlike the
34
+ underlying tokenizer, it will check for all special tokens needed by
35
+ XLM-RoBERTa models and provides a `from_preset()` method to automatically
36
+ download a matching vocabulary for an XLM-RoBERTa preset.
37
+
38
+ Note: If you are providing your own custom SentencePiece model, the original
39
+ fairseq implementation of XLM-RoBERTa re-maps some token indices from the
40
+ underlying sentencepiece output. To preserve compatibility, we do the same
41
+ re-mapping here.
42
+
43
+ If input is a batch of strings (rank > 0), the layer will output a
44
+ `tf.RaggedTensor` where the last dimension of the output is ragged.
45
+
46
+ If input is a scalar string (rank == 0), the layer will output a dense
47
+ `tf.Tensor` with static shape `[None]`.
48
+
49
+ Args:
50
+ proto: Either a `string` path to a SentencePiece proto file or a
51
+ `bytes` object with a serialized SentencePiece proto. See the
52
+ [SentencePiece repository](https://github.com/google/sentencepiece)
53
+ for more details on the format.
54
+
55
+ Examples:
56
+ ```python
57
+ tokenizer = keras_hub.models.XLMRobertaTokenizer.from_preset(
58
+ "xlm_roberta_base_multi",
59
+ )
60
+
61
+ # Unbatched inputs.
62
+ tokenizer("the quick brown fox")
63
+
64
+ # Batched inputs.
65
+ tokenizer(["the quick brown fox", "الأرض كروية"])
66
+
67
+ # Detokenization.
68
+ tokenizer.detokenize(tokenizer("the quick brown fox"))
69
+
70
+ # Custom vocabulary
71
+ def train_sentencepiece(ds, vocab_size):
72
+ bytes_io = io.BytesIO()
73
+ sentencepiece.SentencePieceTrainer.train(
74
+ sentence_iterator=ds.as_numpy_iterator(),
75
+ model_writer=bytes_io,
76
+ vocab_size=vocab_size,
77
+ model_type="WORD",
78
+ unk_id=0,
79
+ bos_id=1,
80
+ eos_id=2,
81
+ )
82
+ return bytes_io.getvalue()
83
+
84
+ ds = tf.data.Dataset.from_tensor_slices(
85
+ ["the quick brown fox", "the earth is round"]
86
+ )
87
+ proto = train_sentencepiece(ds, vocab_size=10)
88
+ tokenizer = keras_hub.models.XLMRobertaTokenizer(proto=proto)
89
+ ```
90
+ """
91
+
92
+ def __init__(self, proto, **kwargs):
93
+ # List of special tokens.
94
+ self._vocabulary_prefix = ["<s>", "<pad>", "</s>", "<unk>"]
95
+
96
+ # IDs of special tokens.
97
+ self.start_token_id = 0 # <s>
98
+ self.pad_token_id = 1 # <pad>
99
+ self.end_token_id = 2 # </s>
100
+ self.unk_token_id = 3 # <unk>
101
+
102
+ super().__init__(proto=proto, **kwargs)
103
+
104
+ def set_proto(self, proto):
105
+ super().set_proto(proto)
106
+ if proto is not None:
107
+ self.mask_token_id = self.vocabulary_size() - 1
108
+ else:
109
+ self.mask_token_id = None
110
+
111
+ def vocabulary_size(self):
112
+ """Get the size of the tokenizer vocabulary."""
113
+ return super().vocabulary_size() + 2
114
+
115
+ def get_vocabulary(self):
116
+ """Get the size of the tokenizer vocabulary."""
117
+ self._check_vocabulary()
118
+ vocabulary = tensor_to_list(
119
+ self._sentence_piece.id_to_string(
120
+ tf.range(super().vocabulary_size())
121
+ )
122
+ )
123
+ return self._vocabulary_prefix + vocabulary[3:] + ["<mask>"]
124
+
125
+ def id_to_token(self, id):
126
+ """Convert an integer id to a string token."""
127
+ self._check_vocabulary()
128
+
129
+ if id == self.mask_token_id:
130
+ return "<mask>"
131
+
132
+ if id < len(self._vocabulary_prefix) and id >= 0:
133
+ return self._vocabulary_prefix[id]
134
+
135
+ if id - 1 >= super().vocabulary_size() or id - 1 < 0:
136
+ raise ValueError(
137
+ f"`id` must be in range [0, {self.vocabulary_size() - 1}]. "
138
+ f"Received: {id}"
139
+ )
140
+
141
+ return tensor_to_list(self._sentence_piece.id_to_string(id - 1))
142
+
143
+ def token_to_id(self, token):
144
+ """Convert a string token to an integer id."""
145
+ self._check_vocabulary()
146
+
147
+ if token in self._vocabulary_prefix:
148
+ return self._vocabulary_prefix.index(token)
149
+
150
+ spm_token_id = self._sentence_piece.string_to_id(token)
151
+
152
+ # OOV token
153
+ spm_unk_token_id = self._sentence_piece.string_to_id("<unk>")
154
+ if spm_token_id == spm_unk_token_id:
155
+ return self.unk_token_id
156
+
157
+ return int(spm_token_id.numpy()) + 1
158
+
159
+ def tokenize(self, inputs):
160
+ self._check_vocabulary()
161
+ tokens = super().tokenize(inputs)
162
+
163
+ # Correct `unk_token_id` (0 -> 3). Note that we do not correct
164
+ # `start_token_id` and `end_token_id`; they are dealt with in
165
+ # `XLMRobertaPreprocessor`.
166
+ tokens = tf.where(tf.equal(tokens, 0), self.unk_token_id - 1, tokens)
167
+
168
+ # Shift the tokens IDs right by one.
169
+ return tf.add(tokens, 1)
170
+
171
+ def detokenize(self, inputs):
172
+ self._check_vocabulary()
173
+ tokens = tf.ragged.boolean_mask(
174
+ inputs, tf.not_equal(inputs, self.mask_token_id)
175
+ )
176
+
177
+ # Shift the tokens IDs left by one.
178
+ tokens = tf.subtract(tokens, 1)
179
+
180
+ # Correct `unk_token_id`, `end_token_id`, `start_token_id`, respectively.
181
+ # Note: The `pad_token_id` is taken as 0 (`unk_token_id`) since the
182
+ # proto does not contain `pad_token_id`. This mapping of the pad token
183
+ # is done automatically by the above subtraction.
184
+ tokens = tf.where(tf.equal(tokens, self.unk_token_id - 1), 0, tokens)
185
+ tokens = tf.where(tf.equal(tokens, self.end_token_id - 1), 2, tokens)
186
+ tokens = tf.where(tf.equal(tokens, self.start_token_id - 1), 1, tokens)
187
+
188
+ # Note: Even though we map `"<s>" and `"</s>"` to the correct IDs,
189
+ # the `detokenize` method will return empty strings for these tokens.
190
+ # This is a vagary of the `sentencepiece` library.
191
+ return super().detokenize(tokens)
@@ -0,0 +1,13 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.