diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1008 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import PIL
20
+ import torch
21
+ import torch.nn.functional as F
22
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
23
+
24
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
25
+ from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
26
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
27
+ from ...models.controlnet_sparsectrl import SparseControlNetModel
28
+ from ...models.lora import adjust_lora_scale_text_encoder
29
+ from ...models.unets.unet_motion_model import MotionAdapter
30
+ from ...schedulers import KarrasDiffusionSchedulers
31
+ from ...utils import (
32
+ USE_PEFT_BACKEND,
33
+ logging,
34
+ replace_example_docstring,
35
+ scale_lora_layers,
36
+ unscale_lora_layers,
37
+ )
38
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
39
+ from ...video_processor import VideoProcessor
40
+ from ..free_init_utils import FreeInitMixin
41
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
42
+ from .pipeline_output import AnimateDiffPipelineOutput
43
+
44
+
45
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
+
47
+ EXAMPLE_DOC_STRING = """
48
+ Examples:
49
+ ```python
50
+ >>> import torch
51
+ >>> from diffusers import AnimateDiffSparseControlNetPipeline
52
+ >>> from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
53
+ >>> from diffusers.schedulers import DPMSolverMultistepScheduler
54
+ >>> from diffusers.utils import export_to_gif, load_image
55
+
56
+ >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
57
+ >>> motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
58
+ >>> controlnet_id = "guoyww/animatediff-sparsectrl-scribble"
59
+ >>> lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
60
+ >>> vae_id = "stabilityai/sd-vae-ft-mse"
61
+ >>> device = "cuda"
62
+
63
+ >>> motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
64
+ >>> controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
65
+ >>> vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
66
+ >>> scheduler = DPMSolverMultistepScheduler.from_pretrained(
67
+ ... model_id,
68
+ ... subfolder="scheduler",
69
+ ... beta_schedule="linear",
70
+ ... algorithm_type="dpmsolver++",
71
+ ... use_karras_sigmas=True,
72
+ ... )
73
+ >>> pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
74
+ ... model_id,
75
+ ... motion_adapter=motion_adapter,
76
+ ... controlnet=controlnet,
77
+ ... vae=vae,
78
+ ... scheduler=scheduler,
79
+ ... torch_dtype=torch.float16,
80
+ ... ).to(device)
81
+ >>> pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
82
+ >>> pipe.fuse_lora(lora_scale=1.0)
83
+
84
+ >>> prompt = "an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"
85
+ >>> negative_prompt = "low quality, worst quality, letterboxed"
86
+
87
+ >>> image_files = [
88
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
89
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
90
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png",
91
+ ... ]
92
+ >>> condition_frame_indices = [0, 8, 15]
93
+ >>> conditioning_frames = [load_image(img_file) for img_file in image_files]
94
+
95
+ >>> video = pipe(
96
+ ... prompt=prompt,
97
+ ... negative_prompt=negative_prompt,
98
+ ... num_inference_steps=25,
99
+ ... conditioning_frames=conditioning_frames,
100
+ ... controlnet_conditioning_scale=1.0,
101
+ ... controlnet_frame_indices=condition_frame_indices,
102
+ ... generator=torch.Generator().manual_seed(1337),
103
+ ... ).frames[0]
104
+ >>> export_to_gif(video, "output.gif")
105
+ ```
106
+ """
107
+
108
+
109
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
110
+ def retrieve_latents(
111
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
112
+ ):
113
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
114
+ return encoder_output.latent_dist.sample(generator)
115
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
116
+ return encoder_output.latent_dist.mode()
117
+ elif hasattr(encoder_output, "latents"):
118
+ return encoder_output.latents
119
+ else:
120
+ raise AttributeError("Could not access latents of provided encoder_output")
121
+
122
+
123
+ class AnimateDiffSparseControlNetPipeline(
124
+ DiffusionPipeline,
125
+ StableDiffusionMixin,
126
+ TextualInversionLoaderMixin,
127
+ IPAdapterMixin,
128
+ StableDiffusionLoraLoaderMixin,
129
+ FreeInitMixin,
130
+ ):
131
+ r"""
132
+ Pipeline for controlled text-to-video generation using the method described in [SparseCtrl: Adding Sparse Controls
133
+ to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933).
134
+
135
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
136
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
137
+
138
+ The pipeline also inherits the following loading methods:
139
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
140
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
141
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
142
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
143
+
144
+ Args:
145
+ vae ([`AutoencoderKL`]):
146
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
147
+ text_encoder ([`CLIPTextModel`]):
148
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
149
+ tokenizer (`CLIPTokenizer`):
150
+ A [`~transformers.CLIPTokenizer`] to tokenize text.
151
+ unet ([`UNet2DConditionModel`]):
152
+ A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
153
+ motion_adapter ([`MotionAdapter`]):
154
+ A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
155
+ scheduler ([`SchedulerMixin`]):
156
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
157
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
158
+ """
159
+
160
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
161
+ _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
162
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
163
+
164
+ def __init__(
165
+ self,
166
+ vae: AutoencoderKL,
167
+ text_encoder: CLIPTextModel,
168
+ tokenizer: CLIPTokenizer,
169
+ unet: Union[UNet2DConditionModel, UNetMotionModel],
170
+ motion_adapter: MotionAdapter,
171
+ controlnet: SparseControlNetModel,
172
+ scheduler: KarrasDiffusionSchedulers,
173
+ feature_extractor: CLIPImageProcessor = None,
174
+ image_encoder: CLIPVisionModelWithProjection = None,
175
+ ):
176
+ super().__init__()
177
+ if isinstance(unet, UNet2DConditionModel):
178
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
179
+
180
+ self.register_modules(
181
+ vae=vae,
182
+ text_encoder=text_encoder,
183
+ tokenizer=tokenizer,
184
+ unet=unet,
185
+ motion_adapter=motion_adapter,
186
+ controlnet=controlnet,
187
+ scheduler=scheduler,
188
+ feature_extractor=feature_extractor,
189
+ image_encoder=image_encoder,
190
+ )
191
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
192
+ self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)
193
+ self.control_image_processor = VaeImageProcessor(
194
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
195
+ )
196
+
197
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
198
+ def encode_prompt(
199
+ self,
200
+ prompt,
201
+ device,
202
+ num_images_per_prompt,
203
+ do_classifier_free_guidance,
204
+ negative_prompt=None,
205
+ prompt_embeds: Optional[torch.Tensor] = None,
206
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
207
+ lora_scale: Optional[float] = None,
208
+ clip_skip: Optional[int] = None,
209
+ ):
210
+ r"""
211
+ Encodes the prompt into text encoder hidden states.
212
+
213
+ Args:
214
+ prompt (`str` or `List[str]`, *optional*):
215
+ prompt to be encoded
216
+ device: (`torch.device`):
217
+ torch device
218
+ num_images_per_prompt (`int`):
219
+ number of images that should be generated per prompt
220
+ do_classifier_free_guidance (`bool`):
221
+ whether to use classifier free guidance or not
222
+ negative_prompt (`str` or `List[str]`, *optional*):
223
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
224
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
225
+ less than `1`).
226
+ prompt_embeds (`torch.Tensor`, *optional*):
227
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
228
+ provided, text embeddings will be generated from `prompt` input argument.
229
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
230
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
231
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
232
+ argument.
233
+ lora_scale (`float`, *optional*):
234
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
235
+ clip_skip (`int`, *optional*):
236
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
237
+ the output of the pre-final layer will be used for computing the prompt embeddings.
238
+ """
239
+ # set lora scale so that monkey patched LoRA
240
+ # function of text encoder can correctly access it
241
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
242
+ self._lora_scale = lora_scale
243
+
244
+ # dynamically adjust the LoRA scale
245
+ if not USE_PEFT_BACKEND:
246
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
247
+ else:
248
+ scale_lora_layers(self.text_encoder, lora_scale)
249
+
250
+ if prompt is not None and isinstance(prompt, str):
251
+ batch_size = 1
252
+ elif prompt is not None and isinstance(prompt, list):
253
+ batch_size = len(prompt)
254
+ else:
255
+ batch_size = prompt_embeds.shape[0]
256
+
257
+ if prompt_embeds is None:
258
+ # textual inversion: process multi-vector tokens if necessary
259
+ if isinstance(self, TextualInversionLoaderMixin):
260
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
261
+
262
+ text_inputs = self.tokenizer(
263
+ prompt,
264
+ padding="max_length",
265
+ max_length=self.tokenizer.model_max_length,
266
+ truncation=True,
267
+ return_tensors="pt",
268
+ )
269
+ text_input_ids = text_inputs.input_ids
270
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
271
+
272
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
273
+ text_input_ids, untruncated_ids
274
+ ):
275
+ removed_text = self.tokenizer.batch_decode(
276
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
277
+ )
278
+ logger.warning(
279
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
280
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
281
+ )
282
+
283
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
284
+ attention_mask = text_inputs.attention_mask.to(device)
285
+ else:
286
+ attention_mask = None
287
+
288
+ if clip_skip is None:
289
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
290
+ prompt_embeds = prompt_embeds[0]
291
+ else:
292
+ prompt_embeds = self.text_encoder(
293
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
294
+ )
295
+ # Access the `hidden_states` first, that contains a tuple of
296
+ # all the hidden states from the encoder layers. Then index into
297
+ # the tuple to access the hidden states from the desired layer.
298
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
299
+ # We also need to apply the final LayerNorm here to not mess with the
300
+ # representations. The `last_hidden_states` that we typically use for
301
+ # obtaining the final prompt representations passes through the LayerNorm
302
+ # layer.
303
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
304
+
305
+ if self.text_encoder is not None:
306
+ prompt_embeds_dtype = self.text_encoder.dtype
307
+ elif self.unet is not None:
308
+ prompt_embeds_dtype = self.unet.dtype
309
+ else:
310
+ prompt_embeds_dtype = prompt_embeds.dtype
311
+
312
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
313
+
314
+ bs_embed, seq_len, _ = prompt_embeds.shape
315
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
316
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
317
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
318
+
319
+ # get unconditional embeddings for classifier free guidance
320
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
321
+ uncond_tokens: List[str]
322
+ if negative_prompt is None:
323
+ uncond_tokens = [""] * batch_size
324
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
325
+ raise TypeError(
326
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
327
+ f" {type(prompt)}."
328
+ )
329
+ elif isinstance(negative_prompt, str):
330
+ uncond_tokens = [negative_prompt]
331
+ elif batch_size != len(negative_prompt):
332
+ raise ValueError(
333
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
334
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
335
+ " the batch size of `prompt`."
336
+ )
337
+ else:
338
+ uncond_tokens = negative_prompt
339
+
340
+ # textual inversion: process multi-vector tokens if necessary
341
+ if isinstance(self, TextualInversionLoaderMixin):
342
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
343
+
344
+ max_length = prompt_embeds.shape[1]
345
+ uncond_input = self.tokenizer(
346
+ uncond_tokens,
347
+ padding="max_length",
348
+ max_length=max_length,
349
+ truncation=True,
350
+ return_tensors="pt",
351
+ )
352
+
353
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
354
+ attention_mask = uncond_input.attention_mask.to(device)
355
+ else:
356
+ attention_mask = None
357
+
358
+ negative_prompt_embeds = self.text_encoder(
359
+ uncond_input.input_ids.to(device),
360
+ attention_mask=attention_mask,
361
+ )
362
+ negative_prompt_embeds = negative_prompt_embeds[0]
363
+
364
+ if do_classifier_free_guidance:
365
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
366
+ seq_len = negative_prompt_embeds.shape[1]
367
+
368
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
369
+
370
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
371
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
372
+
373
+ if self.text_encoder is not None:
374
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
375
+ # Retrieve the original scale by scaling back the LoRA layers
376
+ unscale_lora_layers(self.text_encoder, lora_scale)
377
+
378
+ return prompt_embeds, negative_prompt_embeds
379
+
380
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
381
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
382
+ dtype = next(self.image_encoder.parameters()).dtype
383
+
384
+ if not isinstance(image, torch.Tensor):
385
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
386
+
387
+ image = image.to(device=device, dtype=dtype)
388
+ if output_hidden_states:
389
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
390
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
391
+ uncond_image_enc_hidden_states = self.image_encoder(
392
+ torch.zeros_like(image), output_hidden_states=True
393
+ ).hidden_states[-2]
394
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
395
+ num_images_per_prompt, dim=0
396
+ )
397
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
398
+ else:
399
+ image_embeds = self.image_encoder(image).image_embeds
400
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
401
+ uncond_image_embeds = torch.zeros_like(image_embeds)
402
+
403
+ return image_embeds, uncond_image_embeds
404
+
405
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
406
+ def prepare_ip_adapter_image_embeds(
407
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
408
+ ):
409
+ image_embeds = []
410
+ if do_classifier_free_guidance:
411
+ negative_image_embeds = []
412
+ if ip_adapter_image_embeds is None:
413
+ if not isinstance(ip_adapter_image, list):
414
+ ip_adapter_image = [ip_adapter_image]
415
+
416
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
417
+ raise ValueError(
418
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
419
+ )
420
+
421
+ for single_ip_adapter_image, image_proj_layer in zip(
422
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
423
+ ):
424
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
425
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
426
+ single_ip_adapter_image, device, 1, output_hidden_state
427
+ )
428
+
429
+ image_embeds.append(single_image_embeds[None, :])
430
+ if do_classifier_free_guidance:
431
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
432
+ else:
433
+ for single_image_embeds in ip_adapter_image_embeds:
434
+ if do_classifier_free_guidance:
435
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
436
+ negative_image_embeds.append(single_negative_image_embeds)
437
+ image_embeds.append(single_image_embeds)
438
+
439
+ ip_adapter_image_embeds = []
440
+ for i, single_image_embeds in enumerate(image_embeds):
441
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
442
+ if do_classifier_free_guidance:
443
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
444
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
445
+
446
+ single_image_embeds = single_image_embeds.to(device=device)
447
+ ip_adapter_image_embeds.append(single_image_embeds)
448
+
449
+ return ip_adapter_image_embeds
450
+
451
+ # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
452
+ def decode_latents(self, latents):
453
+ latents = 1 / self.vae.config.scaling_factor * latents
454
+
455
+ batch_size, channels, num_frames, height, width = latents.shape
456
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
457
+
458
+ image = self.vae.decode(latents).sample
459
+ video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
460
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
461
+ video = video.float()
462
+ return video
463
+
464
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
465
+ def prepare_extra_step_kwargs(self, generator, eta):
466
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
467
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
468
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
469
+ # and should be between [0, 1]
470
+
471
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
472
+ extra_step_kwargs = {}
473
+ if accepts_eta:
474
+ extra_step_kwargs["eta"] = eta
475
+
476
+ # check if the scheduler accepts generator
477
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
478
+ if accepts_generator:
479
+ extra_step_kwargs["generator"] = generator
480
+ return extra_step_kwargs
481
+
482
+ def check_inputs(
483
+ self,
484
+ prompt,
485
+ height,
486
+ width,
487
+ negative_prompt=None,
488
+ prompt_embeds=None,
489
+ negative_prompt_embeds=None,
490
+ ip_adapter_image=None,
491
+ ip_adapter_image_embeds=None,
492
+ callback_on_step_end_tensor_inputs=None,
493
+ image=None,
494
+ controlnet_conditioning_scale: float = 1.0,
495
+ ):
496
+ if height % 8 != 0 or width % 8 != 0:
497
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
498
+
499
+ if callback_on_step_end_tensor_inputs is not None and not all(
500
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
501
+ ):
502
+ raise ValueError(
503
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
504
+ )
505
+
506
+ if prompt is not None and prompt_embeds is not None:
507
+ raise ValueError(
508
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
509
+ " only forward one of the two."
510
+ )
511
+ elif prompt is None and prompt_embeds is None:
512
+ raise ValueError(
513
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
514
+ )
515
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
516
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
517
+
518
+ if negative_prompt is not None and negative_prompt_embeds is not None:
519
+ raise ValueError(
520
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
521
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
522
+ )
523
+
524
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
525
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
526
+ raise ValueError(
527
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
528
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
529
+ f" {negative_prompt_embeds.shape}."
530
+ )
531
+
532
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
533
+ raise ValueError(
534
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
535
+ )
536
+
537
+ if ip_adapter_image_embeds is not None:
538
+ if not isinstance(ip_adapter_image_embeds, list):
539
+ raise ValueError(
540
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
541
+ )
542
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
543
+ raise ValueError(
544
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
545
+ )
546
+
547
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
548
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
549
+ )
550
+
551
+ # check `image`
552
+ if (
553
+ isinstance(self.controlnet, SparseControlNetModel)
554
+ or is_compiled
555
+ and isinstance(self.controlnet._orig_mod, SparseControlNetModel)
556
+ ):
557
+ if isinstance(image, list):
558
+ for image_ in image:
559
+ self.check_image(image_, prompt, prompt_embeds)
560
+ else:
561
+ self.check_image(image, prompt, prompt_embeds)
562
+ else:
563
+ assert False
564
+
565
+ # Check `controlnet_conditioning_scale`
566
+ if (
567
+ isinstance(self.controlnet, SparseControlNetModel)
568
+ or is_compiled
569
+ and isinstance(self.controlnet._orig_mod, SparseControlNetModel)
570
+ ):
571
+ if not isinstance(controlnet_conditioning_scale, float):
572
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
573
+ else:
574
+ assert False
575
+
576
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
577
+ def check_image(self, image, prompt, prompt_embeds):
578
+ image_is_pil = isinstance(image, PIL.Image.Image)
579
+ image_is_tensor = isinstance(image, torch.Tensor)
580
+ image_is_np = isinstance(image, np.ndarray)
581
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
582
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
583
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
584
+
585
+ if (
586
+ not image_is_pil
587
+ and not image_is_tensor
588
+ and not image_is_np
589
+ and not image_is_pil_list
590
+ and not image_is_tensor_list
591
+ and not image_is_np_list
592
+ ):
593
+ raise TypeError(
594
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
595
+ )
596
+
597
+ if image_is_pil:
598
+ image_batch_size = 1
599
+ else:
600
+ image_batch_size = len(image)
601
+
602
+ if prompt is not None and isinstance(prompt, str):
603
+ prompt_batch_size = 1
604
+ elif prompt is not None and isinstance(prompt, list):
605
+ prompt_batch_size = len(prompt)
606
+ elif prompt_embeds is not None:
607
+ prompt_batch_size = prompt_embeds.shape[0]
608
+
609
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
610
+ raise ValueError(
611
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
612
+ )
613
+
614
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
615
+ def prepare_latents(
616
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
617
+ ):
618
+ shape = (
619
+ batch_size,
620
+ num_channels_latents,
621
+ num_frames,
622
+ height // self.vae_scale_factor,
623
+ width // self.vae_scale_factor,
624
+ )
625
+ if isinstance(generator, list) and len(generator) != batch_size:
626
+ raise ValueError(
627
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
628
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
629
+ )
630
+
631
+ if latents is None:
632
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
633
+ else:
634
+ latents = latents.to(device)
635
+
636
+ # scale the initial noise by the standard deviation required by the scheduler
637
+ latents = latents * self.scheduler.init_noise_sigma
638
+ return latents
639
+
640
+ def prepare_image(self, image, width, height, device, dtype):
641
+ image = self.control_image_processor.preprocess(image, height=height, width=width)
642
+ controlnet_images = image.unsqueeze(0).to(device, dtype)
643
+ batch_size, num_frames, channels, height, width = controlnet_images.shape
644
+
645
+ # TODO: remove below line
646
+ assert controlnet_images.min() >= 0 and controlnet_images.max() <= 1
647
+
648
+ if self.controlnet.use_simplified_condition_embedding:
649
+ controlnet_images = controlnet_images.reshape(batch_size * num_frames, channels, height, width)
650
+ controlnet_images = 2 * controlnet_images - 1
651
+ conditioning_frames = retrieve_latents(self.vae.encode(controlnet_images)) * self.vae.config.scaling_factor
652
+ conditioning_frames = conditioning_frames.reshape(
653
+ batch_size, num_frames, 4, height // self.vae_scale_factor, width // self.vae_scale_factor
654
+ )
655
+ else:
656
+ conditioning_frames = controlnet_images
657
+
658
+ conditioning_frames = conditioning_frames.permute(0, 2, 1, 3, 4) # [b, c, f, h, w]
659
+ return conditioning_frames
660
+
661
+ def prepare_sparse_control_conditioning(
662
+ self,
663
+ conditioning_frames: torch.Tensor,
664
+ num_frames: int,
665
+ controlnet_frame_indices: int,
666
+ device: torch.device,
667
+ dtype: torch.dtype,
668
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
669
+ assert conditioning_frames.shape[2] >= len(controlnet_frame_indices)
670
+
671
+ batch_size, channels, _, height, width = conditioning_frames.shape
672
+ controlnet_cond = torch.zeros((batch_size, channels, num_frames, height, width), dtype=dtype, device=device)
673
+ controlnet_cond_mask = torch.zeros((batch_size, 1, num_frames, height, width), dtype=dtype, device=device)
674
+ controlnet_cond[:, :, controlnet_frame_indices] = conditioning_frames[:, :, : len(controlnet_frame_indices)]
675
+ controlnet_cond_mask[:, :, controlnet_frame_indices] = 1
676
+
677
+ return controlnet_cond, controlnet_cond_mask
678
+
679
+ @property
680
+ def guidance_scale(self):
681
+ return self._guidance_scale
682
+
683
+ @property
684
+ def clip_skip(self):
685
+ return self._clip_skip
686
+
687
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
688
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
689
+ # corresponds to doing no classifier free guidance.
690
+ @property
691
+ def do_classifier_free_guidance(self):
692
+ return self._guidance_scale > 1
693
+
694
+ @property
695
+ def cross_attention_kwargs(self):
696
+ return self._cross_attention_kwargs
697
+
698
+ @property
699
+ def num_timesteps(self):
700
+ return self._num_timesteps
701
+
702
+ @torch.no_grad()
703
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
704
+ def __call__(
705
+ self,
706
+ prompt: Optional[Union[str, List[str]]] = None,
707
+ height: Optional[int] = None,
708
+ width: Optional[int] = None,
709
+ num_frames: int = 16,
710
+ num_inference_steps: int = 50,
711
+ guidance_scale: float = 7.5,
712
+ negative_prompt: Optional[Union[str, List[str]]] = None,
713
+ num_videos_per_prompt: int = 1,
714
+ eta: float = 0.0,
715
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
716
+ latents: Optional[torch.Tensor] = None,
717
+ prompt_embeds: Optional[torch.Tensor] = None,
718
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
719
+ ip_adapter_image: Optional[PipelineImageInput] = None,
720
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
721
+ conditioning_frames: Optional[List[PipelineImageInput]] = None,
722
+ output_type: str = "pil",
723
+ return_dict: bool = True,
724
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
725
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
726
+ controlnet_frame_indices: List[int] = [0],
727
+ guess_mode: bool = False,
728
+ clip_skip: Optional[int] = None,
729
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
730
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
731
+ ):
732
+ r"""
733
+ The call function to the pipeline for generation.
734
+
735
+ Args:
736
+ prompt (`str` or `List[str]`, *optional*):
737
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
738
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
739
+ The height in pixels of the generated video.
740
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
741
+ The width in pixels of the generated video.
742
+ num_frames (`int`, *optional*, defaults to 16):
743
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
744
+ amounts to 2 seconds of video.
745
+ num_inference_steps (`int`, *optional*, defaults to 50):
746
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
747
+ expense of slower inference.
748
+ guidance_scale (`float`, *optional*, defaults to 7.5):
749
+ A higher guidance scale value encourages the model to generate images closely linked to the text
750
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
751
+ negative_prompt (`str` or `List[str]`, *optional*):
752
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
753
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
754
+ eta (`float`, *optional*, defaults to 0.0):
755
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
756
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
757
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
758
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
759
+ generation deterministic.
760
+ latents (`torch.Tensor`, *optional*):
761
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
762
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
763
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
764
+ `(batch_size, num_channel, num_frames, height, width)`.
765
+ prompt_embeds (`torch.Tensor`, *optional*):
766
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
767
+ provided, text embeddings are generated from the `prompt` input argument.
768
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
769
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
770
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
771
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
772
+ Optional image input to work with IP Adapters.
773
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
774
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
775
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
776
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
777
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
778
+ conditioning_frames (`List[PipelineImageInput]`, *optional*):
779
+ The SparseControlNet input to provide guidance to the `unet` for generation.
780
+ output_type (`str`, *optional*, defaults to `"pil"`):
781
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
782
+ return_dict (`bool`, *optional*, defaults to `True`):
783
+ Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
784
+ of a plain tuple.
785
+ cross_attention_kwargs (`dict`, *optional*):
786
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
787
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
788
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
789
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
790
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
791
+ the corresponding scale as a list.
792
+ controlnet_frame_indices (`List[int]`):
793
+ The indices where the conditioning frames must be applied for generation. Multiple frames can be
794
+ provided to guide the model to generate similar structure outputs, where the `unet` can
795
+ "fill-in-the-gaps" for interpolation videos, or a single frame could be provided for general expected
796
+ structure. Must have the same length as `conditioning_frames`.
797
+ clip_skip (`int`, *optional*):
798
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
799
+ the output of the pre-final layer will be used for computing the prompt embeddings.
800
+ callback_on_step_end (`Callable`, *optional*):
801
+ A function that calls at the end of each denoising steps during the inference. The function is called
802
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
803
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
804
+ `callback_on_step_end_tensor_inputs`.
805
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
806
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
807
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
808
+ `._callback_tensor_inputs` attribute of your pipeline class.
809
+
810
+ Examples:
811
+
812
+ Returns:
813
+ [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
814
+ If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
815
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
816
+ """
817
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
818
+
819
+ # 0. Default height and width to unet
820
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
821
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
822
+ num_videos_per_prompt = 1
823
+
824
+ # 1. Check inputs. Raise error if not correct
825
+ self.check_inputs(
826
+ prompt=prompt,
827
+ height=height,
828
+ width=width,
829
+ negative_prompt=negative_prompt,
830
+ prompt_embeds=prompt_embeds,
831
+ negative_prompt_embeds=negative_prompt_embeds,
832
+ ip_adapter_image=ip_adapter_image,
833
+ ip_adapter_image_embeds=ip_adapter_image_embeds,
834
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
835
+ image=conditioning_frames,
836
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
837
+ )
838
+
839
+ self._guidance_scale = guidance_scale
840
+ self._clip_skip = clip_skip
841
+ self._cross_attention_kwargs = cross_attention_kwargs
842
+
843
+ # 2. Define call parameters
844
+ if prompt is not None and isinstance(prompt, str):
845
+ batch_size = 1
846
+ elif prompt is not None and isinstance(prompt, list):
847
+ batch_size = len(prompt)
848
+ else:
849
+ batch_size = prompt_embeds.shape[0]
850
+
851
+ device = self._execution_device
852
+
853
+ global_pool_conditions = (
854
+ controlnet.config.global_pool_conditions
855
+ if isinstance(controlnet, SparseControlNetModel)
856
+ else controlnet.nets[0].config.global_pool_conditions
857
+ )
858
+ guess_mode = guess_mode or global_pool_conditions
859
+
860
+ # 3. Encode input prompt
861
+ text_encoder_lora_scale = (
862
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
863
+ )
864
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
865
+ prompt,
866
+ device,
867
+ num_videos_per_prompt,
868
+ self.do_classifier_free_guidance,
869
+ negative_prompt,
870
+ prompt_embeds=prompt_embeds,
871
+ negative_prompt_embeds=negative_prompt_embeds,
872
+ lora_scale=text_encoder_lora_scale,
873
+ clip_skip=self.clip_skip,
874
+ )
875
+ # For classifier free guidance, we need to do two forward passes.
876
+ # Here we concatenate the unconditional and text embeddings into a single batch
877
+ # to avoid doing two forward passes
878
+ if self.do_classifier_free_guidance:
879
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
880
+
881
+ # 4. Prepare IP-Adapter embeddings
882
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
883
+ image_embeds = self.prepare_ip_adapter_image_embeds(
884
+ ip_adapter_image,
885
+ ip_adapter_image_embeds,
886
+ device,
887
+ batch_size * num_videos_per_prompt,
888
+ self.do_classifier_free_guidance,
889
+ )
890
+
891
+ # 5. Prepare controlnet conditioning
892
+ conditioning_frames = self.prepare_image(conditioning_frames, width, height, device, controlnet.dtype)
893
+ controlnet_cond, controlnet_cond_mask = self.prepare_sparse_control_conditioning(
894
+ conditioning_frames, num_frames, controlnet_frame_indices, device, controlnet.dtype
895
+ )
896
+
897
+ # 6. Prepare timesteps
898
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
899
+ timesteps = self.scheduler.timesteps
900
+
901
+ # 7. Prepare latent variables
902
+ num_channels_latents = self.unet.config.in_channels
903
+ latents = self.prepare_latents(
904
+ batch_size * num_videos_per_prompt,
905
+ num_channels_latents,
906
+ num_frames,
907
+ height,
908
+ width,
909
+ prompt_embeds.dtype,
910
+ device,
911
+ generator,
912
+ latents,
913
+ )
914
+
915
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
916
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
917
+
918
+ # 9. Add image embeds for IP-Adapter
919
+ added_cond_kwargs = (
920
+ {"image_embeds": image_embeds}
921
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
922
+ else None
923
+ )
924
+
925
+ num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
926
+ for free_init_iter in range(num_free_init_iters):
927
+ if self.free_init_enabled:
928
+ latents, timesteps = self._apply_free_init(
929
+ latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
930
+ )
931
+
932
+ self._num_timesteps = len(timesteps)
933
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
934
+
935
+ # 10. Denoising loop
936
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
937
+ for i, t in enumerate(timesteps):
938
+ # expand the latents if we are doing classifier free guidance
939
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
940
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
941
+
942
+ if guess_mode and self.do_classifier_free_guidance:
943
+ # Infer SparseControlNetModel only for the conditional batch.
944
+ control_model_input = latents
945
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
946
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
947
+ else:
948
+ control_model_input = latent_model_input
949
+ controlnet_prompt_embeds = prompt_embeds
950
+
951
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
952
+ control_model_input,
953
+ t,
954
+ encoder_hidden_states=controlnet_prompt_embeds,
955
+ controlnet_cond=controlnet_cond,
956
+ conditioning_mask=controlnet_cond_mask,
957
+ conditioning_scale=controlnet_conditioning_scale,
958
+ guess_mode=guess_mode,
959
+ return_dict=False,
960
+ )
961
+
962
+ # predict the noise residual
963
+ noise_pred = self.unet(
964
+ latent_model_input,
965
+ t,
966
+ encoder_hidden_states=prompt_embeds,
967
+ cross_attention_kwargs=cross_attention_kwargs,
968
+ added_cond_kwargs=added_cond_kwargs,
969
+ down_block_additional_residuals=down_block_res_samples,
970
+ mid_block_additional_residual=mid_block_res_sample,
971
+ ).sample
972
+
973
+ # perform guidance
974
+ if self.do_classifier_free_guidance:
975
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
976
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
977
+
978
+ # compute the previous noisy sample x_t -> x_t-1
979
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
980
+
981
+ if callback_on_step_end is not None:
982
+ callback_kwargs = {}
983
+ for k in callback_on_step_end_tensor_inputs:
984
+ callback_kwargs[k] = locals()[k]
985
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
986
+
987
+ latents = callback_outputs.pop("latents", latents)
988
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
989
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
990
+
991
+ # call the callback, if provided
992
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
993
+ progress_bar.update()
994
+
995
+ # 11. Post processing
996
+ if output_type == "latent":
997
+ video = latents
998
+ else:
999
+ video_tensor = self.decode_latents(latents)
1000
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
1001
+
1002
+ # 12. Offload all models
1003
+ self.maybe_free_model_hooks()
1004
+
1005
+ if not return_dict:
1006
+ return (video,)
1007
+
1008
+ return AnimateDiffPipelineOutput(frames=video)