diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,985 @@
1
+ # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ CLIPTextModelWithProjection,
21
+ CLIPTokenizer,
22
+ T5EncoderModel,
23
+ T5TokenizerFast,
24
+ )
25
+
26
+ from ...image_processor import VaeImageProcessor
27
+ from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin
28
+ from ...models.attention_processor import PAGCFGJointAttnProcessor2_0, PAGJointAttnProcessor2_0
29
+ from ...models.autoencoders import AutoencoderKL
30
+ from ...models.transformers import SD3Transformer2DModel
31
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
32
+ from ...utils import (
33
+ USE_PEFT_BACKEND,
34
+ is_torch_xla_available,
35
+ logging,
36
+ replace_example_docstring,
37
+ scale_lora_layers,
38
+ unscale_lora_layers,
39
+ )
40
+ from ...utils.torch_utils import randn_tensor
41
+ from ..pipeline_utils import DiffusionPipeline
42
+ from ..stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
43
+ from .pag_utils import PAGMixin
44
+
45
+
46
+ if is_torch_xla_available():
47
+ import torch_xla.core.xla_model as xm
48
+
49
+ XLA_AVAILABLE = True
50
+ else:
51
+ XLA_AVAILABLE = False
52
+
53
+
54
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
55
+
56
+ EXAMPLE_DOC_STRING = """
57
+ Examples:
58
+ ```py
59
+ >>> import torch
60
+ >>> from diffusers import AutoPipelineForText2Image
61
+
62
+ >>> pipe = AutoPipelineForText2Image.from_pretrained(
63
+ ... "stabilityai/stable-diffusion-3-medium-diffusers",
64
+ ... torch_dtype=torch.float16,
65
+ ... enable_pag=True,
66
+ ... pag_applied_layers=["blocks.13"],
67
+ ... )
68
+ >>> pipe.to("cuda")
69
+ >>> prompt = "A cat holding a sign that says hello world"
70
+ >>> image = pipe(prompt, guidance_scale=5.0, pag_scale=0.7).images[0]
71
+ >>> image.save("sd3_pag.png")
72
+ ```
73
+ """
74
+
75
+
76
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
77
+ def retrieve_timesteps(
78
+ scheduler,
79
+ num_inference_steps: Optional[int] = None,
80
+ device: Optional[Union[str, torch.device]] = None,
81
+ timesteps: Optional[List[int]] = None,
82
+ sigmas: Optional[List[float]] = None,
83
+ **kwargs,
84
+ ):
85
+ """
86
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
87
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
88
+
89
+ Args:
90
+ scheduler (`SchedulerMixin`):
91
+ The scheduler to get timesteps from.
92
+ num_inference_steps (`int`):
93
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
94
+ must be `None`.
95
+ device (`str` or `torch.device`, *optional*):
96
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
97
+ timesteps (`List[int]`, *optional*):
98
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
99
+ `num_inference_steps` and `sigmas` must be `None`.
100
+ sigmas (`List[float]`, *optional*):
101
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
102
+ `num_inference_steps` and `timesteps` must be `None`.
103
+
104
+ Returns:
105
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
106
+ second element is the number of inference steps.
107
+ """
108
+ if timesteps is not None and sigmas is not None:
109
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
110
+ if timesteps is not None:
111
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
112
+ if not accepts_timesteps:
113
+ raise ValueError(
114
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
115
+ f" timestep schedules. Please check whether you are using the correct scheduler."
116
+ )
117
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
118
+ timesteps = scheduler.timesteps
119
+ num_inference_steps = len(timesteps)
120
+ elif sigmas is not None:
121
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
122
+ if not accept_sigmas:
123
+ raise ValueError(
124
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
125
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
126
+ )
127
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
128
+ timesteps = scheduler.timesteps
129
+ num_inference_steps = len(timesteps)
130
+ else:
131
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ return timesteps, num_inference_steps
134
+
135
+
136
+ class StableDiffusion3PAGPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, PAGMixin):
137
+ r"""
138
+ [PAG pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/pag) for text-to-image generation
139
+ using Stable Diffusion 3.
140
+
141
+ Args:
142
+ transformer ([`SD3Transformer2DModel`]):
143
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
144
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
145
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
146
+ vae ([`AutoencoderKL`]):
147
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
148
+ text_encoder ([`CLIPTextModelWithProjection`]):
149
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
150
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
151
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
152
+ as its dimension.
153
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
154
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
155
+ specifically the
156
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
157
+ variant.
158
+ text_encoder_3 ([`T5EncoderModel`]):
159
+ Frozen text-encoder. Stable Diffusion 3 uses
160
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
161
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
162
+ tokenizer (`CLIPTokenizer`):
163
+ Tokenizer of class
164
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
165
+ tokenizer_2 (`CLIPTokenizer`):
166
+ Second Tokenizer of class
167
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
168
+ tokenizer_3 (`T5TokenizerFast`):
169
+ Tokenizer of class
170
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
171
+ """
172
+
173
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
174
+ _optional_components = []
175
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
176
+
177
+ def __init__(
178
+ self,
179
+ transformer: SD3Transformer2DModel,
180
+ scheduler: FlowMatchEulerDiscreteScheduler,
181
+ vae: AutoencoderKL,
182
+ text_encoder: CLIPTextModelWithProjection,
183
+ tokenizer: CLIPTokenizer,
184
+ text_encoder_2: CLIPTextModelWithProjection,
185
+ tokenizer_2: CLIPTokenizer,
186
+ text_encoder_3: T5EncoderModel,
187
+ tokenizer_3: T5TokenizerFast,
188
+ pag_applied_layers: Union[str, List[str]] = "blocks.1", # 1st transformer block
189
+ ):
190
+ super().__init__()
191
+
192
+ self.register_modules(
193
+ vae=vae,
194
+ text_encoder=text_encoder,
195
+ text_encoder_2=text_encoder_2,
196
+ text_encoder_3=text_encoder_3,
197
+ tokenizer=tokenizer,
198
+ tokenizer_2=tokenizer_2,
199
+ tokenizer_3=tokenizer_3,
200
+ transformer=transformer,
201
+ scheduler=scheduler,
202
+ )
203
+ self.vae_scale_factor = (
204
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
205
+ )
206
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
207
+ self.tokenizer_max_length = (
208
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
209
+ )
210
+ self.default_sample_size = (
211
+ self.transformer.config.sample_size
212
+ if hasattr(self, "transformer") and self.transformer is not None
213
+ else 128
214
+ )
215
+
216
+ self.set_pag_applied_layers(
217
+ pag_applied_layers, pag_attn_processors=(PAGCFGJointAttnProcessor2_0(), PAGJointAttnProcessor2_0())
218
+ )
219
+
220
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
221
+ def _get_t5_prompt_embeds(
222
+ self,
223
+ prompt: Union[str, List[str]] = None,
224
+ num_images_per_prompt: int = 1,
225
+ max_sequence_length: int = 256,
226
+ device: Optional[torch.device] = None,
227
+ dtype: Optional[torch.dtype] = None,
228
+ ):
229
+ device = device or self._execution_device
230
+ dtype = dtype or self.text_encoder.dtype
231
+
232
+ prompt = [prompt] if isinstance(prompt, str) else prompt
233
+ batch_size = len(prompt)
234
+
235
+ if self.text_encoder_3 is None:
236
+ return torch.zeros(
237
+ (
238
+ batch_size * num_images_per_prompt,
239
+ self.tokenizer_max_length,
240
+ self.transformer.config.joint_attention_dim,
241
+ ),
242
+ device=device,
243
+ dtype=dtype,
244
+ )
245
+
246
+ text_inputs = self.tokenizer_3(
247
+ prompt,
248
+ padding="max_length",
249
+ max_length=max_sequence_length,
250
+ truncation=True,
251
+ add_special_tokens=True,
252
+ return_tensors="pt",
253
+ )
254
+ text_input_ids = text_inputs.input_ids
255
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
256
+
257
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
258
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
259
+ logger.warning(
260
+ "The following part of your input was truncated because `max_sequence_length` is set to "
261
+ f" {max_sequence_length} tokens: {removed_text}"
262
+ )
263
+
264
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
265
+
266
+ dtype = self.text_encoder_3.dtype
267
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
268
+
269
+ _, seq_len, _ = prompt_embeds.shape
270
+
271
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
272
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
273
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
274
+
275
+ return prompt_embeds
276
+
277
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
278
+ def _get_clip_prompt_embeds(
279
+ self,
280
+ prompt: Union[str, List[str]],
281
+ num_images_per_prompt: int = 1,
282
+ device: Optional[torch.device] = None,
283
+ clip_skip: Optional[int] = None,
284
+ clip_model_index: int = 0,
285
+ ):
286
+ device = device or self._execution_device
287
+
288
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
289
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
290
+
291
+ tokenizer = clip_tokenizers[clip_model_index]
292
+ text_encoder = clip_text_encoders[clip_model_index]
293
+
294
+ prompt = [prompt] if isinstance(prompt, str) else prompt
295
+ batch_size = len(prompt)
296
+
297
+ text_inputs = tokenizer(
298
+ prompt,
299
+ padding="max_length",
300
+ max_length=self.tokenizer_max_length,
301
+ truncation=True,
302
+ return_tensors="pt",
303
+ )
304
+
305
+ text_input_ids = text_inputs.input_ids
306
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
307
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
308
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
309
+ logger.warning(
310
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
311
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
312
+ )
313
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
314
+ pooled_prompt_embeds = prompt_embeds[0]
315
+
316
+ if clip_skip is None:
317
+ prompt_embeds = prompt_embeds.hidden_states[-2]
318
+ else:
319
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
320
+
321
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
322
+
323
+ _, seq_len, _ = prompt_embeds.shape
324
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
325
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
326
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
327
+
328
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
329
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
330
+
331
+ return prompt_embeds, pooled_prompt_embeds
332
+
333
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
334
+ def encode_prompt(
335
+ self,
336
+ prompt: Union[str, List[str]],
337
+ prompt_2: Union[str, List[str]],
338
+ prompt_3: Union[str, List[str]],
339
+ device: Optional[torch.device] = None,
340
+ num_images_per_prompt: int = 1,
341
+ do_classifier_free_guidance: bool = True,
342
+ negative_prompt: Optional[Union[str, List[str]]] = None,
343
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
344
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
345
+ prompt_embeds: Optional[torch.FloatTensor] = None,
346
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
347
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
348
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
349
+ clip_skip: Optional[int] = None,
350
+ max_sequence_length: int = 256,
351
+ lora_scale: Optional[float] = None,
352
+ ):
353
+ r"""
354
+
355
+ Args:
356
+ prompt (`str` or `List[str]`, *optional*):
357
+ prompt to be encoded
358
+ prompt_2 (`str` or `List[str]`, *optional*):
359
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
360
+ used in all text-encoders
361
+ prompt_3 (`str` or `List[str]`, *optional*):
362
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
363
+ used in all text-encoders
364
+ device: (`torch.device`):
365
+ torch device
366
+ num_images_per_prompt (`int`):
367
+ number of images that should be generated per prompt
368
+ do_classifier_free_guidance (`bool`):
369
+ whether to use classifier free guidance or not
370
+ negative_prompt (`str` or `List[str]`, *optional*):
371
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
372
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
373
+ less than `1`).
374
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
375
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
376
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
377
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
378
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
379
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
380
+ prompt_embeds (`torch.FloatTensor`, *optional*):
381
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
382
+ provided, text embeddings will be generated from `prompt` input argument.
383
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
384
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
385
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
386
+ argument.
387
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
388
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
389
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
390
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
391
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
392
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
393
+ input argument.
394
+ clip_skip (`int`, *optional*):
395
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
396
+ the output of the pre-final layer will be used for computing the prompt embeddings.
397
+ lora_scale (`float`, *optional*):
398
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
399
+ """
400
+ device = device or self._execution_device
401
+
402
+ # set lora scale so that monkey patched LoRA
403
+ # function of text encoder can correctly access it
404
+ if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
405
+ self._lora_scale = lora_scale
406
+
407
+ # dynamically adjust the LoRA scale
408
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
409
+ scale_lora_layers(self.text_encoder, lora_scale)
410
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
411
+ scale_lora_layers(self.text_encoder_2, lora_scale)
412
+
413
+ prompt = [prompt] if isinstance(prompt, str) else prompt
414
+ if prompt is not None:
415
+ batch_size = len(prompt)
416
+ else:
417
+ batch_size = prompt_embeds.shape[0]
418
+
419
+ if prompt_embeds is None:
420
+ prompt_2 = prompt_2 or prompt
421
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
422
+
423
+ prompt_3 = prompt_3 or prompt
424
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
425
+
426
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
427
+ prompt=prompt,
428
+ device=device,
429
+ num_images_per_prompt=num_images_per_prompt,
430
+ clip_skip=clip_skip,
431
+ clip_model_index=0,
432
+ )
433
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
434
+ prompt=prompt_2,
435
+ device=device,
436
+ num_images_per_prompt=num_images_per_prompt,
437
+ clip_skip=clip_skip,
438
+ clip_model_index=1,
439
+ )
440
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
441
+
442
+ t5_prompt_embed = self._get_t5_prompt_embeds(
443
+ prompt=prompt_3,
444
+ num_images_per_prompt=num_images_per_prompt,
445
+ max_sequence_length=max_sequence_length,
446
+ device=device,
447
+ )
448
+
449
+ clip_prompt_embeds = torch.nn.functional.pad(
450
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
451
+ )
452
+
453
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
454
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
455
+
456
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
457
+ negative_prompt = negative_prompt or ""
458
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
459
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
460
+
461
+ # normalize str to list
462
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
463
+ negative_prompt_2 = (
464
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
465
+ )
466
+ negative_prompt_3 = (
467
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
468
+ )
469
+
470
+ if prompt is not None and type(prompt) is not type(negative_prompt):
471
+ raise TypeError(
472
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
473
+ f" {type(prompt)}."
474
+ )
475
+ elif batch_size != len(negative_prompt):
476
+ raise ValueError(
477
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
478
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
479
+ " the batch size of `prompt`."
480
+ )
481
+
482
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
483
+ negative_prompt,
484
+ device=device,
485
+ num_images_per_prompt=num_images_per_prompt,
486
+ clip_skip=None,
487
+ clip_model_index=0,
488
+ )
489
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
490
+ negative_prompt_2,
491
+ device=device,
492
+ num_images_per_prompt=num_images_per_prompt,
493
+ clip_skip=None,
494
+ clip_model_index=1,
495
+ )
496
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
497
+
498
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
499
+ prompt=negative_prompt_3,
500
+ num_images_per_prompt=num_images_per_prompt,
501
+ max_sequence_length=max_sequence_length,
502
+ device=device,
503
+ )
504
+
505
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
506
+ negative_clip_prompt_embeds,
507
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
508
+ )
509
+
510
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
511
+ negative_pooled_prompt_embeds = torch.cat(
512
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
513
+ )
514
+
515
+ if self.text_encoder is not None:
516
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
517
+ # Retrieve the original scale by scaling back the LoRA layers
518
+ unscale_lora_layers(self.text_encoder, lora_scale)
519
+
520
+ if self.text_encoder_2 is not None:
521
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
522
+ # Retrieve the original scale by scaling back the LoRA layers
523
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
524
+
525
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
526
+
527
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.check_inputs
528
+ def check_inputs(
529
+ self,
530
+ prompt,
531
+ prompt_2,
532
+ prompt_3,
533
+ height,
534
+ width,
535
+ negative_prompt=None,
536
+ negative_prompt_2=None,
537
+ negative_prompt_3=None,
538
+ prompt_embeds=None,
539
+ negative_prompt_embeds=None,
540
+ pooled_prompt_embeds=None,
541
+ negative_pooled_prompt_embeds=None,
542
+ callback_on_step_end_tensor_inputs=None,
543
+ max_sequence_length=None,
544
+ ):
545
+ if height % 8 != 0 or width % 8 != 0:
546
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
547
+
548
+ if callback_on_step_end_tensor_inputs is not None and not all(
549
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
550
+ ):
551
+ raise ValueError(
552
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
553
+ )
554
+
555
+ if prompt is not None and prompt_embeds is not None:
556
+ raise ValueError(
557
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
558
+ " only forward one of the two."
559
+ )
560
+ elif prompt_2 is not None and prompt_embeds is not None:
561
+ raise ValueError(
562
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
563
+ " only forward one of the two."
564
+ )
565
+ elif prompt_3 is not None and prompt_embeds is not None:
566
+ raise ValueError(
567
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
568
+ " only forward one of the two."
569
+ )
570
+ elif prompt is None and prompt_embeds is None:
571
+ raise ValueError(
572
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
573
+ )
574
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
575
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
576
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
577
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
578
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
579
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
580
+
581
+ if negative_prompt is not None and negative_prompt_embeds is not None:
582
+ raise ValueError(
583
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
584
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
585
+ )
586
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
587
+ raise ValueError(
588
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
589
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
590
+ )
591
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
592
+ raise ValueError(
593
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
594
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
595
+ )
596
+
597
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
598
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
599
+ raise ValueError(
600
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
601
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
602
+ f" {negative_prompt_embeds.shape}."
603
+ )
604
+
605
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
606
+ raise ValueError(
607
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
608
+ )
609
+
610
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
611
+ raise ValueError(
612
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
613
+ )
614
+
615
+ if max_sequence_length is not None and max_sequence_length > 512:
616
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
617
+
618
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
619
+ def prepare_latents(
620
+ self,
621
+ batch_size,
622
+ num_channels_latents,
623
+ height,
624
+ width,
625
+ dtype,
626
+ device,
627
+ generator,
628
+ latents=None,
629
+ ):
630
+ if latents is not None:
631
+ return latents.to(device=device, dtype=dtype)
632
+
633
+ shape = (
634
+ batch_size,
635
+ num_channels_latents,
636
+ int(height) // self.vae_scale_factor,
637
+ int(width) // self.vae_scale_factor,
638
+ )
639
+
640
+ if isinstance(generator, list) and len(generator) != batch_size:
641
+ raise ValueError(
642
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
643
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
644
+ )
645
+
646
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
647
+
648
+ return latents
649
+
650
+ @property
651
+ def guidance_scale(self):
652
+ return self._guidance_scale
653
+
654
+ @property
655
+ def clip_skip(self):
656
+ return self._clip_skip
657
+
658
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
659
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
660
+ # corresponds to doing no classifier free guidance.
661
+ @property
662
+ def do_classifier_free_guidance(self):
663
+ return self._guidance_scale > 1
664
+
665
+ @property
666
+ def joint_attention_kwargs(self):
667
+ return self._joint_attention_kwargs
668
+
669
+ @property
670
+ def num_timesteps(self):
671
+ return self._num_timesteps
672
+
673
+ @property
674
+ def interrupt(self):
675
+ return self._interrupt
676
+
677
+ @torch.no_grad()
678
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
679
+ def __call__(
680
+ self,
681
+ prompt: Union[str, List[str]] = None,
682
+ prompt_2: Optional[Union[str, List[str]]] = None,
683
+ prompt_3: Optional[Union[str, List[str]]] = None,
684
+ height: Optional[int] = None,
685
+ width: Optional[int] = None,
686
+ num_inference_steps: int = 28,
687
+ timesteps: List[int] = None,
688
+ guidance_scale: float = 7.0,
689
+ negative_prompt: Optional[Union[str, List[str]]] = None,
690
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
691
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
692
+ num_images_per_prompt: Optional[int] = 1,
693
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
694
+ latents: Optional[torch.FloatTensor] = None,
695
+ prompt_embeds: Optional[torch.FloatTensor] = None,
696
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
697
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
698
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
699
+ output_type: Optional[str] = "pil",
700
+ return_dict: bool = True,
701
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
702
+ clip_skip: Optional[int] = None,
703
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
704
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
705
+ max_sequence_length: int = 256,
706
+ pag_scale: float = 3.0,
707
+ pag_adaptive_scale: float = 0.0,
708
+ ):
709
+ r"""
710
+ Function invoked when calling the pipeline for generation.
711
+
712
+ Args:
713
+ prompt (`str` or `List[str]`, *optional*):
714
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
715
+ instead.
716
+ prompt_2 (`str` or `List[str]`, *optional*):
717
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
718
+ will be used instead
719
+ prompt_3 (`str` or `List[str]`, *optional*):
720
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
721
+ will be used instead
722
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
723
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
724
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
725
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
726
+ num_inference_steps (`int`, *optional*, defaults to 50):
727
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
728
+ expense of slower inference.
729
+ timesteps (`List[int]`, *optional*):
730
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
731
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
732
+ passed will be used. Must be in descending order.
733
+ guidance_scale (`float`, *optional*, defaults to 7.0):
734
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
735
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
736
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
737
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
738
+ usually at the expense of lower image quality.
739
+ negative_prompt (`str` or `List[str]`, *optional*):
740
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
741
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
742
+ less than `1`).
743
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
744
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
745
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
746
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
747
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
748
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
749
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
750
+ The number of images to generate per prompt.
751
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
752
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
753
+ to make generation deterministic.
754
+ latents (`torch.FloatTensor`, *optional*):
755
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
756
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
757
+ tensor will ge generated by sampling using the supplied random `generator`.
758
+ prompt_embeds (`torch.FloatTensor`, *optional*):
759
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
760
+ provided, text embeddings will be generated from `prompt` input argument.
761
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
762
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
763
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
764
+ argument.
765
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
766
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
767
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
768
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
769
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
770
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
771
+ input argument.
772
+ output_type (`str`, *optional*, defaults to `"pil"`):
773
+ The output format of the generate image. Choose between
774
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
775
+ return_dict (`bool`, *optional*, defaults to `True`):
776
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
777
+ of a plain tuple.
778
+ joint_attention_kwargs (`dict`, *optional*):
779
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
780
+ `self.processor` in
781
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
782
+ callback_on_step_end (`Callable`, *optional*):
783
+ A function that calls at the end of each denoising steps during the inference. The function is called
784
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
785
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
786
+ `callback_on_step_end_tensor_inputs`.
787
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
788
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
789
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
790
+ `._callback_tensor_inputs` attribute of your pipeline class.
791
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
792
+ pag_scale (`float`, *optional*, defaults to 3.0):
793
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
794
+ guidance will not be used.
795
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
796
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
797
+ used.
798
+
799
+ Examples:
800
+
801
+ Returns:
802
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
803
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
804
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
805
+ """
806
+
807
+ height = height or self.default_sample_size * self.vae_scale_factor
808
+ width = width or self.default_sample_size * self.vae_scale_factor
809
+
810
+ # 1. Check inputs. Raise error if not correct
811
+ self.check_inputs(
812
+ prompt,
813
+ prompt_2,
814
+ prompt_3,
815
+ height,
816
+ width,
817
+ negative_prompt=negative_prompt,
818
+ negative_prompt_2=negative_prompt_2,
819
+ negative_prompt_3=negative_prompt_3,
820
+ prompt_embeds=prompt_embeds,
821
+ negative_prompt_embeds=negative_prompt_embeds,
822
+ pooled_prompt_embeds=pooled_prompt_embeds,
823
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
824
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
825
+ max_sequence_length=max_sequence_length,
826
+ )
827
+
828
+ self._guidance_scale = guidance_scale
829
+ self._clip_skip = clip_skip
830
+ self._joint_attention_kwargs = joint_attention_kwargs
831
+ self._interrupt = False
832
+ self._pag_scale = pag_scale
833
+ self._pag_adaptive_scale = pag_adaptive_scale #
834
+
835
+ # 2. Define call parameters
836
+ if prompt is not None and isinstance(prompt, str):
837
+ batch_size = 1
838
+ elif prompt is not None and isinstance(prompt, list):
839
+ batch_size = len(prompt)
840
+ else:
841
+ batch_size = prompt_embeds.shape[0]
842
+
843
+ device = self._execution_device
844
+
845
+ lora_scale = (
846
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
847
+ )
848
+ (
849
+ prompt_embeds,
850
+ negative_prompt_embeds,
851
+ pooled_prompt_embeds,
852
+ negative_pooled_prompt_embeds,
853
+ ) = self.encode_prompt(
854
+ prompt=prompt,
855
+ prompt_2=prompt_2,
856
+ prompt_3=prompt_3,
857
+ negative_prompt=negative_prompt,
858
+ negative_prompt_2=negative_prompt_2,
859
+ negative_prompt_3=negative_prompt_3,
860
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
861
+ prompt_embeds=prompt_embeds,
862
+ negative_prompt_embeds=negative_prompt_embeds,
863
+ pooled_prompt_embeds=pooled_prompt_embeds,
864
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
865
+ device=device,
866
+ clip_skip=self.clip_skip,
867
+ num_images_per_prompt=num_images_per_prompt,
868
+ max_sequence_length=max_sequence_length,
869
+ lora_scale=lora_scale,
870
+ )
871
+
872
+ if self.do_perturbed_attention_guidance:
873
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
874
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
875
+ )
876
+ pooled_prompt_embeds = self._prepare_perturbed_attention_guidance(
877
+ pooled_prompt_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance
878
+ )
879
+ elif self.do_classifier_free_guidance:
880
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
881
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
882
+
883
+ # 4. Prepare timesteps
884
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
885
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
886
+ self._num_timesteps = len(timesteps)
887
+
888
+ # 5. Prepare latent variables
889
+ num_channels_latents = self.transformer.config.in_channels
890
+ latents = self.prepare_latents(
891
+ batch_size * num_images_per_prompt,
892
+ num_channels_latents,
893
+ height,
894
+ width,
895
+ prompt_embeds.dtype,
896
+ device,
897
+ generator,
898
+ latents,
899
+ )
900
+
901
+ if self.do_perturbed_attention_guidance:
902
+ original_attn_proc = self.transformer.attn_processors
903
+ self._set_pag_attn_processor(
904
+ pag_applied_layers=self.pag_applied_layers,
905
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
906
+ )
907
+
908
+ # 6. Denoising loop
909
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
910
+ for i, t in enumerate(timesteps):
911
+ if self.interrupt:
912
+ continue
913
+
914
+ # expand the latents if we are doing classifier free guidance, perturbed-attention guidance, or both
915
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
916
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
917
+ timestep = t.expand(latent_model_input.shape[0])
918
+
919
+ noise_pred = self.transformer(
920
+ hidden_states=latent_model_input,
921
+ timestep=timestep,
922
+ encoder_hidden_states=prompt_embeds,
923
+ pooled_projections=pooled_prompt_embeds,
924
+ joint_attention_kwargs=self.joint_attention_kwargs,
925
+ return_dict=False,
926
+ )[0]
927
+
928
+ # perform guidance
929
+ if self.do_perturbed_attention_guidance:
930
+ noise_pred = self._apply_perturbed_attention_guidance(
931
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
932
+ )
933
+
934
+ elif self.do_classifier_free_guidance:
935
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
936
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
937
+
938
+ # compute the previous noisy sample x_t -> x_t-1
939
+ latents_dtype = latents.dtype
940
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
941
+
942
+ if latents.dtype != latents_dtype:
943
+ if torch.backends.mps.is_available():
944
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
945
+ latents = latents.to(latents_dtype)
946
+
947
+ if callback_on_step_end is not None:
948
+ callback_kwargs = {}
949
+ for k in callback_on_step_end_tensor_inputs:
950
+ callback_kwargs[k] = locals()[k]
951
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
952
+
953
+ latents = callback_outputs.pop("latents", latents)
954
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
955
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
956
+ negative_pooled_prompt_embeds = callback_outputs.pop(
957
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
958
+ )
959
+
960
+ # call the callback, if provided
961
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
962
+ progress_bar.update()
963
+
964
+ if XLA_AVAILABLE:
965
+ xm.mark_step()
966
+
967
+ if output_type == "latent":
968
+ image = latents
969
+
970
+ else:
971
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
972
+
973
+ image = self.vae.decode(latents, return_dict=False)[0]
974
+ image = self.image_processor.postprocess(image, output_type=output_type)
975
+
976
+ # Offload all models
977
+ self.maybe_free_model_hooks()
978
+
979
+ if self.do_perturbed_attention_guidance:
980
+ self.transformer.set_attn_processor(original_attn_proc)
981
+
982
+ if not return_dict:
983
+ return (image,)
984
+
985
+ return StableDiffusion3PipelineOutput(images=image)