diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,953 @@
1
+ # Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
21
+
22
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import VaeImageProcessor
26
+ from ...models import AutoencoderKL, HunyuanDiT2DModel
27
+ from ...models.attention_processor import PAGCFGHunyuanAttnProcessor2_0, PAGHunyuanAttnProcessor2_0
28
+ from ...models.embeddings import get_2d_rotary_pos_embed
29
+ from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
30
+ from ...schedulers import DDPMScheduler
31
+ from ...utils import (
32
+ is_torch_xla_available,
33
+ logging,
34
+ replace_example_docstring,
35
+ )
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ..pipeline_utils import DiffusionPipeline
38
+ from .pag_utils import PAGMixin
39
+
40
+
41
+ if is_torch_xla_available():
42
+ import torch_xla.core.xla_model as xm
43
+
44
+ XLA_AVAILABLE = True
45
+ else:
46
+ XLA_AVAILABLE = False
47
+
48
+
49
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```python
54
+ >>> import torch
55
+ >>> from diffusers import AutoPipelineForText2Image
56
+
57
+ >>> pipe = AutoPipelineForText2Image.from_pretrained(
58
+ ... "Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers",
59
+ ... torch_dtype=torch.float16,
60
+ ... enable_pag=True,
61
+ ... pag_applied_layers=[14],
62
+ ... ).to("cuda")
63
+
64
+ >>> # prompt = "an astronaut riding a horse"
65
+ >>> prompt = "一个宇航员在骑马"
66
+ >>> image = pipe(prompt, guidance_scale=4, pag_scale=3).images[0]
67
+ ```
68
+ """
69
+
70
+ STANDARD_RATIO = np.array(
71
+ [
72
+ 1.0, # 1:1
73
+ 4.0 / 3.0, # 4:3
74
+ 3.0 / 4.0, # 3:4
75
+ 16.0 / 9.0, # 16:9
76
+ 9.0 / 16.0, # 9:16
77
+ ]
78
+ )
79
+ STANDARD_SHAPE = [
80
+ [(1024, 1024), (1280, 1280)], # 1:1
81
+ [(1024, 768), (1152, 864), (1280, 960)], # 4:3
82
+ [(768, 1024), (864, 1152), (960, 1280)], # 3:4
83
+ [(1280, 768)], # 16:9
84
+ [(768, 1280)], # 9:16
85
+ ]
86
+ STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE]
87
+ SUPPORTED_SHAPE = [
88
+ (1024, 1024),
89
+ (1280, 1280), # 1:1
90
+ (1024, 768),
91
+ (1152, 864),
92
+ (1280, 960), # 4:3
93
+ (768, 1024),
94
+ (864, 1152),
95
+ (960, 1280), # 3:4
96
+ (1280, 768), # 16:9
97
+ (768, 1280), # 9:16
98
+ ]
99
+
100
+
101
+ def map_to_standard_shapes(target_width, target_height):
102
+ target_ratio = target_width / target_height
103
+ closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
104
+ closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
105
+ width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
106
+ return width, height
107
+
108
+
109
+ def get_resize_crop_region_for_grid(src, tgt_size):
110
+ th = tw = tgt_size
111
+ h, w = src
112
+
113
+ r = h / w
114
+
115
+ # resize
116
+ if r > 1:
117
+ resize_height = th
118
+ resize_width = int(round(th / h * w))
119
+ else:
120
+ resize_width = tw
121
+ resize_height = int(round(tw / w * h))
122
+
123
+ crop_top = int(round((th - resize_height) / 2.0))
124
+ crop_left = int(round((tw - resize_width) / 2.0))
125
+
126
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
127
+
128
+
129
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
130
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
131
+ """
132
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
133
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
134
+ """
135
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
136
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
137
+ # rescale the results from guidance (fixes overexposure)
138
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
139
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
140
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
141
+ return noise_cfg
142
+
143
+
144
+ class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin):
145
+ r"""
146
+ Pipeline for English/Chinese-to-image generation using HunyuanDiT and [Perturbed Attention
147
+ Guidance](https://huggingface.co/docs/diffusers/en/using-diffusers/pag).
148
+
149
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
150
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
151
+
152
+ HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
153
+ ourselves)
154
+
155
+ Args:
156
+ vae ([`AutoencoderKL`]):
157
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
158
+ `sdxl-vae-fp16-fix`.
159
+ text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
160
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
161
+ HunyuanDiT uses a fine-tuned [bilingual CLIP].
162
+ tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
163
+ A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
164
+ transformer ([`HunyuanDiT2DModel`]):
165
+ The HunyuanDiT model designed by Tencent Hunyuan.
166
+ text_encoder_2 (`T5EncoderModel`):
167
+ The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
168
+ tokenizer_2 (`MT5Tokenizer`):
169
+ The tokenizer for the mT5 embedder.
170
+ scheduler ([`DDPMScheduler`]):
171
+ A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
172
+ """
173
+
174
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
175
+ _optional_components = [
176
+ "safety_checker",
177
+ "feature_extractor",
178
+ "text_encoder_2",
179
+ "tokenizer_2",
180
+ "text_encoder",
181
+ "tokenizer",
182
+ ]
183
+ _exclude_from_cpu_offload = ["safety_checker"]
184
+ _callback_tensor_inputs = [
185
+ "latents",
186
+ "prompt_embeds",
187
+ "negative_prompt_embeds",
188
+ "prompt_embeds_2",
189
+ "negative_prompt_embeds_2",
190
+ ]
191
+
192
+ def __init__(
193
+ self,
194
+ vae: AutoencoderKL,
195
+ text_encoder: BertModel,
196
+ tokenizer: BertTokenizer,
197
+ transformer: HunyuanDiT2DModel,
198
+ scheduler: DDPMScheduler,
199
+ safety_checker: Optional[StableDiffusionSafetyChecker] = None,
200
+ feature_extractor: Optional[CLIPImageProcessor] = None,
201
+ requires_safety_checker: bool = True,
202
+ text_encoder_2: Optional[T5EncoderModel] = None,
203
+ tokenizer_2: Optional[MT5Tokenizer] = None,
204
+ pag_applied_layers: Union[str, List[str]] = "blocks.1", # "blocks.16.attn1", "blocks.16", "16", 16
205
+ ):
206
+ super().__init__()
207
+
208
+ self.register_modules(
209
+ vae=vae,
210
+ text_encoder=text_encoder,
211
+ tokenizer=tokenizer,
212
+ tokenizer_2=tokenizer_2,
213
+ transformer=transformer,
214
+ scheduler=scheduler,
215
+ safety_checker=safety_checker,
216
+ feature_extractor=feature_extractor,
217
+ text_encoder_2=text_encoder_2,
218
+ )
219
+
220
+ if safety_checker is None and requires_safety_checker:
221
+ logger.warning(
222
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
223
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
224
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
225
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
226
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
227
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
228
+ )
229
+
230
+ if safety_checker is not None and feature_extractor is None:
231
+ raise ValueError(
232
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
233
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
234
+ )
235
+
236
+ self.vae_scale_factor = (
237
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
238
+ )
239
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
240
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
241
+ self.default_sample_size = (
242
+ self.transformer.config.sample_size
243
+ if hasattr(self, "transformer") and self.transformer is not None
244
+ else 128
245
+ )
246
+
247
+ self.set_pag_applied_layers(
248
+ pag_applied_layers, pag_attn_processors=(PAGCFGHunyuanAttnProcessor2_0(), PAGHunyuanAttnProcessor2_0())
249
+ )
250
+
251
+ # Copied from diffusers.pipelines.hunyuandit.pipeline_hunyuandit.HunyuanDiTPipeline.encode_prompt
252
+ def encode_prompt(
253
+ self,
254
+ prompt: str,
255
+ device: torch.device = None,
256
+ dtype: torch.dtype = None,
257
+ num_images_per_prompt: int = 1,
258
+ do_classifier_free_guidance: bool = True,
259
+ negative_prompt: Optional[str] = None,
260
+ prompt_embeds: Optional[torch.Tensor] = None,
261
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
262
+ prompt_attention_mask: Optional[torch.Tensor] = None,
263
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
264
+ max_sequence_length: Optional[int] = None,
265
+ text_encoder_index: int = 0,
266
+ ):
267
+ r"""
268
+ Encodes the prompt into text encoder hidden states.
269
+
270
+ Args:
271
+ prompt (`str` or `List[str]`, *optional*):
272
+ prompt to be encoded
273
+ device: (`torch.device`):
274
+ torch device
275
+ dtype (`torch.dtype`):
276
+ torch dtype
277
+ num_images_per_prompt (`int`):
278
+ number of images that should be generated per prompt
279
+ do_classifier_free_guidance (`bool`):
280
+ whether to use classifier free guidance or not
281
+ negative_prompt (`str` or `List[str]`, *optional*):
282
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
283
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
284
+ less than `1`).
285
+ prompt_embeds (`torch.Tensor`, *optional*):
286
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
287
+ provided, text embeddings will be generated from `prompt` input argument.
288
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
289
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
290
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
291
+ argument.
292
+ prompt_attention_mask (`torch.Tensor`, *optional*):
293
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
294
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
295
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
296
+ max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
297
+ text_encoder_index (`int`, *optional*):
298
+ Index of the text encoder to use. `0` for clip and `1` for T5.
299
+ """
300
+ if dtype is None:
301
+ if self.text_encoder_2 is not None:
302
+ dtype = self.text_encoder_2.dtype
303
+ elif self.transformer is not None:
304
+ dtype = self.transformer.dtype
305
+ else:
306
+ dtype = None
307
+
308
+ if device is None:
309
+ device = self._execution_device
310
+
311
+ tokenizers = [self.tokenizer, self.tokenizer_2]
312
+ text_encoders = [self.text_encoder, self.text_encoder_2]
313
+
314
+ tokenizer = tokenizers[text_encoder_index]
315
+ text_encoder = text_encoders[text_encoder_index]
316
+
317
+ if max_sequence_length is None:
318
+ if text_encoder_index == 0:
319
+ max_length = 77
320
+ if text_encoder_index == 1:
321
+ max_length = 256
322
+ else:
323
+ max_length = max_sequence_length
324
+
325
+ if prompt is not None and isinstance(prompt, str):
326
+ batch_size = 1
327
+ elif prompt is not None and isinstance(prompt, list):
328
+ batch_size = len(prompt)
329
+ else:
330
+ batch_size = prompt_embeds.shape[0]
331
+
332
+ if prompt_embeds is None:
333
+ text_inputs = tokenizer(
334
+ prompt,
335
+ padding="max_length",
336
+ max_length=max_length,
337
+ truncation=True,
338
+ return_attention_mask=True,
339
+ return_tensors="pt",
340
+ )
341
+ text_input_ids = text_inputs.input_ids
342
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
343
+
344
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
345
+ text_input_ids, untruncated_ids
346
+ ):
347
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
348
+ logger.warning(
349
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
350
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
351
+ )
352
+
353
+ prompt_attention_mask = text_inputs.attention_mask.to(device)
354
+ prompt_embeds = text_encoder(
355
+ text_input_ids.to(device),
356
+ attention_mask=prompt_attention_mask,
357
+ )
358
+ prompt_embeds = prompt_embeds[0]
359
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
360
+
361
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
362
+
363
+ bs_embed, seq_len, _ = prompt_embeds.shape
364
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
365
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
366
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
367
+
368
+ # get unconditional embeddings for classifier free guidance
369
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
370
+ uncond_tokens: List[str]
371
+ if negative_prompt is None:
372
+ uncond_tokens = [""] * batch_size
373
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
374
+ raise TypeError(
375
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
376
+ f" {type(prompt)}."
377
+ )
378
+ elif isinstance(negative_prompt, str):
379
+ uncond_tokens = [negative_prompt]
380
+ elif batch_size != len(negative_prompt):
381
+ raise ValueError(
382
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
383
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
384
+ " the batch size of `prompt`."
385
+ )
386
+ else:
387
+ uncond_tokens = negative_prompt
388
+
389
+ max_length = prompt_embeds.shape[1]
390
+ uncond_input = tokenizer(
391
+ uncond_tokens,
392
+ padding="max_length",
393
+ max_length=max_length,
394
+ truncation=True,
395
+ return_tensors="pt",
396
+ )
397
+
398
+ negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
399
+ negative_prompt_embeds = text_encoder(
400
+ uncond_input.input_ids.to(device),
401
+ attention_mask=negative_prompt_attention_mask,
402
+ )
403
+ negative_prompt_embeds = negative_prompt_embeds[0]
404
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
405
+
406
+ if do_classifier_free_guidance:
407
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
408
+ seq_len = negative_prompt_embeds.shape[1]
409
+
410
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
411
+
412
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
413
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
414
+
415
+ return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
416
+
417
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
418
+ def run_safety_checker(self, image, device, dtype):
419
+ if self.safety_checker is None:
420
+ has_nsfw_concept = None
421
+ else:
422
+ if torch.is_tensor(image):
423
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
424
+ else:
425
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
426
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
427
+ image, has_nsfw_concept = self.safety_checker(
428
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
429
+ )
430
+ return image, has_nsfw_concept
431
+
432
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
433
+ def prepare_extra_step_kwargs(self, generator, eta):
434
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
435
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
436
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
437
+ # and should be between [0, 1]
438
+
439
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
440
+ extra_step_kwargs = {}
441
+ if accepts_eta:
442
+ extra_step_kwargs["eta"] = eta
443
+
444
+ # check if the scheduler accepts generator
445
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
446
+ if accepts_generator:
447
+ extra_step_kwargs["generator"] = generator
448
+ return extra_step_kwargs
449
+
450
+ # Copied from diffusers.pipelines.hunyuandit.pipeline_hunyuandit.HunyuanDiTPipeline.check_inputs
451
+ def check_inputs(
452
+ self,
453
+ prompt,
454
+ height,
455
+ width,
456
+ negative_prompt=None,
457
+ prompt_embeds=None,
458
+ negative_prompt_embeds=None,
459
+ prompt_attention_mask=None,
460
+ negative_prompt_attention_mask=None,
461
+ prompt_embeds_2=None,
462
+ negative_prompt_embeds_2=None,
463
+ prompt_attention_mask_2=None,
464
+ negative_prompt_attention_mask_2=None,
465
+ callback_on_step_end_tensor_inputs=None,
466
+ ):
467
+ if height % 8 != 0 or width % 8 != 0:
468
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
469
+
470
+ if callback_on_step_end_tensor_inputs is not None and not all(
471
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
472
+ ):
473
+ raise ValueError(
474
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
475
+ )
476
+
477
+ if prompt is not None and prompt_embeds is not None:
478
+ raise ValueError(
479
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
480
+ " only forward one of the two."
481
+ )
482
+ elif prompt is None and prompt_embeds is None:
483
+ raise ValueError(
484
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
485
+ )
486
+ elif prompt is None and prompt_embeds_2 is None:
487
+ raise ValueError(
488
+ "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
489
+ )
490
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
491
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
492
+
493
+ if prompt_embeds is not None and prompt_attention_mask is None:
494
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
495
+
496
+ if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
497
+ raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
498
+
499
+ if negative_prompt is not None and negative_prompt_embeds is not None:
500
+ raise ValueError(
501
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
502
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
503
+ )
504
+
505
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
506
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
507
+
508
+ if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
509
+ raise ValueError(
510
+ "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
511
+ )
512
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
513
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
514
+ raise ValueError(
515
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
516
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
517
+ f" {negative_prompt_embeds.shape}."
518
+ )
519
+ if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
520
+ if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
521
+ raise ValueError(
522
+ "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
523
+ f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
524
+ f" {negative_prompt_embeds_2.shape}."
525
+ )
526
+
527
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
528
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
529
+ shape = (
530
+ batch_size,
531
+ num_channels_latents,
532
+ int(height) // self.vae_scale_factor,
533
+ int(width) // self.vae_scale_factor,
534
+ )
535
+ if isinstance(generator, list) and len(generator) != batch_size:
536
+ raise ValueError(
537
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
538
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
539
+ )
540
+
541
+ if latents is None:
542
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
543
+ else:
544
+ latents = latents.to(device)
545
+
546
+ # scale the initial noise by the standard deviation required by the scheduler
547
+ latents = latents * self.scheduler.init_noise_sigma
548
+ return latents
549
+
550
+ @property
551
+ def guidance_scale(self):
552
+ return self._guidance_scale
553
+
554
+ @property
555
+ def guidance_rescale(self):
556
+ return self._guidance_rescale
557
+
558
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
559
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
560
+ # corresponds to doing no classifier free guidance.
561
+ @property
562
+ def do_classifier_free_guidance(self):
563
+ return self._guidance_scale > 1
564
+
565
+ @property
566
+ def num_timesteps(self):
567
+ return self._num_timesteps
568
+
569
+ @property
570
+ def interrupt(self):
571
+ return self._interrupt
572
+
573
+ @torch.no_grad()
574
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
575
+ def __call__(
576
+ self,
577
+ prompt: Union[str, List[str]] = None,
578
+ height: Optional[int] = None,
579
+ width: Optional[int] = None,
580
+ num_inference_steps: Optional[int] = 50,
581
+ guidance_scale: Optional[float] = 5.0,
582
+ negative_prompt: Optional[Union[str, List[str]]] = None,
583
+ num_images_per_prompt: Optional[int] = 1,
584
+ eta: Optional[float] = 0.0,
585
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
586
+ latents: Optional[torch.Tensor] = None,
587
+ prompt_embeds: Optional[torch.Tensor] = None,
588
+ prompt_embeds_2: Optional[torch.Tensor] = None,
589
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
590
+ negative_prompt_embeds_2: Optional[torch.Tensor] = None,
591
+ prompt_attention_mask: Optional[torch.Tensor] = None,
592
+ prompt_attention_mask_2: Optional[torch.Tensor] = None,
593
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
594
+ negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
595
+ output_type: Optional[str] = "pil",
596
+ return_dict: bool = True,
597
+ callback_on_step_end: Optional[
598
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
599
+ ] = None,
600
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
601
+ guidance_rescale: float = 0.0,
602
+ original_size: Optional[Tuple[int, int]] = (1024, 1024),
603
+ target_size: Optional[Tuple[int, int]] = None,
604
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
605
+ use_resolution_binning: bool = True,
606
+ pag_scale: float = 3.0,
607
+ pag_adaptive_scale: float = 0.0,
608
+ ):
609
+ r"""
610
+ The call function to the pipeline for generation with HunyuanDiT.
611
+
612
+ Args:
613
+ prompt (`str` or `List[str]`, *optional*):
614
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
615
+ height (`int`):
616
+ The height in pixels of the generated image.
617
+ width (`int`):
618
+ The width in pixels of the generated image.
619
+ num_inference_steps (`int`, *optional*, defaults to 50):
620
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
621
+ expense of slower inference. This parameter is modulated by `strength`.
622
+ guidance_scale (`float`, *optional*, defaults to 7.5):
623
+ A higher guidance scale value encourages the model to generate images closely linked to the text
624
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
625
+ negative_prompt (`str` or `List[str]`, *optional*):
626
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
627
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
628
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
629
+ The number of images to generate per prompt.
630
+ eta (`float`, *optional*, defaults to 0.0):
631
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
632
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
633
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
634
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
635
+ generation deterministic.
636
+ prompt_embeds (`torch.Tensor`, *optional*):
637
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
638
+ provided, text embeddings are generated from the `prompt` input argument.
639
+ prompt_embeds_2 (`torch.Tensor`, *optional*):
640
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
641
+ provided, text embeddings are generated from the `prompt` input argument.
642
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
643
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
644
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
645
+ negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
646
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
647
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
648
+ prompt_attention_mask (`torch.Tensor`, *optional*):
649
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
650
+ prompt_attention_mask_2 (`torch.Tensor`, *optional*):
651
+ Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
652
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
653
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
654
+ negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
655
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
656
+ output_type (`str`, *optional*, defaults to `"pil"`):
657
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
658
+ return_dict (`bool`, *optional*, defaults to `True`):
659
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
660
+ plain tuple.
661
+ callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
662
+ A callback function or a list of callback functions to be called at the end of each denoising step.
663
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
664
+ A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
665
+ inputs will be passed.
666
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
667
+ Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
668
+ Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
669
+ original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
670
+ The original size of the image. Used to calculate the time ids.
671
+ target_size (`Tuple[int, int]`, *optional*):
672
+ The target size of the image. Used to calculate the time ids.
673
+ crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
674
+ The top left coordinates of the crop. Used to calculate the time ids.
675
+ use_resolution_binning (`bool`, *optional*, defaults to `True`):
676
+ Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
677
+ standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
678
+ 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
679
+ pag_scale (`float`, *optional*, defaults to 3.0):
680
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
681
+ guidance will not be used.
682
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
683
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
684
+ used.
685
+
686
+ Examples:
687
+
688
+ Returns:
689
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
690
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
691
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
692
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
693
+ "not-safe-for-work" (nsfw) content.
694
+ """
695
+
696
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
697
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
698
+
699
+ # 0. Default height and width
700
+ height = height or self.default_sample_size * self.vae_scale_factor
701
+ width = width or self.default_sample_size * self.vae_scale_factor
702
+ height = int((height // 16) * 16)
703
+ width = int((width // 16) * 16)
704
+
705
+ if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
706
+ width, height = map_to_standard_shapes(width, height)
707
+ height = int(height)
708
+ width = int(width)
709
+ logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")
710
+
711
+ # 1. Check inputs. Raise error if not correct
712
+ self.check_inputs(
713
+ prompt,
714
+ height,
715
+ width,
716
+ negative_prompt,
717
+ prompt_embeds,
718
+ negative_prompt_embeds,
719
+ prompt_attention_mask,
720
+ negative_prompt_attention_mask,
721
+ prompt_embeds_2,
722
+ negative_prompt_embeds_2,
723
+ prompt_attention_mask_2,
724
+ negative_prompt_attention_mask_2,
725
+ callback_on_step_end_tensor_inputs,
726
+ )
727
+ self._guidance_scale = guidance_scale
728
+ self._guidance_rescale = guidance_rescale
729
+ self._interrupt = False
730
+ self._pag_scale = pag_scale
731
+ self._pag_adaptive_scale = pag_adaptive_scale
732
+
733
+ # 2. Define call parameters
734
+ if prompt is not None and isinstance(prompt, str):
735
+ batch_size = 1
736
+ elif prompt is not None and isinstance(prompt, list):
737
+ batch_size = len(prompt)
738
+ else:
739
+ batch_size = prompt_embeds.shape[0]
740
+
741
+ device = self._execution_device
742
+
743
+ # 3. Encode input prompt
744
+ (
745
+ prompt_embeds,
746
+ negative_prompt_embeds,
747
+ prompt_attention_mask,
748
+ negative_prompt_attention_mask,
749
+ ) = self.encode_prompt(
750
+ prompt=prompt,
751
+ device=device,
752
+ dtype=self.transformer.dtype,
753
+ num_images_per_prompt=num_images_per_prompt,
754
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
755
+ negative_prompt=negative_prompt,
756
+ prompt_embeds=prompt_embeds,
757
+ negative_prompt_embeds=negative_prompt_embeds,
758
+ prompt_attention_mask=prompt_attention_mask,
759
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
760
+ max_sequence_length=77,
761
+ text_encoder_index=0,
762
+ )
763
+ (
764
+ prompt_embeds_2,
765
+ negative_prompt_embeds_2,
766
+ prompt_attention_mask_2,
767
+ negative_prompt_attention_mask_2,
768
+ ) = self.encode_prompt(
769
+ prompt=prompt,
770
+ device=device,
771
+ dtype=self.transformer.dtype,
772
+ num_images_per_prompt=num_images_per_prompt,
773
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
774
+ negative_prompt=negative_prompt,
775
+ prompt_embeds=prompt_embeds_2,
776
+ negative_prompt_embeds=negative_prompt_embeds_2,
777
+ prompt_attention_mask=prompt_attention_mask_2,
778
+ negative_prompt_attention_mask=negative_prompt_attention_mask_2,
779
+ max_sequence_length=256,
780
+ text_encoder_index=1,
781
+ )
782
+
783
+ # 4. Prepare timesteps
784
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
785
+ timesteps = self.scheduler.timesteps
786
+
787
+ # 5. Prepare latent variables
788
+ num_channels_latents = self.transformer.config.in_channels
789
+ latents = self.prepare_latents(
790
+ batch_size * num_images_per_prompt,
791
+ num_channels_latents,
792
+ height,
793
+ width,
794
+ prompt_embeds.dtype,
795
+ device,
796
+ generator,
797
+ latents,
798
+ )
799
+
800
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
801
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
802
+
803
+ # 7. Create image_rotary_emb, style embedding & time ids
804
+ grid_height = height // 8 // self.transformer.config.patch_size
805
+ grid_width = width // 8 // self.transformer.config.patch_size
806
+ base_size = 512 // 8 // self.transformer.config.patch_size
807
+ grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
808
+ image_rotary_emb = get_2d_rotary_pos_embed(
809
+ self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)
810
+ )
811
+
812
+ style = torch.tensor([0], device=device)
813
+
814
+ target_size = target_size or (height, width)
815
+ add_time_ids = list(original_size + target_size + crops_coords_top_left)
816
+ add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
817
+
818
+ # For classifier free guidance, we need to do two forward passes.
819
+ # Here we concatenate the unconditional and text embeddings into a single batch
820
+ # to avoid doing two forward passes
821
+ if self.do_perturbed_attention_guidance:
822
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
823
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
824
+ )
825
+ prompt_attention_mask = self._prepare_perturbed_attention_guidance(
826
+ prompt_attention_mask, negative_prompt_attention_mask, self.do_classifier_free_guidance
827
+ )
828
+ prompt_embeds_2 = self._prepare_perturbed_attention_guidance(
829
+ prompt_embeds_2, negative_prompt_embeds_2, self.do_classifier_free_guidance
830
+ )
831
+ prompt_attention_mask_2 = self._prepare_perturbed_attention_guidance(
832
+ prompt_attention_mask_2, negative_prompt_attention_mask_2, self.do_classifier_free_guidance
833
+ )
834
+ add_time_ids = torch.cat([add_time_ids] * 3, dim=0)
835
+ style = torch.cat([style] * 3, dim=0)
836
+ elif self.do_classifier_free_guidance:
837
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
838
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
839
+ prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
840
+ prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
841
+ add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
842
+ style = torch.cat([style] * 2, dim=0)
843
+
844
+ prompt_embeds = prompt_embeds.to(device=device)
845
+ prompt_attention_mask = prompt_attention_mask.to(device=device)
846
+ prompt_embeds_2 = prompt_embeds_2.to(device=device)
847
+ prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
848
+ add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
849
+ batch_size * num_images_per_prompt, 1
850
+ )
851
+ style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
852
+
853
+ # 8. Denoising loop
854
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
855
+ self._num_timesteps = len(timesteps)
856
+
857
+ if self.do_perturbed_attention_guidance:
858
+ original_attn_proc = self.transformer.attn_processors
859
+ self._set_pag_attn_processor(
860
+ pag_applied_layers=self.pag_applied_layers,
861
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
862
+ )
863
+
864
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
865
+ for i, t in enumerate(timesteps):
866
+ if self.interrupt:
867
+ continue
868
+
869
+ # expand the latents if we are doing classifier free guidance
870
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
871
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
872
+
873
+ # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
874
+ t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
875
+ dtype=latent_model_input.dtype
876
+ )
877
+
878
+ # predict the noise residual
879
+ noise_pred = self.transformer(
880
+ latent_model_input,
881
+ t_expand,
882
+ encoder_hidden_states=prompt_embeds,
883
+ text_embedding_mask=prompt_attention_mask,
884
+ encoder_hidden_states_t5=prompt_embeds_2,
885
+ text_embedding_mask_t5=prompt_attention_mask_2,
886
+ image_meta_size=add_time_ids,
887
+ style=style,
888
+ image_rotary_emb=image_rotary_emb,
889
+ return_dict=False,
890
+ )[0]
891
+
892
+ noise_pred, _ = noise_pred.chunk(2, dim=1)
893
+
894
+ # perform guidance
895
+ if self.do_perturbed_attention_guidance:
896
+ noise_pred = self._apply_perturbed_attention_guidance(
897
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
898
+ )
899
+ elif self.do_classifier_free_guidance:
900
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
901
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
902
+
903
+ if self.do_classifier_free_guidance and guidance_rescale > 0.0:
904
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
905
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
906
+
907
+ # compute the previous noisy sample x_t -> x_t-1
908
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
909
+
910
+ if callback_on_step_end is not None:
911
+ callback_kwargs = {}
912
+ for k in callback_on_step_end_tensor_inputs:
913
+ callback_kwargs[k] = locals()[k]
914
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
915
+
916
+ latents = callback_outputs.pop("latents", latents)
917
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
918
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
919
+ prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
920
+ negative_prompt_embeds_2 = callback_outputs.pop(
921
+ "negative_prompt_embeds_2", negative_prompt_embeds_2
922
+ )
923
+
924
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
925
+ progress_bar.update()
926
+
927
+ if XLA_AVAILABLE:
928
+ xm.mark_step()
929
+
930
+ if not output_type == "latent":
931
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
932
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
933
+ else:
934
+ image = latents
935
+ has_nsfw_concept = None
936
+
937
+ if has_nsfw_concept is None:
938
+ do_denormalize = [True] * image.shape[0]
939
+ else:
940
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
941
+
942
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
943
+
944
+ # 9. Offload all models
945
+ self.maybe_free_model_hooks()
946
+
947
+ if self.do_perturbed_attention_guidance:
948
+ self.transformer.set_attn_processor(original_attn_proc)
949
+
950
+ if not return_dict:
951
+ return (image, has_nsfw_concept)
952
+
953
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)