diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1070 @@
1
+ # Copyright 2024 Stability AI, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
19
+
20
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
21
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
22
+ from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin
23
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
24
+ from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
25
+ from ...schedulers import KarrasDiffusionSchedulers
26
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
29
+ from .pipeline_output import KolorsPipelineOutput
30
+ from .text_encoder import ChatGLMModel
31
+ from .tokenizer import ChatGLMTokenizer
32
+
33
+
34
+ if is_torch_xla_available():
35
+ import torch_xla.core.xla_model as xm
36
+
37
+ XLA_AVAILABLE = True
38
+ else:
39
+ XLA_AVAILABLE = False
40
+
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+
45
+ EXAMPLE_DOC_STRING = """
46
+ Examples:
47
+ ```py
48
+ >>> import torch
49
+ >>> from diffusers import KolorsPipeline
50
+
51
+ >>> pipe = KolorsPipeline.from_pretrained(
52
+ ... "Kwai-Kolors/Kolors-diffusers", variant="fp16", torch_dtype=torch.float16
53
+ ... )
54
+ >>> pipe = pipe.to("cuda")
55
+
56
+ >>> prompt = (
57
+ ... "A photo of a ladybug, macro, zoom, high quality, film, holding a wooden sign with the text 'KOLORS'"
58
+ ... )
59
+ >>> image = pipe(prompt).images[0]
60
+ ```
61
+ """
62
+
63
+
64
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
65
+ def retrieve_timesteps(
66
+ scheduler,
67
+ num_inference_steps: Optional[int] = None,
68
+ device: Optional[Union[str, torch.device]] = None,
69
+ timesteps: Optional[List[int]] = None,
70
+ sigmas: Optional[List[float]] = None,
71
+ **kwargs,
72
+ ):
73
+ """
74
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
75
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
76
+
77
+ Args:
78
+ scheduler (`SchedulerMixin`):
79
+ The scheduler to get timesteps from.
80
+ num_inference_steps (`int`):
81
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
82
+ must be `None`.
83
+ device (`str` or `torch.device`, *optional*):
84
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
85
+ timesteps (`List[int]`, *optional*):
86
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
87
+ `num_inference_steps` and `sigmas` must be `None`.
88
+ sigmas (`List[float]`, *optional*):
89
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
90
+ `num_inference_steps` and `timesteps` must be `None`.
91
+
92
+ Returns:
93
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
94
+ second element is the number of inference steps.
95
+ """
96
+ if timesteps is not None and sigmas is not None:
97
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
98
+ if timesteps is not None:
99
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
100
+ if not accepts_timesteps:
101
+ raise ValueError(
102
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
103
+ f" timestep schedules. Please check whether you are using the correct scheduler."
104
+ )
105
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
106
+ timesteps = scheduler.timesteps
107
+ num_inference_steps = len(timesteps)
108
+ elif sigmas is not None:
109
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
110
+ if not accept_sigmas:
111
+ raise ValueError(
112
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
113
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
114
+ )
115
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
116
+ timesteps = scheduler.timesteps
117
+ num_inference_steps = len(timesteps)
118
+ else:
119
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
120
+ timesteps = scheduler.timesteps
121
+ return timesteps, num_inference_steps
122
+
123
+
124
+ class KolorsPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin):
125
+ r"""
126
+ Pipeline for text-to-image generation using Kolors.
127
+
128
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
129
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
130
+
131
+ The pipeline also inherits the following loading methods:
132
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
133
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
134
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
135
+
136
+ Args:
137
+ vae ([`AutoencoderKL`]):
138
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
139
+ text_encoder ([`ChatGLMModel`]):
140
+ Frozen text-encoder. Kolors uses [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b).
141
+ tokenizer (`ChatGLMTokenizer`):
142
+ Tokenizer of class
143
+ [ChatGLMTokenizer](https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py).
144
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
145
+ scheduler ([`SchedulerMixin`]):
146
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
147
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
148
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"False"`):
149
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
150
+ `Kwai-Kolors/Kolors-diffusers`.
151
+ """
152
+
153
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
154
+ _optional_components = [
155
+ "image_encoder",
156
+ "feature_extractor",
157
+ ]
158
+ _callback_tensor_inputs = [
159
+ "latents",
160
+ "prompt_embeds",
161
+ "negative_prompt_embeds",
162
+ "add_text_embeds",
163
+ "add_time_ids",
164
+ "negative_pooled_prompt_embeds",
165
+ "negative_add_time_ids",
166
+ ]
167
+
168
+ def __init__(
169
+ self,
170
+ vae: AutoencoderKL,
171
+ text_encoder: ChatGLMModel,
172
+ tokenizer: ChatGLMTokenizer,
173
+ unet: UNet2DConditionModel,
174
+ scheduler: KarrasDiffusionSchedulers,
175
+ image_encoder: CLIPVisionModelWithProjection = None,
176
+ feature_extractor: CLIPImageProcessor = None,
177
+ force_zeros_for_empty_prompt: bool = False,
178
+ ):
179
+ super().__init__()
180
+
181
+ self.register_modules(
182
+ vae=vae,
183
+ text_encoder=text_encoder,
184
+ tokenizer=tokenizer,
185
+ unet=unet,
186
+ scheduler=scheduler,
187
+ image_encoder=image_encoder,
188
+ feature_extractor=feature_extractor,
189
+ )
190
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
191
+ self.vae_scale_factor = (
192
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
193
+ )
194
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
195
+
196
+ self.default_sample_size = self.unet.config.sample_size
197
+
198
+ def encode_prompt(
199
+ self,
200
+ prompt,
201
+ device: Optional[torch.device] = None,
202
+ num_images_per_prompt: int = 1,
203
+ do_classifier_free_guidance: bool = True,
204
+ negative_prompt=None,
205
+ prompt_embeds: Optional[torch.FloatTensor] = None,
206
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
207
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
208
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
209
+ max_sequence_length: int = 256,
210
+ ):
211
+ r"""
212
+ Encodes the prompt into text encoder hidden states.
213
+
214
+ Args:
215
+ prompt (`str` or `List[str]`, *optional*):
216
+ prompt to be encoded
217
+ device: (`torch.device`):
218
+ torch device
219
+ num_images_per_prompt (`int`):
220
+ number of images that should be generated per prompt
221
+ do_classifier_free_guidance (`bool`):
222
+ whether to use classifier free guidance or not
223
+ negative_prompt (`str` or `List[str]`, *optional*):
224
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
225
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
226
+ less than `1`).
227
+ prompt_embeds (`torch.FloatTensor`, *optional*):
228
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
229
+ provided, text embeddings will be generated from `prompt` input argument.
230
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
231
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
232
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
233
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
234
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
235
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
236
+ argument.
237
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
238
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
239
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
240
+ input argument.
241
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
242
+ """
243
+ # from IPython import embed; embed(); exit()
244
+ device = device or self._execution_device
245
+
246
+ if prompt is not None and isinstance(prompt, str):
247
+ batch_size = 1
248
+ elif prompt is not None and isinstance(prompt, list):
249
+ batch_size = len(prompt)
250
+ else:
251
+ batch_size = prompt_embeds.shape[0]
252
+
253
+ # Define tokenizers and text encoders
254
+ tokenizers = [self.tokenizer]
255
+ text_encoders = [self.text_encoder]
256
+
257
+ if prompt_embeds is None:
258
+ prompt_embeds_list = []
259
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
260
+ text_inputs = tokenizer(
261
+ prompt,
262
+ padding="max_length",
263
+ max_length=max_sequence_length,
264
+ truncation=True,
265
+ return_tensors="pt",
266
+ ).to(device)
267
+ output = text_encoder(
268
+ input_ids=text_inputs["input_ids"],
269
+ attention_mask=text_inputs["attention_mask"],
270
+ position_ids=text_inputs["position_ids"],
271
+ output_hidden_states=True,
272
+ )
273
+
274
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
275
+ # clone to have a contiguous tensor
276
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
277
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
278
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
279
+ bs_embed, seq_len, _ = prompt_embeds.shape
280
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
281
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
282
+
283
+ prompt_embeds_list.append(prompt_embeds)
284
+
285
+ prompt_embeds = prompt_embeds_list[0]
286
+
287
+ # get unconditional embeddings for classifier free guidance
288
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
289
+
290
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
291
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
292
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
293
+ uncond_tokens: List[str]
294
+ if negative_prompt is None:
295
+ uncond_tokens = [""] * batch_size
296
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
297
+ raise TypeError(
298
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
299
+ f" {type(prompt)}."
300
+ )
301
+ elif isinstance(negative_prompt, str):
302
+ uncond_tokens = [negative_prompt]
303
+ elif batch_size != len(negative_prompt):
304
+ raise ValueError(
305
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
306
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
307
+ " the batch size of `prompt`."
308
+ )
309
+ else:
310
+ uncond_tokens = negative_prompt
311
+
312
+ negative_prompt_embeds_list = []
313
+
314
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
315
+ uncond_input = tokenizer(
316
+ uncond_tokens,
317
+ padding="max_length",
318
+ max_length=max_sequence_length,
319
+ truncation=True,
320
+ return_tensors="pt",
321
+ ).to(device)
322
+ output = text_encoder(
323
+ input_ids=uncond_input["input_ids"],
324
+ attention_mask=uncond_input["attention_mask"],
325
+ position_ids=uncond_input["position_ids"],
326
+ output_hidden_states=True,
327
+ )
328
+
329
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
330
+ # clone to have a contiguous tensor
331
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
332
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
333
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
334
+
335
+ if do_classifier_free_guidance:
336
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
337
+ seq_len = negative_prompt_embeds.shape[1]
338
+
339
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
340
+
341
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
342
+ negative_prompt_embeds = negative_prompt_embeds.view(
343
+ batch_size * num_images_per_prompt, seq_len, -1
344
+ )
345
+
346
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
347
+
348
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
349
+
350
+ bs_embed = pooled_prompt_embeds.shape[0]
351
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
352
+ bs_embed * num_images_per_prompt, -1
353
+ )
354
+
355
+ if do_classifier_free_guidance:
356
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
357
+ bs_embed * num_images_per_prompt, -1
358
+ )
359
+
360
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
361
+
362
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
363
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
364
+ dtype = next(self.image_encoder.parameters()).dtype
365
+
366
+ if not isinstance(image, torch.Tensor):
367
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
368
+
369
+ image = image.to(device=device, dtype=dtype)
370
+ if output_hidden_states:
371
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
372
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
373
+ uncond_image_enc_hidden_states = self.image_encoder(
374
+ torch.zeros_like(image), output_hidden_states=True
375
+ ).hidden_states[-2]
376
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
377
+ num_images_per_prompt, dim=0
378
+ )
379
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
380
+ else:
381
+ image_embeds = self.image_encoder(image).image_embeds
382
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
383
+ uncond_image_embeds = torch.zeros_like(image_embeds)
384
+
385
+ return image_embeds, uncond_image_embeds
386
+
387
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
388
+ def prepare_ip_adapter_image_embeds(
389
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
390
+ ):
391
+ image_embeds = []
392
+ if do_classifier_free_guidance:
393
+ negative_image_embeds = []
394
+ if ip_adapter_image_embeds is None:
395
+ if not isinstance(ip_adapter_image, list):
396
+ ip_adapter_image = [ip_adapter_image]
397
+
398
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
399
+ raise ValueError(
400
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
401
+ )
402
+
403
+ for single_ip_adapter_image, image_proj_layer in zip(
404
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
405
+ ):
406
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
407
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
408
+ single_ip_adapter_image, device, 1, output_hidden_state
409
+ )
410
+
411
+ image_embeds.append(single_image_embeds[None, :])
412
+ if do_classifier_free_guidance:
413
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
414
+ else:
415
+ for single_image_embeds in ip_adapter_image_embeds:
416
+ if do_classifier_free_guidance:
417
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
418
+ negative_image_embeds.append(single_negative_image_embeds)
419
+ image_embeds.append(single_image_embeds)
420
+
421
+ ip_adapter_image_embeds = []
422
+ for i, single_image_embeds in enumerate(image_embeds):
423
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
424
+ if do_classifier_free_guidance:
425
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
426
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
427
+
428
+ single_image_embeds = single_image_embeds.to(device=device)
429
+ ip_adapter_image_embeds.append(single_image_embeds)
430
+
431
+ return ip_adapter_image_embeds
432
+
433
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
434
+ def prepare_extra_step_kwargs(self, generator, eta):
435
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
436
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
437
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
438
+ # and should be between [0, 1]
439
+
440
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
441
+ extra_step_kwargs = {}
442
+ if accepts_eta:
443
+ extra_step_kwargs["eta"] = eta
444
+
445
+ # check if the scheduler accepts generator
446
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
447
+ if accepts_generator:
448
+ extra_step_kwargs["generator"] = generator
449
+ return extra_step_kwargs
450
+
451
+ def check_inputs(
452
+ self,
453
+ prompt,
454
+ num_inference_steps,
455
+ height,
456
+ width,
457
+ negative_prompt=None,
458
+ prompt_embeds=None,
459
+ pooled_prompt_embeds=None,
460
+ negative_prompt_embeds=None,
461
+ negative_pooled_prompt_embeds=None,
462
+ ip_adapter_image=None,
463
+ ip_adapter_image_embeds=None,
464
+ callback_on_step_end_tensor_inputs=None,
465
+ max_sequence_length=None,
466
+ ):
467
+ if not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
468
+ raise ValueError(
469
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
470
+ f" {type(num_inference_steps)}."
471
+ )
472
+
473
+ if height % 8 != 0 or width % 8 != 0:
474
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
475
+
476
+ if callback_on_step_end_tensor_inputs is not None and not all(
477
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
478
+ ):
479
+ raise ValueError(
480
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
481
+ )
482
+
483
+ if prompt is not None and prompt_embeds is not None:
484
+ raise ValueError(
485
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
486
+ " only forward one of the two."
487
+ )
488
+ elif prompt is None and prompt_embeds is None:
489
+ raise ValueError(
490
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
491
+ )
492
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
493
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
494
+
495
+ if negative_prompt is not None and negative_prompt_embeds is not None:
496
+ raise ValueError(
497
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
498
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
499
+ )
500
+
501
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
502
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
503
+ raise ValueError(
504
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
505
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
506
+ f" {negative_prompt_embeds.shape}."
507
+ )
508
+
509
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
510
+ raise ValueError(
511
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
512
+ )
513
+
514
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
515
+ raise ValueError(
516
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
517
+ )
518
+
519
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
520
+ raise ValueError(
521
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
522
+ )
523
+
524
+ if ip_adapter_image_embeds is not None:
525
+ if not isinstance(ip_adapter_image_embeds, list):
526
+ raise ValueError(
527
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
528
+ )
529
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
530
+ raise ValueError(
531
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
532
+ )
533
+
534
+ if max_sequence_length is not None and max_sequence_length > 256:
535
+ raise ValueError(f"`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}")
536
+
537
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
538
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
539
+ shape = (
540
+ batch_size,
541
+ num_channels_latents,
542
+ int(height) // self.vae_scale_factor,
543
+ int(width) // self.vae_scale_factor,
544
+ )
545
+ if isinstance(generator, list) and len(generator) != batch_size:
546
+ raise ValueError(
547
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
548
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
549
+ )
550
+
551
+ if latents is None:
552
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
553
+ else:
554
+ latents = latents.to(device)
555
+
556
+ # scale the initial noise by the standard deviation required by the scheduler
557
+ latents = latents * self.scheduler.init_noise_sigma
558
+ return latents
559
+
560
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
561
+ def _get_add_time_ids(
562
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
563
+ ):
564
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
565
+
566
+ passed_add_embed_dim = (
567
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
568
+ )
569
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
570
+
571
+ if expected_add_embed_dim != passed_add_embed_dim:
572
+ raise ValueError(
573
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
574
+ )
575
+
576
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
577
+ return add_time_ids
578
+
579
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
580
+ def upcast_vae(self):
581
+ dtype = self.vae.dtype
582
+ self.vae.to(dtype=torch.float32)
583
+ use_torch_2_0_or_xformers = isinstance(
584
+ self.vae.decoder.mid_block.attentions[0].processor,
585
+ (
586
+ AttnProcessor2_0,
587
+ XFormersAttnProcessor,
588
+ FusedAttnProcessor2_0,
589
+ ),
590
+ )
591
+ # if xformers or torch_2_0 is used attention block does not need
592
+ # to be in float32 which can save lots of memory
593
+ if use_torch_2_0_or_xformers:
594
+ self.vae.post_quant_conv.to(dtype)
595
+ self.vae.decoder.conv_in.to(dtype)
596
+ self.vae.decoder.mid_block.to(dtype)
597
+
598
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
599
+ def get_guidance_scale_embedding(
600
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
601
+ ) -> torch.Tensor:
602
+ """
603
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
604
+
605
+ Args:
606
+ w (`torch.Tensor`):
607
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
608
+ embedding_dim (`int`, *optional*, defaults to 512):
609
+ Dimension of the embeddings to generate.
610
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
611
+ Data type of the generated embeddings.
612
+
613
+ Returns:
614
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
615
+ """
616
+ assert len(w.shape) == 1
617
+ w = w * 1000.0
618
+
619
+ half_dim = embedding_dim // 2
620
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
621
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
622
+ emb = w.to(dtype)[:, None] * emb[None, :]
623
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
624
+ if embedding_dim % 2 == 1: # zero pad
625
+ emb = torch.nn.functional.pad(emb, (0, 1))
626
+ assert emb.shape == (w.shape[0], embedding_dim)
627
+ return emb
628
+
629
+ @property
630
+ def guidance_scale(self):
631
+ return self._guidance_scale
632
+
633
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
634
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
635
+ # corresponds to doing no classifier free guidance.
636
+ @property
637
+ def do_classifier_free_guidance(self):
638
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
639
+
640
+ @property
641
+ def cross_attention_kwargs(self):
642
+ return self._cross_attention_kwargs
643
+
644
+ @property
645
+ def denoising_end(self):
646
+ return self._denoising_end
647
+
648
+ @property
649
+ def num_timesteps(self):
650
+ return self._num_timesteps
651
+
652
+ @property
653
+ def interrupt(self):
654
+ return self._interrupt
655
+
656
+ @torch.no_grad()
657
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
658
+ def __call__(
659
+ self,
660
+ prompt: Union[str, List[str]] = None,
661
+ height: Optional[int] = None,
662
+ width: Optional[int] = None,
663
+ num_inference_steps: int = 50,
664
+ timesteps: List[int] = None,
665
+ sigmas: List[float] = None,
666
+ denoising_end: Optional[float] = None,
667
+ guidance_scale: float = 5.0,
668
+ negative_prompt: Optional[Union[str, List[str]]] = None,
669
+ num_images_per_prompt: Optional[int] = 1,
670
+ eta: float = 0.0,
671
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
672
+ latents: Optional[torch.Tensor] = None,
673
+ prompt_embeds: Optional[torch.Tensor] = None,
674
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
675
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
676
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
677
+ ip_adapter_image: Optional[PipelineImageInput] = None,
678
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
679
+ output_type: Optional[str] = "pil",
680
+ return_dict: bool = True,
681
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
682
+ original_size: Optional[Tuple[int, int]] = None,
683
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
684
+ target_size: Optional[Tuple[int, int]] = None,
685
+ negative_original_size: Optional[Tuple[int, int]] = None,
686
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
687
+ negative_target_size: Optional[Tuple[int, int]] = None,
688
+ callback_on_step_end: Optional[
689
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
690
+ ] = None,
691
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
692
+ max_sequence_length: int = 256,
693
+ ):
694
+ r"""
695
+ Function invoked when calling the pipeline for generation.
696
+
697
+ Args:
698
+ prompt (`str` or `List[str]`, *optional*):
699
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
700
+ instead.
701
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
702
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
703
+ Anything below 512 pixels won't work well for
704
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
705
+ that are not specifically fine-tuned on low resolutions.
706
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
707
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
708
+ Anything below 512 pixels won't work well for
709
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
710
+ that are not specifically fine-tuned on low resolutions.
711
+ num_inference_steps (`int`, *optional*, defaults to 50):
712
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
713
+ expense of slower inference.
714
+ timesteps (`List[int]`, *optional*):
715
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
716
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
717
+ passed will be used. Must be in descending order.
718
+ sigmas (`List[float]`, *optional*):
719
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
720
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
721
+ will be used.
722
+ denoising_end (`float`, *optional*):
723
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
724
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
725
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
726
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
727
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
728
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
729
+ guidance_scale (`float`, *optional*, defaults to 5.0):
730
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
731
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
732
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
733
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
734
+ usually at the expense of lower image quality.
735
+ negative_prompt (`str` or `List[str]`, *optional*):
736
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
737
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
738
+ less than `1`).
739
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
740
+ The number of images to generate per prompt.
741
+ eta (`float`, *optional*, defaults to 0.0):
742
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
743
+ [`schedulers.DDIMScheduler`], will be ignored for others.
744
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
745
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
746
+ to make generation deterministic.
747
+ latents (`torch.Tensor`, *optional*):
748
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
749
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
750
+ tensor will ge generated by sampling using the supplied random `generator`.
751
+ prompt_embeds (`torch.Tensor`, *optional*):
752
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
753
+ provided, text embeddings will be generated from `prompt` input argument.
754
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
755
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
756
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
757
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
758
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
759
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
760
+ argument.
761
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
762
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
763
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
764
+ input argument.
765
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
766
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
767
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
768
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
769
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
770
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
771
+ output_type (`str`, *optional*, defaults to `"pil"`):
772
+ The output format of the generate image. Choose between
773
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
774
+ return_dict (`bool`, *optional*, defaults to `True`):
775
+ Whether or not to return a [`~pipelines.kolors.KolorsPipelineOutput`] instead of a plain tuple.
776
+ cross_attention_kwargs (`dict`, *optional*):
777
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
778
+ `self.processor` in
779
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
780
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
781
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
782
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
783
+ explained in section 2.2 of
784
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
785
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
786
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
787
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
788
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
789
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
790
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
791
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
792
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
793
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
794
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
795
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
796
+ micro-conditioning as explained in section 2.2 of
797
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
798
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
799
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
800
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
801
+ micro-conditioning as explained in section 2.2 of
802
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
803
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
804
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
805
+ To negatively condition the generation process based on a target image resolution. It should be as same
806
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
807
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
808
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
809
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
810
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
811
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
812
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
813
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
814
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
815
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
816
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
817
+ `._callback_tensor_inputs` attribute of your pipeline class.
818
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
819
+
820
+ Examples:
821
+
822
+ Returns:
823
+ [`~pipelines.kolors.KolorsPipelineOutput`] or `tuple`: [`~pipelines.kolors.KolorsPipelineOutput`] if
824
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
825
+ generated images.
826
+ """
827
+
828
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
829
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
830
+
831
+ # 0. Default height and width to unet
832
+ height = height or self.default_sample_size * self.vae_scale_factor
833
+ width = width or self.default_sample_size * self.vae_scale_factor
834
+
835
+ original_size = original_size or (height, width)
836
+ target_size = target_size or (height, width)
837
+
838
+ # 1. Check inputs. Raise error if not correct
839
+ self.check_inputs(
840
+ prompt,
841
+ num_inference_steps,
842
+ height,
843
+ width,
844
+ negative_prompt,
845
+ prompt_embeds,
846
+ pooled_prompt_embeds,
847
+ negative_prompt_embeds,
848
+ negative_pooled_prompt_embeds,
849
+ ip_adapter_image,
850
+ ip_adapter_image_embeds,
851
+ callback_on_step_end_tensor_inputs,
852
+ max_sequence_length=max_sequence_length,
853
+ )
854
+
855
+ self._guidance_scale = guidance_scale
856
+ self._cross_attention_kwargs = cross_attention_kwargs
857
+ self._denoising_end = denoising_end
858
+ self._interrupt = False
859
+
860
+ # 2. Define call parameters
861
+ if prompt is not None and isinstance(prompt, str):
862
+ batch_size = 1
863
+ elif prompt is not None and isinstance(prompt, list):
864
+ batch_size = len(prompt)
865
+ else:
866
+ batch_size = prompt_embeds.shape[0]
867
+
868
+ device = self._execution_device
869
+
870
+ # 3. Encode input prompt
871
+ (
872
+ prompt_embeds,
873
+ negative_prompt_embeds,
874
+ pooled_prompt_embeds,
875
+ negative_pooled_prompt_embeds,
876
+ ) = self.encode_prompt(
877
+ prompt=prompt,
878
+ device=device,
879
+ num_images_per_prompt=num_images_per_prompt,
880
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
881
+ negative_prompt=negative_prompt,
882
+ prompt_embeds=prompt_embeds,
883
+ pooled_prompt_embeds=pooled_prompt_embeds,
884
+ negative_prompt_embeds=negative_prompt_embeds,
885
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
886
+ )
887
+
888
+ # 4. Prepare timesteps
889
+ timesteps, num_inference_steps = retrieve_timesteps(
890
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
891
+ )
892
+
893
+ # 5. Prepare latent variables
894
+ num_channels_latents = self.unet.config.in_channels
895
+ latents = self.prepare_latents(
896
+ batch_size * num_images_per_prompt,
897
+ num_channels_latents,
898
+ height,
899
+ width,
900
+ prompt_embeds.dtype,
901
+ device,
902
+ generator,
903
+ latents,
904
+ )
905
+
906
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
907
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
908
+
909
+ # 7. Prepare added time ids & embeddings
910
+ add_text_embeds = pooled_prompt_embeds
911
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
912
+
913
+ add_time_ids = self._get_add_time_ids(
914
+ original_size,
915
+ crops_coords_top_left,
916
+ target_size,
917
+ dtype=prompt_embeds.dtype,
918
+ text_encoder_projection_dim=text_encoder_projection_dim,
919
+ )
920
+ if negative_original_size is not None and negative_target_size is not None:
921
+ negative_add_time_ids = self._get_add_time_ids(
922
+ negative_original_size,
923
+ negative_crops_coords_top_left,
924
+ negative_target_size,
925
+ dtype=prompt_embeds.dtype,
926
+ text_encoder_projection_dim=text_encoder_projection_dim,
927
+ )
928
+ else:
929
+ negative_add_time_ids = add_time_ids
930
+
931
+ if self.do_classifier_free_guidance:
932
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
933
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
934
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
935
+
936
+ prompt_embeds = prompt_embeds.to(device)
937
+ add_text_embeds = add_text_embeds.to(device)
938
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
939
+
940
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
941
+ image_embeds = self.prepare_ip_adapter_image_embeds(
942
+ ip_adapter_image,
943
+ ip_adapter_image_embeds,
944
+ device,
945
+ batch_size * num_images_per_prompt,
946
+ self.do_classifier_free_guidance,
947
+ )
948
+
949
+ # 8. Denoising loop
950
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
951
+
952
+ # 8.1 Apply denoising_end
953
+ if (
954
+ self.denoising_end is not None
955
+ and isinstance(self.denoising_end, float)
956
+ and self.denoising_end > 0
957
+ and self.denoising_end < 1
958
+ ):
959
+ discrete_timestep_cutoff = int(
960
+ round(
961
+ self.scheduler.config.num_train_timesteps
962
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
963
+ )
964
+ )
965
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
966
+ timesteps = timesteps[:num_inference_steps]
967
+
968
+ # 9. Optionally get Guidance Scale Embedding
969
+ timestep_cond = None
970
+ if self.unet.config.time_cond_proj_dim is not None:
971
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
972
+ timestep_cond = self.get_guidance_scale_embedding(
973
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
974
+ ).to(device=device, dtype=latents.dtype)
975
+
976
+ self._num_timesteps = len(timesteps)
977
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
978
+ for i, t in enumerate(timesteps):
979
+ if self.interrupt:
980
+ continue
981
+
982
+ # expand the latents if we are doing classifier free guidance
983
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
984
+
985
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
986
+
987
+ # predict the noise residual
988
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
989
+
990
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
991
+ added_cond_kwargs["image_embeds"] = image_embeds
992
+
993
+ noise_pred = self.unet(
994
+ latent_model_input,
995
+ t,
996
+ encoder_hidden_states=prompt_embeds,
997
+ timestep_cond=timestep_cond,
998
+ cross_attention_kwargs=self.cross_attention_kwargs,
999
+ added_cond_kwargs=added_cond_kwargs,
1000
+ return_dict=False,
1001
+ )[0]
1002
+
1003
+ # perform guidance
1004
+ if self.do_classifier_free_guidance:
1005
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1006
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1007
+
1008
+ # compute the previous noisy sample x_t -> x_t-1
1009
+ latents_dtype = latents.dtype
1010
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1011
+ if latents.dtype != latents_dtype:
1012
+ if torch.backends.mps.is_available():
1013
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1014
+ latents = latents.to(latents_dtype)
1015
+
1016
+ if callback_on_step_end is not None:
1017
+ callback_kwargs = {}
1018
+ for k in callback_on_step_end_tensor_inputs:
1019
+ callback_kwargs[k] = locals()[k]
1020
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1021
+
1022
+ latents = callback_outputs.pop("latents", latents)
1023
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1024
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1025
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1026
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1027
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1028
+ )
1029
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1030
+ negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
1031
+
1032
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1033
+ progress_bar.update()
1034
+
1035
+ if XLA_AVAILABLE:
1036
+ xm.mark_step()
1037
+
1038
+ if not output_type == "latent":
1039
+ # make sure the VAE is in float32 mode, as it overflows in float16
1040
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1041
+
1042
+ if needs_upcasting:
1043
+ self.upcast_vae()
1044
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1045
+ elif latents.dtype != self.vae.dtype:
1046
+ if torch.backends.mps.is_available():
1047
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1048
+ self.vae = self.vae.to(latents.dtype)
1049
+
1050
+ # unscale/denormalize the latents
1051
+ latents = latents / self.vae.config.scaling_factor
1052
+
1053
+ image = self.vae.decode(latents, return_dict=False)[0]
1054
+
1055
+ # cast back to fp16 if needed
1056
+ if needs_upcasting:
1057
+ self.vae.to(dtype=torch.float16)
1058
+ else:
1059
+ image = latents
1060
+
1061
+ if not output_type == "latent":
1062
+ image = self.image_processor.postprocess(image, output_type=output_type)
1063
+
1064
+ # Offload all models
1065
+ self.maybe_free_model_hooks()
1066
+
1067
+ if not return_dict:
1068
+ return (image,)
1069
+
1070
+ return KolorsPipelineOutput(images=image)