diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1136 @@
1
+ # Copyright 2024 Stability AI, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
19
+
20
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
21
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
22
+ from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin
23
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
24
+ from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
25
+ from ...schedulers import KarrasDiffusionSchedulers
26
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ..kolors.pipeline_output import KolorsPipelineOutput
29
+ from ..kolors.text_encoder import ChatGLMModel
30
+ from ..kolors.tokenizer import ChatGLMTokenizer
31
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
32
+ from .pag_utils import PAGMixin
33
+
34
+
35
+ if is_torch_xla_available():
36
+ import torch_xla.core.xla_model as xm
37
+
38
+ XLA_AVAILABLE = True
39
+ else:
40
+ XLA_AVAILABLE = False
41
+
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+
46
+ EXAMPLE_DOC_STRING = """
47
+ Examples:
48
+ ```py
49
+ >>> import torch
50
+ >>> from diffusers import AutoPipelineForText2Image
51
+
52
+ >>> pipe = AutoPipelineForText2Image.from_pretrained(
53
+ ... "Kwai-Kolors/Kolors-diffusers",
54
+ ... variant="fp16",
55
+ ... torch_dtype=torch.float16,
56
+ ... enable_pag=True,
57
+ ... pag_applied_layers=["down.block_2.attentions_1", "up.block_0.attentions_1"],
58
+ ... )
59
+ >>> pipe = pipe.to("cuda")
60
+
61
+ >>> prompt = (
62
+ ... "A photo of a ladybug, macro, zoom, high quality, film, holding a wooden sign with the text 'KOLORS'"
63
+ ... )
64
+ >>> image = pipe(prompt, guidance_scale=5.5, pag_scale=1.5).images[0]
65
+ ```
66
+ """
67
+
68
+
69
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
70
+ def retrieve_timesteps(
71
+ scheduler,
72
+ num_inference_steps: Optional[int] = None,
73
+ device: Optional[Union[str, torch.device]] = None,
74
+ timesteps: Optional[List[int]] = None,
75
+ sigmas: Optional[List[float]] = None,
76
+ **kwargs,
77
+ ):
78
+ """
79
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
80
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
81
+
82
+ Args:
83
+ scheduler (`SchedulerMixin`):
84
+ The scheduler to get timesteps from.
85
+ num_inference_steps (`int`):
86
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
87
+ must be `None`.
88
+ device (`str` or `torch.device`, *optional*):
89
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
90
+ timesteps (`List[int]`, *optional*):
91
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
92
+ `num_inference_steps` and `sigmas` must be `None`.
93
+ sigmas (`List[float]`, *optional*):
94
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
95
+ `num_inference_steps` and `timesteps` must be `None`.
96
+
97
+ Returns:
98
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
99
+ second element is the number of inference steps.
100
+ """
101
+ if timesteps is not None and sigmas is not None:
102
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
103
+ if timesteps is not None:
104
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
105
+ if not accepts_timesteps:
106
+ raise ValueError(
107
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
108
+ f" timestep schedules. Please check whether you are using the correct scheduler."
109
+ )
110
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
111
+ timesteps = scheduler.timesteps
112
+ num_inference_steps = len(timesteps)
113
+ elif sigmas is not None:
114
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
115
+ if not accept_sigmas:
116
+ raise ValueError(
117
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
118
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
119
+ )
120
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
121
+ timesteps = scheduler.timesteps
122
+ num_inference_steps = len(timesteps)
123
+ else:
124
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
125
+ timesteps = scheduler.timesteps
126
+ return timesteps, num_inference_steps
127
+
128
+
129
+ class KolorsPAGPipeline(
130
+ DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin, PAGMixin
131
+ ):
132
+ r"""
133
+ Pipeline for text-to-image generation using Kolors.
134
+
135
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
136
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
137
+
138
+ The pipeline also inherits the following loading methods:
139
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
140
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
141
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
142
+
143
+ Args:
144
+ vae ([`AutoencoderKL`]):
145
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
146
+ text_encoder ([`ChatGLMModel`]):
147
+ Frozen text-encoder. Kolors uses [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b).
148
+ tokenizer (`ChatGLMTokenizer`):
149
+ Tokenizer of class
150
+ [ChatGLMTokenizer](https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py).
151
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
152
+ scheduler ([`SchedulerMixin`]):
153
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
154
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
155
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"False"`):
156
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
157
+ `Kwai-Kolors/Kolors-diffusers`.
158
+ pag_applied_layers (`str` or `List[str]``, *optional*, defaults to `"mid"`):
159
+ Set the transformer attention layers where to apply the perturbed attention guidance. Can be a string or a
160
+ list of strings with "down", "mid", "up", a whole transformer block or specific transformer block attention
161
+ layers, e.g.:
162
+ ["mid"] ["down", "mid"] ["down", "mid", "up.block_1"] ["down", "mid", "up.block_1.attentions_0",
163
+ "up.block_1.attentions_1"]
164
+ """
165
+
166
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
167
+ _optional_components = [
168
+ "image_encoder",
169
+ "feature_extractor",
170
+ ]
171
+ _callback_tensor_inputs = [
172
+ "latents",
173
+ "prompt_embeds",
174
+ "negative_prompt_embeds",
175
+ "add_text_embeds",
176
+ "add_time_ids",
177
+ "negative_pooled_prompt_embeds",
178
+ "negative_add_time_ids",
179
+ ]
180
+
181
+ def __init__(
182
+ self,
183
+ vae: AutoencoderKL,
184
+ text_encoder: ChatGLMModel,
185
+ tokenizer: ChatGLMTokenizer,
186
+ unet: UNet2DConditionModel,
187
+ scheduler: KarrasDiffusionSchedulers,
188
+ image_encoder: CLIPVisionModelWithProjection = None,
189
+ feature_extractor: CLIPImageProcessor = None,
190
+ force_zeros_for_empty_prompt: bool = False,
191
+ pag_applied_layers: Union[str, List[str]] = "mid",
192
+ ):
193
+ super().__init__()
194
+
195
+ self.register_modules(
196
+ vae=vae,
197
+ text_encoder=text_encoder,
198
+ tokenizer=tokenizer,
199
+ unet=unet,
200
+ scheduler=scheduler,
201
+ image_encoder=image_encoder,
202
+ feature_extractor=feature_extractor,
203
+ )
204
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
205
+ self.vae_scale_factor = (
206
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
207
+ )
208
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
209
+
210
+ self.default_sample_size = self.unet.config.sample_size
211
+
212
+ self.set_pag_applied_layers(pag_applied_layers)
213
+
214
+ # Copied from diffusers.pipelines.kolors.pipeline_kolors.KolorsPipeline.encode_prompt
215
+ def encode_prompt(
216
+ self,
217
+ prompt,
218
+ device: Optional[torch.device] = None,
219
+ num_images_per_prompt: int = 1,
220
+ do_classifier_free_guidance: bool = True,
221
+ negative_prompt=None,
222
+ prompt_embeds: Optional[torch.FloatTensor] = None,
223
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
224
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
225
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
226
+ max_sequence_length: int = 256,
227
+ ):
228
+ r"""
229
+ Encodes the prompt into text encoder hidden states.
230
+
231
+ Args:
232
+ prompt (`str` or `List[str]`, *optional*):
233
+ prompt to be encoded
234
+ device: (`torch.device`):
235
+ torch device
236
+ num_images_per_prompt (`int`):
237
+ number of images that should be generated per prompt
238
+ do_classifier_free_guidance (`bool`):
239
+ whether to use classifier free guidance or not
240
+ negative_prompt (`str` or `List[str]`, *optional*):
241
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
242
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
243
+ less than `1`).
244
+ prompt_embeds (`torch.FloatTensor`, *optional*):
245
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
246
+ provided, text embeddings will be generated from `prompt` input argument.
247
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
248
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
249
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
250
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
251
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
252
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
253
+ argument.
254
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
255
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
256
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
257
+ input argument.
258
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
259
+ """
260
+ # from IPython import embed; embed(); exit()
261
+ device = device or self._execution_device
262
+
263
+ if prompt is not None and isinstance(prompt, str):
264
+ batch_size = 1
265
+ elif prompt is not None and isinstance(prompt, list):
266
+ batch_size = len(prompt)
267
+ else:
268
+ batch_size = prompt_embeds.shape[0]
269
+
270
+ # Define tokenizers and text encoders
271
+ tokenizers = [self.tokenizer]
272
+ text_encoders = [self.text_encoder]
273
+
274
+ if prompt_embeds is None:
275
+ prompt_embeds_list = []
276
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
277
+ text_inputs = tokenizer(
278
+ prompt,
279
+ padding="max_length",
280
+ max_length=max_sequence_length,
281
+ truncation=True,
282
+ return_tensors="pt",
283
+ ).to(device)
284
+ output = text_encoder(
285
+ input_ids=text_inputs["input_ids"],
286
+ attention_mask=text_inputs["attention_mask"],
287
+ position_ids=text_inputs["position_ids"],
288
+ output_hidden_states=True,
289
+ )
290
+
291
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
292
+ # clone to have a contiguous tensor
293
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
294
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
295
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
296
+ bs_embed, seq_len, _ = prompt_embeds.shape
297
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
298
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
299
+
300
+ prompt_embeds_list.append(prompt_embeds)
301
+
302
+ prompt_embeds = prompt_embeds_list[0]
303
+
304
+ # get unconditional embeddings for classifier free guidance
305
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
306
+
307
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
308
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
309
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
310
+ uncond_tokens: List[str]
311
+ if negative_prompt is None:
312
+ uncond_tokens = [""] * batch_size
313
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
314
+ raise TypeError(
315
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
316
+ f" {type(prompt)}."
317
+ )
318
+ elif isinstance(negative_prompt, str):
319
+ uncond_tokens = [negative_prompt]
320
+ elif batch_size != len(negative_prompt):
321
+ raise ValueError(
322
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
323
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
324
+ " the batch size of `prompt`."
325
+ )
326
+ else:
327
+ uncond_tokens = negative_prompt
328
+
329
+ negative_prompt_embeds_list = []
330
+
331
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
332
+ uncond_input = tokenizer(
333
+ uncond_tokens,
334
+ padding="max_length",
335
+ max_length=max_sequence_length,
336
+ truncation=True,
337
+ return_tensors="pt",
338
+ ).to(device)
339
+ output = text_encoder(
340
+ input_ids=uncond_input["input_ids"],
341
+ attention_mask=uncond_input["attention_mask"],
342
+ position_ids=uncond_input["position_ids"],
343
+ output_hidden_states=True,
344
+ )
345
+
346
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
347
+ # clone to have a contiguous tensor
348
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
349
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
350
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
351
+
352
+ if do_classifier_free_guidance:
353
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
354
+ seq_len = negative_prompt_embeds.shape[1]
355
+
356
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
357
+
358
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
359
+ negative_prompt_embeds = negative_prompt_embeds.view(
360
+ batch_size * num_images_per_prompt, seq_len, -1
361
+ )
362
+
363
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
364
+
365
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
366
+
367
+ bs_embed = pooled_prompt_embeds.shape[0]
368
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
369
+ bs_embed * num_images_per_prompt, -1
370
+ )
371
+
372
+ if do_classifier_free_guidance:
373
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
374
+ bs_embed * num_images_per_prompt, -1
375
+ )
376
+
377
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
378
+
379
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
380
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
381
+ dtype = next(self.image_encoder.parameters()).dtype
382
+
383
+ if not isinstance(image, torch.Tensor):
384
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
385
+
386
+ image = image.to(device=device, dtype=dtype)
387
+ if output_hidden_states:
388
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
389
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
390
+ uncond_image_enc_hidden_states = self.image_encoder(
391
+ torch.zeros_like(image), output_hidden_states=True
392
+ ).hidden_states[-2]
393
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
394
+ num_images_per_prompt, dim=0
395
+ )
396
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
397
+ else:
398
+ image_embeds = self.image_encoder(image).image_embeds
399
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
400
+ uncond_image_embeds = torch.zeros_like(image_embeds)
401
+
402
+ return image_embeds, uncond_image_embeds
403
+
404
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
405
+ def prepare_ip_adapter_image_embeds(
406
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
407
+ ):
408
+ image_embeds = []
409
+ if do_classifier_free_guidance:
410
+ negative_image_embeds = []
411
+ if ip_adapter_image_embeds is None:
412
+ if not isinstance(ip_adapter_image, list):
413
+ ip_adapter_image = [ip_adapter_image]
414
+
415
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
416
+ raise ValueError(
417
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
418
+ )
419
+
420
+ for single_ip_adapter_image, image_proj_layer in zip(
421
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
422
+ ):
423
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
424
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
425
+ single_ip_adapter_image, device, 1, output_hidden_state
426
+ )
427
+
428
+ image_embeds.append(single_image_embeds[None, :])
429
+ if do_classifier_free_guidance:
430
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
431
+ else:
432
+ for single_image_embeds in ip_adapter_image_embeds:
433
+ if do_classifier_free_guidance:
434
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
435
+ negative_image_embeds.append(single_negative_image_embeds)
436
+ image_embeds.append(single_image_embeds)
437
+
438
+ ip_adapter_image_embeds = []
439
+ for i, single_image_embeds in enumerate(image_embeds):
440
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
441
+ if do_classifier_free_guidance:
442
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
443
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
444
+
445
+ single_image_embeds = single_image_embeds.to(device=device)
446
+ ip_adapter_image_embeds.append(single_image_embeds)
447
+
448
+ return ip_adapter_image_embeds
449
+
450
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
451
+ def prepare_extra_step_kwargs(self, generator, eta):
452
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
453
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
454
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
455
+ # and should be between [0, 1]
456
+
457
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
458
+ extra_step_kwargs = {}
459
+ if accepts_eta:
460
+ extra_step_kwargs["eta"] = eta
461
+
462
+ # check if the scheduler accepts generator
463
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
464
+ if accepts_generator:
465
+ extra_step_kwargs["generator"] = generator
466
+ return extra_step_kwargs
467
+
468
+ # Copied from diffusers.pipelines.kolors.pipeline_kolors.KolorsPipeline.check_inputs
469
+ def check_inputs(
470
+ self,
471
+ prompt,
472
+ num_inference_steps,
473
+ height,
474
+ width,
475
+ negative_prompt=None,
476
+ prompt_embeds=None,
477
+ pooled_prompt_embeds=None,
478
+ negative_prompt_embeds=None,
479
+ negative_pooled_prompt_embeds=None,
480
+ ip_adapter_image=None,
481
+ ip_adapter_image_embeds=None,
482
+ callback_on_step_end_tensor_inputs=None,
483
+ max_sequence_length=None,
484
+ ):
485
+ if not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
486
+ raise ValueError(
487
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
488
+ f" {type(num_inference_steps)}."
489
+ )
490
+
491
+ if height % 8 != 0 or width % 8 != 0:
492
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
493
+
494
+ if callback_on_step_end_tensor_inputs is not None and not all(
495
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
496
+ ):
497
+ raise ValueError(
498
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
499
+ )
500
+
501
+ if prompt is not None and prompt_embeds is not None:
502
+ raise ValueError(
503
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
504
+ " only forward one of the two."
505
+ )
506
+ elif prompt is None and prompt_embeds is None:
507
+ raise ValueError(
508
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
509
+ )
510
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
511
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
512
+
513
+ if negative_prompt is not None and negative_prompt_embeds is not None:
514
+ raise ValueError(
515
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
516
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
517
+ )
518
+
519
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
520
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
521
+ raise ValueError(
522
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
523
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
524
+ f" {negative_prompt_embeds.shape}."
525
+ )
526
+
527
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
528
+ raise ValueError(
529
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
530
+ )
531
+
532
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
533
+ raise ValueError(
534
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
535
+ )
536
+
537
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
538
+ raise ValueError(
539
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
540
+ )
541
+
542
+ if ip_adapter_image_embeds is not None:
543
+ if not isinstance(ip_adapter_image_embeds, list):
544
+ raise ValueError(
545
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
546
+ )
547
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
548
+ raise ValueError(
549
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
550
+ )
551
+
552
+ if max_sequence_length is not None and max_sequence_length > 256:
553
+ raise ValueError(f"`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}")
554
+
555
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
556
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
557
+ shape = (
558
+ batch_size,
559
+ num_channels_latents,
560
+ int(height) // self.vae_scale_factor,
561
+ int(width) // self.vae_scale_factor,
562
+ )
563
+ if isinstance(generator, list) and len(generator) != batch_size:
564
+ raise ValueError(
565
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
566
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
567
+ )
568
+
569
+ if latents is None:
570
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
571
+ else:
572
+ latents = latents.to(device)
573
+
574
+ # scale the initial noise by the standard deviation required by the scheduler
575
+ latents = latents * self.scheduler.init_noise_sigma
576
+ return latents
577
+
578
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
579
+ def _get_add_time_ids(
580
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
581
+ ):
582
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
583
+
584
+ passed_add_embed_dim = (
585
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
586
+ )
587
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
588
+
589
+ if expected_add_embed_dim != passed_add_embed_dim:
590
+ raise ValueError(
591
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
592
+ )
593
+
594
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
595
+ return add_time_ids
596
+
597
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
598
+ def upcast_vae(self):
599
+ dtype = self.vae.dtype
600
+ self.vae.to(dtype=torch.float32)
601
+ use_torch_2_0_or_xformers = isinstance(
602
+ self.vae.decoder.mid_block.attentions[0].processor,
603
+ (
604
+ AttnProcessor2_0,
605
+ XFormersAttnProcessor,
606
+ FusedAttnProcessor2_0,
607
+ ),
608
+ )
609
+ # if xformers or torch_2_0 is used attention block does not need
610
+ # to be in float32 which can save lots of memory
611
+ if use_torch_2_0_or_xformers:
612
+ self.vae.post_quant_conv.to(dtype)
613
+ self.vae.decoder.conv_in.to(dtype)
614
+ self.vae.decoder.mid_block.to(dtype)
615
+
616
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
617
+ def get_guidance_scale_embedding(
618
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
619
+ ) -> torch.Tensor:
620
+ """
621
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
622
+
623
+ Args:
624
+ w (`torch.Tensor`):
625
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
626
+ embedding_dim (`int`, *optional*, defaults to 512):
627
+ Dimension of the embeddings to generate.
628
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
629
+ Data type of the generated embeddings.
630
+
631
+ Returns:
632
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
633
+ """
634
+ assert len(w.shape) == 1
635
+ w = w * 1000.0
636
+
637
+ half_dim = embedding_dim // 2
638
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
639
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
640
+ emb = w.to(dtype)[:, None] * emb[None, :]
641
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
642
+ if embedding_dim % 2 == 1: # zero pad
643
+ emb = torch.nn.functional.pad(emb, (0, 1))
644
+ assert emb.shape == (w.shape[0], embedding_dim)
645
+ return emb
646
+
647
+ @property
648
+ def guidance_scale(self):
649
+ return self._guidance_scale
650
+
651
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
652
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
653
+ # corresponds to doing no classifier free guidance.
654
+ @property
655
+ def do_classifier_free_guidance(self):
656
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
657
+
658
+ @property
659
+ def cross_attention_kwargs(self):
660
+ return self._cross_attention_kwargs
661
+
662
+ @property
663
+ def denoising_end(self):
664
+ return self._denoising_end
665
+
666
+ @property
667
+ def num_timesteps(self):
668
+ return self._num_timesteps
669
+
670
+ @property
671
+ def interrupt(self):
672
+ return self._interrupt
673
+
674
+ @torch.no_grad()
675
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
676
+ def __call__(
677
+ self,
678
+ prompt: Union[str, List[str]] = None,
679
+ height: Optional[int] = None,
680
+ width: Optional[int] = None,
681
+ num_inference_steps: int = 50,
682
+ timesteps: List[int] = None,
683
+ sigmas: List[float] = None,
684
+ denoising_end: Optional[float] = None,
685
+ guidance_scale: float = 5.0,
686
+ negative_prompt: Optional[Union[str, List[str]]] = None,
687
+ num_images_per_prompt: Optional[int] = 1,
688
+ eta: float = 0.0,
689
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
690
+ latents: Optional[torch.Tensor] = None,
691
+ prompt_embeds: Optional[torch.Tensor] = None,
692
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
693
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
694
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
695
+ ip_adapter_image: Optional[PipelineImageInput] = None,
696
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
697
+ output_type: Optional[str] = "pil",
698
+ return_dict: bool = True,
699
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
700
+ original_size: Optional[Tuple[int, int]] = None,
701
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
702
+ target_size: Optional[Tuple[int, int]] = None,
703
+ negative_original_size: Optional[Tuple[int, int]] = None,
704
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
705
+ negative_target_size: Optional[Tuple[int, int]] = None,
706
+ callback_on_step_end: Optional[
707
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
708
+ ] = None,
709
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
710
+ pag_scale: float = 3.0,
711
+ pag_adaptive_scale: float = 0.0,
712
+ max_sequence_length: int = 256,
713
+ ):
714
+ r"""
715
+ Function invoked when calling the pipeline for generation.
716
+
717
+ Args:
718
+ prompt (`str` or `List[str]`, *optional*):
719
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
720
+ instead.
721
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
722
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
723
+ Anything below 512 pixels won't work well for
724
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
725
+ that are not specifically fine-tuned on low resolutions.
726
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
727
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
728
+ Anything below 512 pixels won't work well for
729
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
730
+ that are not specifically fine-tuned on low resolutions.
731
+ num_inference_steps (`int`, *optional*, defaults to 50):
732
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
733
+ expense of slower inference.
734
+ timesteps (`List[int]`, *optional*):
735
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
736
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
737
+ passed will be used. Must be in descending order.
738
+ sigmas (`List[float]`, *optional*):
739
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
740
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
741
+ will be used.
742
+ denoising_end (`float`, *optional*):
743
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
744
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
745
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
746
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
747
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
748
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
749
+ guidance_scale (`float`, *optional*, defaults to 5.0):
750
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
751
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
752
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
753
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
754
+ usually at the expense of lower image quality.
755
+ negative_prompt (`str` or `List[str]`, *optional*):
756
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
757
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
758
+ less than `1`).
759
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
760
+ The number of images to generate per prompt.
761
+ eta (`float`, *optional*, defaults to 0.0):
762
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
763
+ [`schedulers.DDIMScheduler`], will be ignored for others.
764
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
765
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
766
+ to make generation deterministic.
767
+ latents (`torch.Tensor`, *optional*):
768
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
769
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
770
+ tensor will ge generated by sampling using the supplied random `generator`.
771
+ prompt_embeds (`torch.Tensor`, *optional*):
772
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
773
+ provided, text embeddings will be generated from `prompt` input argument.
774
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
775
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
776
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
777
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
778
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
779
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
780
+ argument.
781
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
782
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
783
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
784
+ input argument.
785
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
786
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
787
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
788
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
789
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
790
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
791
+ output_type (`str`, *optional*, defaults to `"pil"`):
792
+ The output format of the generate image. Choose between
793
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
794
+ return_dict (`bool`, *optional*, defaults to `True`):
795
+ Whether or not to return a [`~pipelines.kolors.KolorsPipelineOutput`] instead of a plain tuple.
796
+ cross_attention_kwargs (`dict`, *optional*):
797
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
798
+ `self.processor` in
799
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
800
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
801
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
802
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
803
+ explained in section 2.2 of
804
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
805
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
806
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
807
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
808
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
809
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
810
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
811
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
812
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
813
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
814
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
815
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
816
+ micro-conditioning as explained in section 2.2 of
817
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
818
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
819
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
820
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
821
+ micro-conditioning as explained in section 2.2 of
822
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
823
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
824
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
825
+ To negatively condition the generation process based on a target image resolution. It should be as same
826
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
827
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
828
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
829
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
830
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
831
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
832
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
833
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
834
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
835
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
836
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
837
+ `._callback_tensor_inputs` attribute of your pipeline class.
838
+ pag_scale (`float`, *optional*, defaults to 3.0):
839
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
840
+ guidance will not be used.
841
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
842
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
843
+ used.
844
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
845
+
846
+ Examples:
847
+
848
+ Returns:
849
+ [`~pipelines.kolors.KolorsPipelineOutput`] or `tuple`: [`~pipelines.kolors.KolorsPipelineOutput`] if
850
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
851
+ generated images.
852
+ """
853
+
854
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
855
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
856
+
857
+ # 0. Default height and width to unet
858
+ height = height or self.default_sample_size * self.vae_scale_factor
859
+ width = width or self.default_sample_size * self.vae_scale_factor
860
+
861
+ original_size = original_size or (height, width)
862
+ target_size = target_size or (height, width)
863
+
864
+ # 1. Check inputs. Raise error if not correct
865
+ self.check_inputs(
866
+ prompt,
867
+ num_inference_steps,
868
+ height,
869
+ width,
870
+ negative_prompt,
871
+ prompt_embeds,
872
+ pooled_prompt_embeds,
873
+ negative_prompt_embeds,
874
+ negative_pooled_prompt_embeds,
875
+ ip_adapter_image,
876
+ ip_adapter_image_embeds,
877
+ callback_on_step_end_tensor_inputs,
878
+ max_sequence_length=max_sequence_length,
879
+ )
880
+
881
+ self._guidance_scale = guidance_scale
882
+ self._cross_attention_kwargs = cross_attention_kwargs
883
+ self._denoising_end = denoising_end
884
+ self._interrupt = False
885
+ self._pag_scale = pag_scale
886
+ self._pag_adaptive_scale = pag_adaptive_scale
887
+
888
+ # 2. Define call parameters
889
+ if prompt is not None and isinstance(prompt, str):
890
+ batch_size = 1
891
+ elif prompt is not None and isinstance(prompt, list):
892
+ batch_size = len(prompt)
893
+ else:
894
+ batch_size = prompt_embeds.shape[0]
895
+
896
+ device = self._execution_device
897
+
898
+ # 3. Encode input prompt
899
+ (
900
+ prompt_embeds,
901
+ negative_prompt_embeds,
902
+ pooled_prompt_embeds,
903
+ negative_pooled_prompt_embeds,
904
+ ) = self.encode_prompt(
905
+ prompt=prompt,
906
+ device=device,
907
+ num_images_per_prompt=num_images_per_prompt,
908
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
909
+ negative_prompt=negative_prompt,
910
+ prompt_embeds=prompt_embeds,
911
+ pooled_prompt_embeds=pooled_prompt_embeds,
912
+ negative_prompt_embeds=negative_prompt_embeds,
913
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
914
+ )
915
+
916
+ # 4. Prepare timesteps
917
+ timesteps, num_inference_steps = retrieve_timesteps(
918
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
919
+ )
920
+
921
+ # 5. Prepare latent variables
922
+ num_channels_latents = self.unet.config.in_channels
923
+ latents = self.prepare_latents(
924
+ batch_size * num_images_per_prompt,
925
+ num_channels_latents,
926
+ height,
927
+ width,
928
+ prompt_embeds.dtype,
929
+ device,
930
+ generator,
931
+ latents,
932
+ )
933
+
934
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
935
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
936
+
937
+ # 7. Prepare added time ids & embeddings
938
+ add_text_embeds = pooled_prompt_embeds
939
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
940
+
941
+ add_time_ids = self._get_add_time_ids(
942
+ original_size,
943
+ crops_coords_top_left,
944
+ target_size,
945
+ dtype=prompt_embeds.dtype,
946
+ text_encoder_projection_dim=text_encoder_projection_dim,
947
+ )
948
+ if negative_original_size is not None and negative_target_size is not None:
949
+ negative_add_time_ids = self._get_add_time_ids(
950
+ negative_original_size,
951
+ negative_crops_coords_top_left,
952
+ negative_target_size,
953
+ dtype=prompt_embeds.dtype,
954
+ text_encoder_projection_dim=text_encoder_projection_dim,
955
+ )
956
+ else:
957
+ negative_add_time_ids = add_time_ids
958
+
959
+ if self.do_perturbed_attention_guidance:
960
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
961
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
962
+ )
963
+ add_text_embeds = self._prepare_perturbed_attention_guidance(
964
+ add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance
965
+ )
966
+ add_time_ids = self._prepare_perturbed_attention_guidance(
967
+ add_time_ids, negative_add_time_ids, self.do_classifier_free_guidance
968
+ )
969
+ elif self.do_classifier_free_guidance:
970
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
971
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
972
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
973
+
974
+ prompt_embeds = prompt_embeds.to(device)
975
+ add_text_embeds = add_text_embeds.to(device)
976
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
977
+
978
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
979
+ image_embeds = self.prepare_ip_adapter_image_embeds(
980
+ ip_adapter_image,
981
+ ip_adapter_image_embeds,
982
+ device,
983
+ batch_size * num_images_per_prompt,
984
+ self.do_classifier_free_guidance,
985
+ )
986
+
987
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
988
+ negative_image_embeds = None
989
+ if self.do_classifier_free_guidance:
990
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
991
+
992
+ if self.do_perturbed_attention_guidance:
993
+ image_embeds = self._prepare_perturbed_attention_guidance(
994
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
995
+ )
996
+ elif self.do_classifier_free_guidance:
997
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
998
+ image_embeds = image_embeds.to(device)
999
+ ip_adapter_image_embeds[i] = image_embeds
1000
+
1001
+ # 8. Denoising loop
1002
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1003
+
1004
+ # 8.1 Apply denoising_end
1005
+ if (
1006
+ self.denoising_end is not None
1007
+ and isinstance(self.denoising_end, float)
1008
+ and self.denoising_end > 0
1009
+ and self.denoising_end < 1
1010
+ ):
1011
+ discrete_timestep_cutoff = int(
1012
+ round(
1013
+ self.scheduler.config.num_train_timesteps
1014
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1015
+ )
1016
+ )
1017
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1018
+ timesteps = timesteps[:num_inference_steps]
1019
+
1020
+ # 9. Optionally get Guidance Scale Embedding
1021
+ timestep_cond = None
1022
+ if self.unet.config.time_cond_proj_dim is not None:
1023
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1024
+ timestep_cond = self.get_guidance_scale_embedding(
1025
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1026
+ ).to(device=device, dtype=latents.dtype)
1027
+
1028
+ if self.do_perturbed_attention_guidance:
1029
+ original_attn_proc = self.unet.attn_processors
1030
+ self._set_pag_attn_processor(
1031
+ pag_applied_layers=self.pag_applied_layers,
1032
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1033
+ )
1034
+
1035
+ self._num_timesteps = len(timesteps)
1036
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1037
+ for i, t in enumerate(timesteps):
1038
+ if self.interrupt:
1039
+ continue
1040
+
1041
+ # expand the latents if we are doing classifier free guidance
1042
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1043
+
1044
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1045
+
1046
+ # predict the noise residual
1047
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1048
+
1049
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1050
+ added_cond_kwargs["image_embeds"] = image_embeds
1051
+
1052
+ noise_pred = self.unet(
1053
+ latent_model_input,
1054
+ t,
1055
+ encoder_hidden_states=prompt_embeds,
1056
+ timestep_cond=timestep_cond,
1057
+ cross_attention_kwargs=self.cross_attention_kwargs,
1058
+ added_cond_kwargs=added_cond_kwargs,
1059
+ return_dict=False,
1060
+ )[0]
1061
+
1062
+ # perform guidance
1063
+ if self.do_perturbed_attention_guidance:
1064
+ noise_pred = self._apply_perturbed_attention_guidance(
1065
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1066
+ )
1067
+ elif self.do_classifier_free_guidance:
1068
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1069
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1070
+
1071
+ # compute the previous noisy sample x_t -> x_t-1
1072
+ latents_dtype = latents.dtype
1073
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1074
+ if latents.dtype != latents_dtype:
1075
+ if torch.backends.mps.is_available():
1076
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1077
+ latents = latents.to(latents_dtype)
1078
+
1079
+ if callback_on_step_end is not None:
1080
+ callback_kwargs = {}
1081
+ for k in callback_on_step_end_tensor_inputs:
1082
+ callback_kwargs[k] = locals()[k]
1083
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1084
+
1085
+ latents = callback_outputs.pop("latents", latents)
1086
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1087
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1088
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1089
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1090
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1091
+ )
1092
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1093
+ negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
1094
+
1095
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1096
+ progress_bar.update()
1097
+
1098
+ if XLA_AVAILABLE:
1099
+ xm.mark_step()
1100
+
1101
+ if not output_type == "latent":
1102
+ # make sure the VAE is in float32 mode, as it overflows in float16
1103
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1104
+
1105
+ if needs_upcasting:
1106
+ self.upcast_vae()
1107
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1108
+ elif latents.dtype != self.vae.dtype:
1109
+ if torch.backends.mps.is_available():
1110
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1111
+ self.vae = self.vae.to(latents.dtype)
1112
+
1113
+ # unscale/denormalize the latents
1114
+ latents = latents / self.vae.config.scaling_factor
1115
+
1116
+ image = self.vae.decode(latents, return_dict=False)[0]
1117
+
1118
+ # cast back to fp16 if needed
1119
+ if needs_upcasting:
1120
+ self.vae.to(dtype=torch.float16)
1121
+ else:
1122
+ image = latents
1123
+
1124
+ if not output_type == "latent":
1125
+ image = self.image_processor.postprocess(image, output_type=output_type)
1126
+
1127
+ # Offload all models
1128
+ self.maybe_free_model_hooks()
1129
+
1130
+ if self.do_perturbed_attention_guidance:
1131
+ self.unet.set_attn_processor(original_attn_proc)
1132
+
1133
+ if not return_dict:
1134
+ return (image,)
1135
+
1136
+ return KolorsPipelineOutput(images=image)