diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +94 -3
- diffusers/commands/env.py +1 -5
- diffusers/configuration_utils.py +4 -9
- diffusers/dependency_versions_table.py +2 -2
- diffusers/image_processor.py +1 -2
- diffusers/loaders/__init__.py +17 -2
- diffusers/loaders/ip_adapter.py +10 -7
- diffusers/loaders/lora_base.py +752 -0
- diffusers/loaders/lora_pipeline.py +2252 -0
- diffusers/loaders/peft.py +213 -5
- diffusers/loaders/single_file.py +3 -14
- diffusers/loaders/single_file_model.py +31 -10
- diffusers/loaders/single_file_utils.py +293 -8
- diffusers/loaders/textual_inversion.py +1 -6
- diffusers/loaders/unet.py +23 -208
- diffusers/models/__init__.py +20 -0
- diffusers/models/activations.py +22 -0
- diffusers/models/attention.py +386 -7
- diffusers/models/attention_processor.py +1937 -629
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_kl.py +14 -3
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vq_model.py +4 -4
- diffusers/models/controlnet.py +2 -3
- diffusers/models/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnet_sd3.py +11 -11
- diffusers/models/controlnet_sparsectrl.py +789 -0
- diffusers/models/controlnet_xs.py +40 -10
- diffusers/models/downsampling.py +68 -0
- diffusers/models/embeddings.py +403 -36
- diffusers/models/model_loading_utils.py +1 -3
- diffusers/models/modeling_flax_utils.py +1 -6
- diffusers/models/modeling_utils.py +4 -16
- diffusers/models/normalization.py +203 -12
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
- diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +102 -1
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/transformer_flux.py +455 -0
- diffusers/models/transformers/transformer_sd3.py +18 -4
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +8 -1
- diffusers/models/unets/unet_3d_blocks.py +51 -920
- diffusers/models/unets/unet_3d_condition.py +4 -1
- diffusers/models/unets/unet_i2vgen_xl.py +4 -1
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +1330 -84
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +1 -3
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +64 -0
- diffusers/models/vq_model.py +8 -4
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +100 -3
- diffusers/pipelines/animatediff/__init__.py +4 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
- diffusers/pipelines/auto_pipeline.py +97 -19
- diffusers/pipelines/cogvideo/__init__.py +48 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
- diffusers/pipelines/flux/__init__.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +749 -0
- diffusers/pipelines/flux/pipeline_output.py +21 -0
- diffusers/pipelines/free_init_utils.py +2 -0
- diffusers/pipelines/free_noise_utils.py +236 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +334 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
- diffusers/pipelines/pag/__init__.py +67 -0
- diffusers/pipelines/pag/pag_utils.py +237 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
- diffusers/pipelines/pia/pipeline_pia.py +30 -37
- diffusers/pipelines/pipeline_flax_utils.py +4 -9
- diffusers/pipelines/pipeline_loading_utils.py +0 -3
- diffusers/pipelines/pipeline_utils.py +2 -14
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
- diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
- diffusers/schedulers/__init__.py +8 -0
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +1 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
- diffusers/schedulers/scheduling_ddpm.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +2 -2
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
- diffusers/schedulers/scheduling_ipndm.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
- diffusers/schedulers/scheduling_utils.py +1 -3
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/training_utils.py +99 -14
- diffusers/utils/__init__.py +2 -2
- diffusers/utils/dummy_pt_objects.py +210 -0
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
- diffusers/utils/dynamic_modules_utils.py +1 -11
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +45 -42
- diffusers/utils/import_utils.py +37 -15
- diffusers/utils/loading_utils.py +80 -3
- diffusers/utils/testing_utils.py +11 -8
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1728
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,591 @@
|
|
1
|
+
# Copyright 2024 AuraFlow Authors and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import inspect
|
15
|
+
from typing import List, Optional, Tuple, Union
|
16
|
+
|
17
|
+
import torch
|
18
|
+
from transformers import T5Tokenizer, UMT5EncoderModel
|
19
|
+
|
20
|
+
from ...image_processor import VaeImageProcessor
|
21
|
+
from ...models import AuraFlowTransformer2DModel, AutoencoderKL
|
22
|
+
from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
|
23
|
+
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
24
|
+
from ...utils import logging, replace_example_docstring
|
25
|
+
from ...utils.torch_utils import randn_tensor
|
26
|
+
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
27
|
+
|
28
|
+
|
29
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30
|
+
|
31
|
+
|
32
|
+
EXAMPLE_DOC_STRING = """
|
33
|
+
Examples:
|
34
|
+
```py
|
35
|
+
>>> import torch
|
36
|
+
>>> from diffusers import AuraFlowPipeline
|
37
|
+
|
38
|
+
>>> pipe = AuraFlowPipeline.from_pretrained("fal/AuraFlow", torch_dtype=torch.float16)
|
39
|
+
>>> pipe = pipe.to("cuda")
|
40
|
+
>>> prompt = "A cat holding a sign that says hello world"
|
41
|
+
>>> image = pipe(prompt).images[0]
|
42
|
+
>>> image.save("aura_flow.png")
|
43
|
+
```
|
44
|
+
"""
|
45
|
+
|
46
|
+
|
47
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
48
|
+
def retrieve_timesteps(
|
49
|
+
scheduler,
|
50
|
+
num_inference_steps: Optional[int] = None,
|
51
|
+
device: Optional[Union[str, torch.device]] = None,
|
52
|
+
timesteps: Optional[List[int]] = None,
|
53
|
+
sigmas: Optional[List[float]] = None,
|
54
|
+
**kwargs,
|
55
|
+
):
|
56
|
+
"""
|
57
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
58
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
59
|
+
|
60
|
+
Args:
|
61
|
+
scheduler (`SchedulerMixin`):
|
62
|
+
The scheduler to get timesteps from.
|
63
|
+
num_inference_steps (`int`):
|
64
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
65
|
+
must be `None`.
|
66
|
+
device (`str` or `torch.device`, *optional*):
|
67
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
68
|
+
timesteps (`List[int]`, *optional*):
|
69
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
70
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
71
|
+
sigmas (`List[float]`, *optional*):
|
72
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
73
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
74
|
+
|
75
|
+
Returns:
|
76
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
77
|
+
second element is the number of inference steps.
|
78
|
+
"""
|
79
|
+
if timesteps is not None and sigmas is not None:
|
80
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
81
|
+
if timesteps is not None:
|
82
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
83
|
+
if not accepts_timesteps:
|
84
|
+
raise ValueError(
|
85
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
86
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
87
|
+
)
|
88
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
89
|
+
timesteps = scheduler.timesteps
|
90
|
+
num_inference_steps = len(timesteps)
|
91
|
+
elif sigmas is not None:
|
92
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
93
|
+
if not accept_sigmas:
|
94
|
+
raise ValueError(
|
95
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
96
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
97
|
+
)
|
98
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
99
|
+
timesteps = scheduler.timesteps
|
100
|
+
num_inference_steps = len(timesteps)
|
101
|
+
else:
|
102
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
103
|
+
timesteps = scheduler.timesteps
|
104
|
+
return timesteps, num_inference_steps
|
105
|
+
|
106
|
+
|
107
|
+
class AuraFlowPipeline(DiffusionPipeline):
|
108
|
+
r"""
|
109
|
+
Args:
|
110
|
+
tokenizer (`T5TokenizerFast`):
|
111
|
+
Tokenizer of class
|
112
|
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
113
|
+
text_encoder ([`T5EncoderModel`]):
|
114
|
+
Frozen text-encoder. AuraFlow uses
|
115
|
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
116
|
+
[EleutherAI/pile-t5-xl](https://huggingface.co/EleutherAI/pile-t5-xl) variant.
|
117
|
+
vae ([`AutoencoderKL`]):
|
118
|
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
119
|
+
transformer ([`AuraFlowTransformer2DModel`]):
|
120
|
+
Conditional Transformer (MMDiT and DiT) architecture to denoise the encoded image latents.
|
121
|
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
122
|
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
123
|
+
"""
|
124
|
+
|
125
|
+
_optional_components = []
|
126
|
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
127
|
+
|
128
|
+
def __init__(
|
129
|
+
self,
|
130
|
+
tokenizer: T5Tokenizer,
|
131
|
+
text_encoder: UMT5EncoderModel,
|
132
|
+
vae: AutoencoderKL,
|
133
|
+
transformer: AuraFlowTransformer2DModel,
|
134
|
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
135
|
+
):
|
136
|
+
super().__init__()
|
137
|
+
|
138
|
+
self.register_modules(
|
139
|
+
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
140
|
+
)
|
141
|
+
|
142
|
+
self.vae_scale_factor = (
|
143
|
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
144
|
+
)
|
145
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
146
|
+
|
147
|
+
def check_inputs(
|
148
|
+
self,
|
149
|
+
prompt,
|
150
|
+
height,
|
151
|
+
width,
|
152
|
+
negative_prompt,
|
153
|
+
prompt_embeds=None,
|
154
|
+
negative_prompt_embeds=None,
|
155
|
+
prompt_attention_mask=None,
|
156
|
+
negative_prompt_attention_mask=None,
|
157
|
+
):
|
158
|
+
if height % 8 != 0 or width % 8 != 0:
|
159
|
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
160
|
+
|
161
|
+
if prompt is not None and prompt_embeds is not None:
|
162
|
+
raise ValueError(
|
163
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
164
|
+
" only forward one of the two."
|
165
|
+
)
|
166
|
+
elif prompt is None and prompt_embeds is None:
|
167
|
+
raise ValueError(
|
168
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
169
|
+
)
|
170
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
171
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
172
|
+
|
173
|
+
if prompt is not None and negative_prompt_embeds is not None:
|
174
|
+
raise ValueError(
|
175
|
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
176
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
177
|
+
)
|
178
|
+
|
179
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
180
|
+
raise ValueError(
|
181
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
182
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
183
|
+
)
|
184
|
+
|
185
|
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
186
|
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
187
|
+
|
188
|
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
189
|
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
190
|
+
|
191
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
192
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
193
|
+
raise ValueError(
|
194
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
195
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
196
|
+
f" {negative_prompt_embeds.shape}."
|
197
|
+
)
|
198
|
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
199
|
+
raise ValueError(
|
200
|
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
201
|
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
202
|
+
f" {negative_prompt_attention_mask.shape}."
|
203
|
+
)
|
204
|
+
|
205
|
+
def encode_prompt(
|
206
|
+
self,
|
207
|
+
prompt: Union[str, List[str]],
|
208
|
+
negative_prompt: Union[str, List[str]] = None,
|
209
|
+
do_classifier_free_guidance: bool = True,
|
210
|
+
num_images_per_prompt: int = 1,
|
211
|
+
device: Optional[torch.device] = None,
|
212
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
213
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
214
|
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
215
|
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
216
|
+
max_sequence_length: int = 256,
|
217
|
+
):
|
218
|
+
r"""
|
219
|
+
Encodes the prompt into text encoder hidden states.
|
220
|
+
|
221
|
+
Args:
|
222
|
+
prompt (`str` or `List[str]`, *optional*):
|
223
|
+
prompt to be encoded
|
224
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
225
|
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
226
|
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
227
|
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
228
|
+
whether to use classifier free guidance or not
|
229
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
230
|
+
number of images that should be generated per prompt
|
231
|
+
device: (`torch.device`, *optional*):
|
232
|
+
torch device to place the resulting embeddings on
|
233
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
234
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
235
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
236
|
+
prompt_attention_mask (`torch.Tensor`, *optional*):
|
237
|
+
Pre-generated attention mask for text embeddings.
|
238
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
239
|
+
Pre-generated negative text embeddings.
|
240
|
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
241
|
+
Pre-generated attention mask for negative text embeddings.
|
242
|
+
max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
|
243
|
+
"""
|
244
|
+
if device is None:
|
245
|
+
device = self._execution_device
|
246
|
+
|
247
|
+
if prompt is not None and isinstance(prompt, str):
|
248
|
+
batch_size = 1
|
249
|
+
elif prompt is not None and isinstance(prompt, list):
|
250
|
+
batch_size = len(prompt)
|
251
|
+
else:
|
252
|
+
batch_size = prompt_embeds.shape[0]
|
253
|
+
|
254
|
+
max_length = max_sequence_length
|
255
|
+
if prompt_embeds is None:
|
256
|
+
text_inputs = self.tokenizer(
|
257
|
+
prompt,
|
258
|
+
truncation=True,
|
259
|
+
max_length=max_length,
|
260
|
+
padding="max_length",
|
261
|
+
return_tensors="pt",
|
262
|
+
)
|
263
|
+
text_input_ids = text_inputs["input_ids"]
|
264
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
265
|
+
|
266
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
267
|
+
text_input_ids, untruncated_ids
|
268
|
+
):
|
269
|
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
270
|
+
logger.warning(
|
271
|
+
"The following part of your input was truncated because T5 can only handle sequences up to"
|
272
|
+
f" {max_length} tokens: {removed_text}"
|
273
|
+
)
|
274
|
+
|
275
|
+
text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
|
276
|
+
prompt_embeds = self.text_encoder(**text_inputs)[0]
|
277
|
+
prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
|
278
|
+
prompt_embeds = prompt_embeds * prompt_attention_mask
|
279
|
+
|
280
|
+
if self.text_encoder is not None:
|
281
|
+
dtype = self.text_encoder.dtype
|
282
|
+
elif self.transformer is not None:
|
283
|
+
dtype = self.transformer.dtype
|
284
|
+
else:
|
285
|
+
dtype = None
|
286
|
+
|
287
|
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
288
|
+
|
289
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
290
|
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
291
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
292
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
293
|
+
prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1)
|
294
|
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
295
|
+
|
296
|
+
# get unconditional embeddings for classifier free guidance
|
297
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
298
|
+
negative_prompt = negative_prompt or ""
|
299
|
+
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
300
|
+
max_length = prompt_embeds.shape[1]
|
301
|
+
uncond_input = self.tokenizer(
|
302
|
+
uncond_tokens,
|
303
|
+
truncation=True,
|
304
|
+
max_length=max_length,
|
305
|
+
padding="max_length",
|
306
|
+
return_tensors="pt",
|
307
|
+
)
|
308
|
+
uncond_input = {k: v.to(device) for k, v in uncond_input.items()}
|
309
|
+
negative_prompt_embeds = self.text_encoder(**uncond_input)[0]
|
310
|
+
negative_prompt_attention_mask = (
|
311
|
+
uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape)
|
312
|
+
)
|
313
|
+
negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask
|
314
|
+
|
315
|
+
if do_classifier_free_guidance:
|
316
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
317
|
+
seq_len = negative_prompt_embeds.shape[1]
|
318
|
+
|
319
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
320
|
+
|
321
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
322
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
323
|
+
|
324
|
+
negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1)
|
325
|
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
326
|
+
else:
|
327
|
+
negative_prompt_embeds = None
|
328
|
+
negative_prompt_attention_mask = None
|
329
|
+
|
330
|
+
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
331
|
+
|
332
|
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
|
333
|
+
def prepare_latents(
|
334
|
+
self,
|
335
|
+
batch_size,
|
336
|
+
num_channels_latents,
|
337
|
+
height,
|
338
|
+
width,
|
339
|
+
dtype,
|
340
|
+
device,
|
341
|
+
generator,
|
342
|
+
latents=None,
|
343
|
+
):
|
344
|
+
if latents is not None:
|
345
|
+
return latents.to(device=device, dtype=dtype)
|
346
|
+
|
347
|
+
shape = (
|
348
|
+
batch_size,
|
349
|
+
num_channels_latents,
|
350
|
+
int(height) // self.vae_scale_factor,
|
351
|
+
int(width) // self.vae_scale_factor,
|
352
|
+
)
|
353
|
+
|
354
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
355
|
+
raise ValueError(
|
356
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
357
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
358
|
+
)
|
359
|
+
|
360
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
361
|
+
|
362
|
+
return latents
|
363
|
+
|
364
|
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
|
365
|
+
def upcast_vae(self):
|
366
|
+
dtype = self.vae.dtype
|
367
|
+
self.vae.to(dtype=torch.float32)
|
368
|
+
use_torch_2_0_or_xformers = isinstance(
|
369
|
+
self.vae.decoder.mid_block.attentions[0].processor,
|
370
|
+
(
|
371
|
+
AttnProcessor2_0,
|
372
|
+
XFormersAttnProcessor,
|
373
|
+
FusedAttnProcessor2_0,
|
374
|
+
),
|
375
|
+
)
|
376
|
+
# if xformers or torch_2_0 is used attention block does not need
|
377
|
+
# to be in float32 which can save lots of memory
|
378
|
+
if use_torch_2_0_or_xformers:
|
379
|
+
self.vae.post_quant_conv.to(dtype)
|
380
|
+
self.vae.decoder.conv_in.to(dtype)
|
381
|
+
self.vae.decoder.mid_block.to(dtype)
|
382
|
+
|
383
|
+
@torch.no_grad()
|
384
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
385
|
+
def __call__(
|
386
|
+
self,
|
387
|
+
prompt: Union[str, List[str]] = None,
|
388
|
+
negative_prompt: Union[str, List[str]] = None,
|
389
|
+
num_inference_steps: int = 50,
|
390
|
+
timesteps: List[int] = None,
|
391
|
+
sigmas: List[float] = None,
|
392
|
+
guidance_scale: float = 3.5,
|
393
|
+
num_images_per_prompt: Optional[int] = 1,
|
394
|
+
height: Optional[int] = 1024,
|
395
|
+
width: Optional[int] = 1024,
|
396
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
397
|
+
latents: Optional[torch.Tensor] = None,
|
398
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
399
|
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
400
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
401
|
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
402
|
+
max_sequence_length: int = 256,
|
403
|
+
output_type: Optional[str] = "pil",
|
404
|
+
return_dict: bool = True,
|
405
|
+
) -> Union[ImagePipelineOutput, Tuple]:
|
406
|
+
r"""
|
407
|
+
Function invoked when calling the pipeline for generation.
|
408
|
+
|
409
|
+
Args:
|
410
|
+
prompt (`str` or `List[str]`, *optional*):
|
411
|
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
412
|
+
instead.
|
413
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
414
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
415
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
416
|
+
less than `1`).
|
417
|
+
height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
|
418
|
+
The height in pixels of the generated image. This is set to 1024 by default for best results.
|
419
|
+
width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
|
420
|
+
The width in pixels of the generated image. This is set to 1024 by default for best results.
|
421
|
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
422
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
423
|
+
expense of slower inference.
|
424
|
+
sigmas (`List[float]`, *optional*):
|
425
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
426
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
427
|
+
timesteps (`List[int]`, *optional*):
|
428
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
429
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
430
|
+
passed will be used. Must be in descending order.
|
431
|
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
432
|
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
433
|
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
434
|
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
435
|
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
436
|
+
usually at the expense of lower image quality.
|
437
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
438
|
+
The number of images to generate per prompt.
|
439
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
440
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
441
|
+
to make generation deterministic.
|
442
|
+
latents (`torch.FloatTensor`, *optional*):
|
443
|
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
444
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
445
|
+
tensor will ge generated by sampling using the supplied random `generator`.
|
446
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
447
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
448
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
449
|
+
prompt_attention_mask (`torch.Tensor`, *optional*):
|
450
|
+
Pre-generated attention mask for text embeddings.
|
451
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
452
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
453
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
454
|
+
argument.
|
455
|
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
456
|
+
Pre-generated attention mask for negative text embeddings.
|
457
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
458
|
+
The output format of the generate image. Choose between
|
459
|
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
460
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
461
|
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
462
|
+
of a plain tuple.
|
463
|
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
464
|
+
|
465
|
+
Examples:
|
466
|
+
|
467
|
+
Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`:
|
468
|
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned
|
469
|
+
where the first element is a list with the generated images.
|
470
|
+
"""
|
471
|
+
# 1. Check inputs. Raise error if not correct
|
472
|
+
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
473
|
+
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
474
|
+
|
475
|
+
self.check_inputs(
|
476
|
+
prompt,
|
477
|
+
height,
|
478
|
+
width,
|
479
|
+
negative_prompt,
|
480
|
+
prompt_embeds,
|
481
|
+
negative_prompt_embeds,
|
482
|
+
prompt_attention_mask,
|
483
|
+
negative_prompt_attention_mask,
|
484
|
+
)
|
485
|
+
|
486
|
+
# 2. Determine batch size.
|
487
|
+
if prompt is not None and isinstance(prompt, str):
|
488
|
+
batch_size = 1
|
489
|
+
elif prompt is not None and isinstance(prompt, list):
|
490
|
+
batch_size = len(prompt)
|
491
|
+
else:
|
492
|
+
batch_size = prompt_embeds.shape[0]
|
493
|
+
|
494
|
+
device = self._execution_device
|
495
|
+
|
496
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
497
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
498
|
+
# corresponds to doing no classifier free guidance.
|
499
|
+
do_classifier_free_guidance = guidance_scale > 1.0
|
500
|
+
|
501
|
+
# 3. Encode input prompt
|
502
|
+
(
|
503
|
+
prompt_embeds,
|
504
|
+
prompt_attention_mask,
|
505
|
+
negative_prompt_embeds,
|
506
|
+
negative_prompt_attention_mask,
|
507
|
+
) = self.encode_prompt(
|
508
|
+
prompt=prompt,
|
509
|
+
negative_prompt=negative_prompt,
|
510
|
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
511
|
+
num_images_per_prompt=num_images_per_prompt,
|
512
|
+
device=device,
|
513
|
+
prompt_embeds=prompt_embeds,
|
514
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
515
|
+
prompt_attention_mask=prompt_attention_mask,
|
516
|
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
517
|
+
max_sequence_length=max_sequence_length,
|
518
|
+
)
|
519
|
+
if do_classifier_free_guidance:
|
520
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
521
|
+
|
522
|
+
# 4. Prepare timesteps
|
523
|
+
|
524
|
+
# sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
525
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
526
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
527
|
+
)
|
528
|
+
|
529
|
+
# 5. Prepare latents.
|
530
|
+
latent_channels = self.transformer.config.in_channels
|
531
|
+
latents = self.prepare_latents(
|
532
|
+
batch_size * num_images_per_prompt,
|
533
|
+
latent_channels,
|
534
|
+
height,
|
535
|
+
width,
|
536
|
+
prompt_embeds.dtype,
|
537
|
+
device,
|
538
|
+
generator,
|
539
|
+
latents,
|
540
|
+
)
|
541
|
+
|
542
|
+
# 6. Denoising loop
|
543
|
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
544
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
545
|
+
for i, t in enumerate(timesteps):
|
546
|
+
# expand the latents if we are doing classifier free guidance
|
547
|
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
548
|
+
|
549
|
+
# aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image
|
550
|
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
551
|
+
timestep = torch.tensor([t / 1000]).expand(latent_model_input.shape[0])
|
552
|
+
timestep = timestep.to(latents.device, dtype=latents.dtype)
|
553
|
+
|
554
|
+
# predict noise model_output
|
555
|
+
noise_pred = self.transformer(
|
556
|
+
latent_model_input,
|
557
|
+
encoder_hidden_states=prompt_embeds,
|
558
|
+
timestep=timestep,
|
559
|
+
return_dict=False,
|
560
|
+
)[0]
|
561
|
+
|
562
|
+
# perform guidance
|
563
|
+
if do_classifier_free_guidance:
|
564
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
565
|
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
566
|
+
|
567
|
+
# compute the previous noisy sample x_t -> x_t-1
|
568
|
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
569
|
+
|
570
|
+
# call the callback, if provided
|
571
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
572
|
+
progress_bar.update()
|
573
|
+
|
574
|
+
if output_type == "latent":
|
575
|
+
image = latents
|
576
|
+
else:
|
577
|
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
578
|
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
579
|
+
if needs_upcasting:
|
580
|
+
self.upcast_vae()
|
581
|
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
582
|
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
583
|
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
584
|
+
|
585
|
+
# Offload all models
|
586
|
+
self.maybe_free_model_hooks()
|
587
|
+
|
588
|
+
if not return_dict:
|
589
|
+
return (image,)
|
590
|
+
|
591
|
+
return ImagePipelineOutput(images=image)
|