diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -377,7 +377,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
377
377
  Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
378
378
 
379
379
  Returns:
380
- [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
380
+ [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
381
381
  If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
382
382
  tuple is returned where the first element is the sample tensor.
383
383
 
@@ -0,0 +1,449 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
17
+ # and https://github.com/hojonathanho/diffusion
18
+
19
+ import math
20
+ from dataclasses import dataclass
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import numpy as np
24
+ import torch
25
+
26
+ from ..configuration_utils import ConfigMixin, register_to_config
27
+ from ..utils import BaseOutput
28
+ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
29
+
30
+
31
+ @dataclass
32
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
33
+ class DDIMSchedulerOutput(BaseOutput):
34
+ """
35
+ Output class for the scheduler's `step` function output.
36
+
37
+ Args:
38
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
40
+ denoising loop.
41
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
+ The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
43
+ `pred_original_sample` can be used to preview progress or for guidance.
44
+ """
45
+
46
+ prev_sample: torch.Tensor
47
+ pred_original_sample: Optional[torch.Tensor] = None
48
+
49
+
50
+ # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
51
+ def betas_for_alpha_bar(
52
+ num_diffusion_timesteps,
53
+ max_beta=0.999,
54
+ alpha_transform_type="cosine",
55
+ ):
56
+ """
57
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
58
+ (1-beta) over time from t = [0,1].
59
+
60
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
61
+ to that part of the diffusion process.
62
+
63
+
64
+ Args:
65
+ num_diffusion_timesteps (`int`): the number of betas to produce.
66
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
67
+ prevent singularities.
68
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
69
+ Choose from `cosine` or `exp`
70
+
71
+ Returns:
72
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
73
+ """
74
+ if alpha_transform_type == "cosine":
75
+
76
+ def alpha_bar_fn(t):
77
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
78
+
79
+ elif alpha_transform_type == "exp":
80
+
81
+ def alpha_bar_fn(t):
82
+ return math.exp(t * -12.0)
83
+
84
+ else:
85
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86
+
87
+ betas = []
88
+ for i in range(num_diffusion_timesteps):
89
+ t1 = i / num_diffusion_timesteps
90
+ t2 = (i + 1) / num_diffusion_timesteps
91
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
+ return torch.tensor(betas, dtype=torch.float32)
93
+
94
+
95
+ def rescale_zero_terminal_snr(alphas_cumprod):
96
+ """
97
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
98
+
99
+
100
+ Args:
101
+ betas (`torch.Tensor`):
102
+ the betas that the scheduler is being initialized with.
103
+
104
+ Returns:
105
+ `torch.Tensor`: rescaled betas with zero terminal SNR
106
+ """
107
+
108
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
109
+
110
+ # Store old values.
111
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
112
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
113
+
114
+ # Shift so the last timestep is zero.
115
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
116
+
117
+ # Scale so the first timestep is back to the old value.
118
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
119
+
120
+ # Convert alphas_bar_sqrt to betas
121
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
122
+
123
+ return alphas_bar
124
+
125
+
126
+ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
127
+ """
128
+ `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
129
+ non-Markovian guidance.
130
+
131
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
132
+ methods the library implements for all schedulers such as loading and saving.
133
+
134
+ Args:
135
+ num_train_timesteps (`int`, defaults to 1000):
136
+ The number of diffusion steps to train the model.
137
+ beta_start (`float`, defaults to 0.0001):
138
+ The starting `beta` value of inference.
139
+ beta_end (`float`, defaults to 0.02):
140
+ The final `beta` value.
141
+ beta_schedule (`str`, defaults to `"linear"`):
142
+ The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
143
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
144
+ trained_betas (`np.ndarray`, *optional*):
145
+ Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
146
+ clip_sample (`bool`, defaults to `True`):
147
+ Clip the predicted sample for numerical stability.
148
+ clip_sample_range (`float`, defaults to 1.0):
149
+ The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
150
+ set_alpha_to_one (`bool`, defaults to `True`):
151
+ Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
152
+ there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
153
+ otherwise it uses the alpha value at step 0.
154
+ steps_offset (`int`, defaults to 0):
155
+ An offset added to the inference steps, as required by some model families.
156
+ prediction_type (`str`, defaults to `epsilon`, *optional*):
157
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
158
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
159
+ Video](https://imagen.research.google/video/paper.pdf) paper).
160
+ thresholding (`bool`, defaults to `False`):
161
+ Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
162
+ as Stable Diffusion.
163
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
164
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
165
+ sample_max_value (`float`, defaults to 1.0):
166
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
167
+ timestep_spacing (`str`, defaults to `"leading"`):
168
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
169
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
170
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
171
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
172
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
173
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
174
+ """
175
+
176
+ _compatibles = [e.name for e in KarrasDiffusionSchedulers]
177
+ order = 1
178
+
179
+ @register_to_config
180
+ def __init__(
181
+ self,
182
+ num_train_timesteps: int = 1000,
183
+ beta_start: float = 0.00085,
184
+ beta_end: float = 0.0120,
185
+ beta_schedule: str = "scaled_linear",
186
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
187
+ clip_sample: bool = True,
188
+ set_alpha_to_one: bool = True,
189
+ steps_offset: int = 0,
190
+ prediction_type: str = "epsilon",
191
+ clip_sample_range: float = 1.0,
192
+ sample_max_value: float = 1.0,
193
+ timestep_spacing: str = "leading",
194
+ rescale_betas_zero_snr: bool = False,
195
+ snr_shift_scale: float = 3.0,
196
+ ):
197
+ if trained_betas is not None:
198
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
199
+ elif beta_schedule == "linear":
200
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
201
+ elif beta_schedule == "scaled_linear":
202
+ # this schedule is very specific to the latent diffusion model.
203
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
204
+ elif beta_schedule == "squaredcos_cap_v2":
205
+ # Glide cosine schedule
206
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
207
+ else:
208
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
209
+
210
+ self.alphas = 1.0 - self.betas
211
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
212
+
213
+ # Modify: SNR shift following SD3
214
+ self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod)
215
+
216
+ # Rescale for zero SNR
217
+ if rescale_betas_zero_snr:
218
+ self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod)
219
+
220
+ # At every step in ddim, we are looking into the previous alphas_cumprod
221
+ # For the final step, there is no previous alphas_cumprod because we are already at 0
222
+ # `set_alpha_to_one` decides whether we set this parameter simply to one or
223
+ # whether we use the final alpha of the "non-previous" one.
224
+ self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
225
+
226
+ # standard deviation of the initial noise distribution
227
+ self.init_noise_sigma = 1.0
228
+
229
+ # setable values
230
+ self.num_inference_steps = None
231
+ self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
232
+
233
+ def _get_variance(self, timestep, prev_timestep):
234
+ alpha_prod_t = self.alphas_cumprod[timestep]
235
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
236
+ beta_prod_t = 1 - alpha_prod_t
237
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
238
+
239
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
240
+
241
+ return variance
242
+
243
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
244
+ """
245
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
246
+ current timestep.
247
+
248
+ Args:
249
+ sample (`torch.Tensor`):
250
+ The input sample.
251
+ timestep (`int`, *optional*):
252
+ The current timestep in the diffusion chain.
253
+
254
+ Returns:
255
+ `torch.Tensor`:
256
+ A scaled input sample.
257
+ """
258
+ return sample
259
+
260
+ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
261
+ """
262
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
263
+
264
+ Args:
265
+ num_inference_steps (`int`):
266
+ The number of diffusion steps used when generating samples with a pre-trained model.
267
+ """
268
+
269
+ if num_inference_steps > self.config.num_train_timesteps:
270
+ raise ValueError(
271
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
272
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
273
+ f" maximal {self.config.num_train_timesteps} timesteps."
274
+ )
275
+
276
+ self.num_inference_steps = num_inference_steps
277
+
278
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
279
+ if self.config.timestep_spacing == "linspace":
280
+ timesteps = (
281
+ np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
282
+ .round()[::-1]
283
+ .copy()
284
+ .astype(np.int64)
285
+ )
286
+ elif self.config.timestep_spacing == "leading":
287
+ step_ratio = self.config.num_train_timesteps // self.num_inference_steps
288
+ # creates integer timesteps by multiplying by ratio
289
+ # casting to int to avoid issues when num_inference_step is power of 3
290
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
291
+ timesteps += self.config.steps_offset
292
+ elif self.config.timestep_spacing == "trailing":
293
+ step_ratio = self.config.num_train_timesteps / self.num_inference_steps
294
+ # creates integer timesteps by multiplying by ratio
295
+ # casting to int to avoid issues when num_inference_step is power of 3
296
+ timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
297
+ timesteps -= 1
298
+ else:
299
+ raise ValueError(
300
+ f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
301
+ )
302
+
303
+ self.timesteps = torch.from_numpy(timesteps).to(device)
304
+
305
+ def step(
306
+ self,
307
+ model_output: torch.Tensor,
308
+ timestep: int,
309
+ sample: torch.Tensor,
310
+ eta: float = 0.0,
311
+ use_clipped_model_output: bool = False,
312
+ generator=None,
313
+ variance_noise: Optional[torch.Tensor] = None,
314
+ return_dict: bool = True,
315
+ ) -> Union[DDIMSchedulerOutput, Tuple]:
316
+ """
317
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
318
+ process from the learned model outputs (most often the predicted noise).
319
+
320
+ Args:
321
+ model_output (`torch.Tensor`):
322
+ The direct output from learned diffusion model.
323
+ timestep (`float`):
324
+ The current discrete timestep in the diffusion chain.
325
+ sample (`torch.Tensor`):
326
+ A current instance of a sample created by the diffusion process.
327
+ eta (`float`):
328
+ The weight of noise for added noise in diffusion step.
329
+ use_clipped_model_output (`bool`, defaults to `False`):
330
+ If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
331
+ because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
332
+ clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
333
+ `use_clipped_model_output` has no effect.
334
+ generator (`torch.Generator`, *optional*):
335
+ A random number generator.
336
+ variance_noise (`torch.Tensor`):
337
+ Alternative to generating noise with `generator` by directly providing the noise for the variance
338
+ itself. Useful for methods such as [`CycleDiffusion`].
339
+ return_dict (`bool`, *optional*, defaults to `True`):
340
+ Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
341
+
342
+ Returns:
343
+ [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
344
+ If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
345
+ tuple is returned where the first element is the sample tensor.
346
+
347
+ """
348
+ if self.num_inference_steps is None:
349
+ raise ValueError(
350
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
351
+ )
352
+
353
+ # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
354
+ # Ideally, read DDIM paper in-detail understanding
355
+
356
+ # Notation (<variable name> -> <name in paper>
357
+ # - pred_noise_t -> e_theta(x_t, t)
358
+ # - pred_original_sample -> f_theta(x_t, t) or x_0
359
+ # - std_dev_t -> sigma_t
360
+ # - eta -> η
361
+ # - pred_sample_direction -> "direction pointing to x_t"
362
+ # - pred_prev_sample -> "x_t-1"
363
+
364
+ # 1. get previous step value (=t-1)
365
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
366
+
367
+ # 2. compute alphas, betas
368
+ alpha_prod_t = self.alphas_cumprod[timestep]
369
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
370
+
371
+ beta_prod_t = 1 - alpha_prod_t
372
+
373
+ # 3. compute predicted original sample from predicted noise also called
374
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
375
+ # To make style tests pass, commented out `pred_epsilon` as it is an unused variable
376
+ if self.config.prediction_type == "epsilon":
377
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
378
+ # pred_epsilon = model_output
379
+ elif self.config.prediction_type == "sample":
380
+ pred_original_sample = model_output
381
+ # pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
382
+ elif self.config.prediction_type == "v_prediction":
383
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
384
+ # pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
385
+ else:
386
+ raise ValueError(
387
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
388
+ " `v_prediction`"
389
+ )
390
+
391
+ a_t = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5
392
+ b_t = alpha_prod_t_prev**0.5 - alpha_prod_t**0.5 * a_t
393
+
394
+ prev_sample = a_t * sample + b_t * pred_original_sample
395
+
396
+ if not return_dict:
397
+ return (prev_sample,)
398
+
399
+ return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
400
+
401
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
402
+ def add_noise(
403
+ self,
404
+ original_samples: torch.Tensor,
405
+ noise: torch.Tensor,
406
+ timesteps: torch.IntTensor,
407
+ ) -> torch.Tensor:
408
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
409
+ # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
410
+ # for the subsequent add_noise calls
411
+ self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
412
+ alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
413
+ timesteps = timesteps.to(original_samples.device)
414
+
415
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
416
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
417
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
418
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
419
+
420
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
421
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
422
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
423
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
424
+
425
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
426
+ return noisy_samples
427
+
428
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
429
+ def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
430
+ # Make sure alphas_cumprod and timestep have same device and dtype as sample
431
+ self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
432
+ alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
433
+ timesteps = timesteps.to(sample.device)
434
+
435
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
436
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
437
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
438
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
439
+
440
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
441
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
442
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
443
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
444
+
445
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
446
+ return velocity
447
+
448
+ def __len__(self):
449
+ return self.config.num_train_timesteps
@@ -194,7 +194,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
194
194
  sample_max_value: float = 1.0,
195
195
  timestep_spacing: str = "leading",
196
196
  steps_offset: int = 0,
197
- rescale_betas_zero_snr: int = False,
197
+ rescale_betas_zero_snr: bool = False,
198
198
  ):
199
199
  if trained_betas is not None:
200
200
  self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -202,7 +202,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
202
202
  sample_max_value: float = 1.0,
203
203
  timestep_spacing: str = "leading",
204
204
  steps_offset: int = 0,
205
- rescale_betas_zero_snr: int = False,
205
+ rescale_betas_zero_snr: bool = False,
206
206
  ):
207
207
  if trained_betas is not None:
208
208
  self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -674,7 +674,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
674
674
  def step(
675
675
  self,
676
676
  model_output: torch.Tensor,
677
- timestep: int,
677
+ timestep: Union[int, torch.Tensor],
678
678
  sample: torch.Tensor,
679
679
  return_dict: bool = True,
680
680
  ) -> Union[SchedulerOutput, Tuple]:
@@ -685,7 +685,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
685
685
  Args:
686
686
  model_output (`torch.Tensor`):
687
687
  The direct output from learned diffusion model.
688
- timestep (`float`):
688
+ timestep (`int`):
689
689
  The current discrete timestep in the diffusion chain.
690
690
  sample (`torch.Tensor`):
691
691
  A current instance of a sample created by the diffusion process.