diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,489 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
17
+ # and https://github.com/hojonathanho/diffusion
18
+
19
+ import math
20
+ from dataclasses import dataclass
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import numpy as np
24
+ import torch
25
+
26
+ from ..configuration_utils import ConfigMixin, register_to_config
27
+ from ..utils import BaseOutput
28
+ from ..utils.torch_utils import randn_tensor
29
+ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
30
+
31
+
32
+ @dataclass
33
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
34
+ class DDIMSchedulerOutput(BaseOutput):
35
+ """
36
+ Output class for the scheduler's `step` function output.
37
+
38
+ Args:
39
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
40
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
41
+ denoising loop.
42
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
43
+ The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
44
+ `pred_original_sample` can be used to preview progress or for guidance.
45
+ """
46
+
47
+ prev_sample: torch.Tensor
48
+ pred_original_sample: Optional[torch.Tensor] = None
49
+
50
+
51
+ # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
52
+ def betas_for_alpha_bar(
53
+ num_diffusion_timesteps,
54
+ max_beta=0.999,
55
+ alpha_transform_type="cosine",
56
+ ):
57
+ """
58
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
59
+ (1-beta) over time from t = [0,1].
60
+
61
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
62
+ to that part of the diffusion process.
63
+
64
+
65
+ Args:
66
+ num_diffusion_timesteps (`int`): the number of betas to produce.
67
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
68
+ prevent singularities.
69
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
70
+ Choose from `cosine` or `exp`
71
+
72
+ Returns:
73
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
74
+ """
75
+ if alpha_transform_type == "cosine":
76
+
77
+ def alpha_bar_fn(t):
78
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
79
+
80
+ elif alpha_transform_type == "exp":
81
+
82
+ def alpha_bar_fn(t):
83
+ return math.exp(t * -12.0)
84
+
85
+ else:
86
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
87
+
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
93
+ return torch.tensor(betas, dtype=torch.float32)
94
+
95
+
96
+ def rescale_zero_terminal_snr(alphas_cumprod):
97
+ """
98
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
99
+
100
+
101
+ Args:
102
+ betas (`torch.Tensor`):
103
+ the betas that the scheduler is being initialized with.
104
+
105
+ Returns:
106
+ `torch.Tensor`: rescaled betas with zero terminal SNR
107
+ """
108
+
109
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
110
+
111
+ # Store old values.
112
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
113
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
114
+
115
+ # Shift so the last timestep is zero.
116
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
117
+
118
+ # Scale so the first timestep is back to the old value.
119
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
120
+
121
+ # Convert alphas_bar_sqrt to betas
122
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
123
+
124
+ return alphas_bar
125
+
126
+
127
+ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
128
+ """
129
+ `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
130
+ non-Markovian guidance.
131
+
132
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
133
+ methods the library implements for all schedulers such as loading and saving.
134
+
135
+ Args:
136
+ num_train_timesteps (`int`, defaults to 1000):
137
+ The number of diffusion steps to train the model.
138
+ beta_start (`float`, defaults to 0.0001):
139
+ The starting `beta` value of inference.
140
+ beta_end (`float`, defaults to 0.02):
141
+ The final `beta` value.
142
+ beta_schedule (`str`, defaults to `"linear"`):
143
+ The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
144
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
145
+ trained_betas (`np.ndarray`, *optional*):
146
+ Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
147
+ clip_sample (`bool`, defaults to `True`):
148
+ Clip the predicted sample for numerical stability.
149
+ clip_sample_range (`float`, defaults to 1.0):
150
+ The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
151
+ set_alpha_to_one (`bool`, defaults to `True`):
152
+ Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
153
+ there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
154
+ otherwise it uses the alpha value at step 0.
155
+ steps_offset (`int`, defaults to 0):
156
+ An offset added to the inference steps, as required by some model families.
157
+ prediction_type (`str`, defaults to `epsilon`, *optional*):
158
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
159
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
160
+ Video](https://imagen.research.google/video/paper.pdf) paper).
161
+ thresholding (`bool`, defaults to `False`):
162
+ Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
163
+ as Stable Diffusion.
164
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
165
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
166
+ sample_max_value (`float`, defaults to 1.0):
167
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
168
+ timestep_spacing (`str`, defaults to `"leading"`):
169
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
170
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
171
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
172
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
173
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
174
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
175
+ """
176
+
177
+ _compatibles = [e.name for e in KarrasDiffusionSchedulers]
178
+ order = 1
179
+
180
+ @register_to_config
181
+ def __init__(
182
+ self,
183
+ num_train_timesteps: int = 1000,
184
+ beta_start: float = 0.00085,
185
+ beta_end: float = 0.0120,
186
+ beta_schedule: str = "scaled_linear",
187
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
188
+ clip_sample: bool = True,
189
+ set_alpha_to_one: bool = True,
190
+ steps_offset: int = 0,
191
+ prediction_type: str = "epsilon",
192
+ clip_sample_range: float = 1.0,
193
+ sample_max_value: float = 1.0,
194
+ timestep_spacing: str = "leading",
195
+ rescale_betas_zero_snr: bool = False,
196
+ snr_shift_scale: float = 3.0,
197
+ ):
198
+ if trained_betas is not None:
199
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
200
+ elif beta_schedule == "linear":
201
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
202
+ elif beta_schedule == "scaled_linear":
203
+ # this schedule is very specific to the latent diffusion model.
204
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
205
+ elif beta_schedule == "squaredcos_cap_v2":
206
+ # Glide cosine schedule
207
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
208
+ else:
209
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
210
+
211
+ self.alphas = 1.0 - self.betas
212
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
213
+
214
+ # Modify: SNR shift following SD3
215
+ self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod)
216
+
217
+ # Rescale for zero SNR
218
+ if rescale_betas_zero_snr:
219
+ self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod)
220
+
221
+ # At every step in ddim, we are looking into the previous alphas_cumprod
222
+ # For the final step, there is no previous alphas_cumprod because we are already at 0
223
+ # `set_alpha_to_one` decides whether we set this parameter simply to one or
224
+ # whether we use the final alpha of the "non-previous" one.
225
+ self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
226
+
227
+ # standard deviation of the initial noise distribution
228
+ self.init_noise_sigma = 1.0
229
+
230
+ # setable values
231
+ self.num_inference_steps = None
232
+ self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
233
+
234
+ def _get_variance(self, timestep, prev_timestep):
235
+ alpha_prod_t = self.alphas_cumprod[timestep]
236
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
237
+ beta_prod_t = 1 - alpha_prod_t
238
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
239
+
240
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
241
+
242
+ return variance
243
+
244
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
245
+ """
246
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
247
+ current timestep.
248
+
249
+ Args:
250
+ sample (`torch.Tensor`):
251
+ The input sample.
252
+ timestep (`int`, *optional*):
253
+ The current timestep in the diffusion chain.
254
+
255
+ Returns:
256
+ `torch.Tensor`:
257
+ A scaled input sample.
258
+ """
259
+ return sample
260
+
261
+ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
262
+ """
263
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
264
+
265
+ Args:
266
+ num_inference_steps (`int`):
267
+ The number of diffusion steps used when generating samples with a pre-trained model.
268
+ """
269
+
270
+ if num_inference_steps > self.config.num_train_timesteps:
271
+ raise ValueError(
272
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
273
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
274
+ f" maximal {self.config.num_train_timesteps} timesteps."
275
+ )
276
+
277
+ self.num_inference_steps = num_inference_steps
278
+
279
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
280
+ if self.config.timestep_spacing == "linspace":
281
+ timesteps = (
282
+ np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
283
+ .round()[::-1]
284
+ .copy()
285
+ .astype(np.int64)
286
+ )
287
+ elif self.config.timestep_spacing == "leading":
288
+ step_ratio = self.config.num_train_timesteps // self.num_inference_steps
289
+ # creates integer timesteps by multiplying by ratio
290
+ # casting to int to avoid issues when num_inference_step is power of 3
291
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
292
+ timesteps += self.config.steps_offset
293
+ elif self.config.timestep_spacing == "trailing":
294
+ step_ratio = self.config.num_train_timesteps / self.num_inference_steps
295
+ # creates integer timesteps by multiplying by ratio
296
+ # casting to int to avoid issues when num_inference_step is power of 3
297
+ timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
298
+ timesteps -= 1
299
+ else:
300
+ raise ValueError(
301
+ f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
302
+ )
303
+
304
+ self.timesteps = torch.from_numpy(timesteps).to(device)
305
+
306
+ def get_variables(self, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back=None):
307
+ lamb = ((alpha_prod_t / (1 - alpha_prod_t)) ** 0.5).log()
308
+ lamb_next = ((alpha_prod_t_prev / (1 - alpha_prod_t_prev)) ** 0.5).log()
309
+ h = lamb_next - lamb
310
+
311
+ if alpha_prod_t_back is not None:
312
+ lamb_previous = ((alpha_prod_t_back / (1 - alpha_prod_t_back)) ** 0.5).log()
313
+ h_last = lamb - lamb_previous
314
+ r = h_last / h
315
+ return h, r, lamb, lamb_next
316
+ else:
317
+ return h, None, lamb, lamb_next
318
+
319
+ def get_mult(self, h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back):
320
+ mult1 = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5 * (-h).exp()
321
+ mult2 = (-2 * h).expm1() * alpha_prod_t_prev**0.5
322
+
323
+ if alpha_prod_t_back is not None:
324
+ mult3 = 1 + 1 / (2 * r)
325
+ mult4 = 1 / (2 * r)
326
+ return mult1, mult2, mult3, mult4
327
+ else:
328
+ return mult1, mult2
329
+
330
+ def step(
331
+ self,
332
+ model_output: torch.Tensor,
333
+ old_pred_original_sample: torch.Tensor,
334
+ timestep: int,
335
+ timestep_back: int,
336
+ sample: torch.Tensor,
337
+ eta: float = 0.0,
338
+ use_clipped_model_output: bool = False,
339
+ generator=None,
340
+ variance_noise: Optional[torch.Tensor] = None,
341
+ return_dict: bool = False,
342
+ ) -> Union[DDIMSchedulerOutput, Tuple]:
343
+ """
344
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
345
+ process from the learned model outputs (most often the predicted noise).
346
+
347
+ Args:
348
+ model_output (`torch.Tensor`):
349
+ The direct output from learned diffusion model.
350
+ timestep (`float`):
351
+ The current discrete timestep in the diffusion chain.
352
+ sample (`torch.Tensor`):
353
+ A current instance of a sample created by the diffusion process.
354
+ eta (`float`):
355
+ The weight of noise for added noise in diffusion step.
356
+ use_clipped_model_output (`bool`, defaults to `False`):
357
+ If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
358
+ because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
359
+ clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
360
+ `use_clipped_model_output` has no effect.
361
+ generator (`torch.Generator`, *optional*):
362
+ A random number generator.
363
+ variance_noise (`torch.Tensor`):
364
+ Alternative to generating noise with `generator` by directly providing the noise for the variance
365
+ itself. Useful for methods such as [`CycleDiffusion`].
366
+ return_dict (`bool`, *optional*, defaults to `True`):
367
+ Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
368
+
369
+ Returns:
370
+ [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
371
+ If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
372
+ tuple is returned where the first element is the sample tensor.
373
+
374
+ """
375
+ if self.num_inference_steps is None:
376
+ raise ValueError(
377
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
378
+ )
379
+
380
+ # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
381
+ # Ideally, read DDIM paper in-detail understanding
382
+
383
+ # Notation (<variable name> -> <name in paper>
384
+ # - pred_noise_t -> e_theta(x_t, t)
385
+ # - pred_original_sample -> f_theta(x_t, t) or x_0
386
+ # - std_dev_t -> sigma_t
387
+ # - eta -> η
388
+ # - pred_sample_direction -> "direction pointing to x_t"
389
+ # - pred_prev_sample -> "x_t-1"
390
+
391
+ # 1. get previous step value (=t-1)
392
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
393
+
394
+ # 2. compute alphas, betas
395
+ alpha_prod_t = self.alphas_cumprod[timestep]
396
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
397
+ alpha_prod_t_back = self.alphas_cumprod[timestep_back] if timestep_back is not None else None
398
+
399
+ beta_prod_t = 1 - alpha_prod_t
400
+
401
+ # 3. compute predicted original sample from predicted noise also called
402
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
403
+ # To make style tests pass, commented out `pred_epsilon` as it is an unused variable
404
+ if self.config.prediction_type == "epsilon":
405
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
406
+ # pred_epsilon = model_output
407
+ elif self.config.prediction_type == "sample":
408
+ pred_original_sample = model_output
409
+ # pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
410
+ elif self.config.prediction_type == "v_prediction":
411
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
412
+ # pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
413
+ else:
414
+ raise ValueError(
415
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
416
+ " `v_prediction`"
417
+ )
418
+
419
+ h, r, lamb, lamb_next = self.get_variables(alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back)
420
+ mult = list(self.get_mult(h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back))
421
+ mult_noise = (1 - alpha_prod_t_prev) ** 0.5 * (1 - (-2 * h).exp()) ** 0.5
422
+
423
+ noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
424
+ prev_sample = mult[0] * sample - mult[1] * pred_original_sample + mult_noise * noise
425
+
426
+ if old_pred_original_sample is None or prev_timestep < 0:
427
+ # Save a network evaluation if all noise levels are 0 or on the first step
428
+ return prev_sample, pred_original_sample
429
+ else:
430
+ denoised_d = mult[2] * pred_original_sample - mult[3] * old_pred_original_sample
431
+ noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
432
+ x_advanced = mult[0] * sample - mult[1] * denoised_d + mult_noise * noise
433
+
434
+ prev_sample = x_advanced
435
+
436
+ if not return_dict:
437
+ return (prev_sample, pred_original_sample)
438
+
439
+ return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
440
+
441
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
442
+ def add_noise(
443
+ self,
444
+ original_samples: torch.Tensor,
445
+ noise: torch.Tensor,
446
+ timesteps: torch.IntTensor,
447
+ ) -> torch.Tensor:
448
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
449
+ # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
450
+ # for the subsequent add_noise calls
451
+ self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
452
+ alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
453
+ timesteps = timesteps.to(original_samples.device)
454
+
455
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
456
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
457
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
458
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
459
+
460
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
461
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
462
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
463
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
464
+
465
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
466
+ return noisy_samples
467
+
468
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
469
+ def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
470
+ # Make sure alphas_cumprod and timestep have same device and dtype as sample
471
+ self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
472
+ alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
473
+ timesteps = timesteps.to(sample.device)
474
+
475
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
476
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
477
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
478
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
479
+
480
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
481
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
482
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
483
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
484
+
485
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
486
+ return velocity
487
+
488
+ def __len__(self):
489
+ return self.config.num_train_timesteps
@@ -920,7 +920,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
920
920
  def step(
921
921
  self,
922
922
  model_output: torch.Tensor,
923
- timestep: int,
923
+ timestep: Union[int, torch.Tensor],
924
924
  sample: torch.Tensor,
925
925
  generator=None,
926
926
  variance_noise: Optional[torch.Tensor] = None,
@@ -787,7 +787,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
787
787
  def step(
788
788
  self,
789
789
  model_output: torch.Tensor,
790
- timestep: int,
790
+ timestep: Union[int, torch.Tensor],
791
791
  sample: torch.Tensor,
792
792
  generator=None,
793
793
  variance_noise: Optional[torch.Tensor] = None,