diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,591 @@
1
+ # Copyright 2024 AuraFlow Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from transformers import T5Tokenizer, UMT5EncoderModel
19
+
20
+ from ...image_processor import VaeImageProcessor
21
+ from ...models import AuraFlowTransformer2DModel, AutoencoderKL
22
+ from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
23
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
24
+ from ...utils import logging, replace_example_docstring
25
+ from ...utils.torch_utils import randn_tensor
26
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
27
+
28
+
29
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
+
31
+
32
+ EXAMPLE_DOC_STRING = """
33
+ Examples:
34
+ ```py
35
+ >>> import torch
36
+ >>> from diffusers import AuraFlowPipeline
37
+
38
+ >>> pipe = AuraFlowPipeline.from_pretrained("fal/AuraFlow", torch_dtype=torch.float16)
39
+ >>> pipe = pipe.to("cuda")
40
+ >>> prompt = "A cat holding a sign that says hello world"
41
+ >>> image = pipe(prompt).images[0]
42
+ >>> image.save("aura_flow.png")
43
+ ```
44
+ """
45
+
46
+
47
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
48
+ def retrieve_timesteps(
49
+ scheduler,
50
+ num_inference_steps: Optional[int] = None,
51
+ device: Optional[Union[str, torch.device]] = None,
52
+ timesteps: Optional[List[int]] = None,
53
+ sigmas: Optional[List[float]] = None,
54
+ **kwargs,
55
+ ):
56
+ """
57
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
58
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
59
+
60
+ Args:
61
+ scheduler (`SchedulerMixin`):
62
+ The scheduler to get timesteps from.
63
+ num_inference_steps (`int`):
64
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
65
+ must be `None`.
66
+ device (`str` or `torch.device`, *optional*):
67
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
68
+ timesteps (`List[int]`, *optional*):
69
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
70
+ `num_inference_steps` and `sigmas` must be `None`.
71
+ sigmas (`List[float]`, *optional*):
72
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
73
+ `num_inference_steps` and `timesteps` must be `None`.
74
+
75
+ Returns:
76
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
77
+ second element is the number of inference steps.
78
+ """
79
+ if timesteps is not None and sigmas is not None:
80
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
81
+ if timesteps is not None:
82
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
83
+ if not accepts_timesteps:
84
+ raise ValueError(
85
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
86
+ f" timestep schedules. Please check whether you are using the correct scheduler."
87
+ )
88
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
89
+ timesteps = scheduler.timesteps
90
+ num_inference_steps = len(timesteps)
91
+ elif sigmas is not None:
92
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
93
+ if not accept_sigmas:
94
+ raise ValueError(
95
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
96
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
97
+ )
98
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
99
+ timesteps = scheduler.timesteps
100
+ num_inference_steps = len(timesteps)
101
+ else:
102
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
103
+ timesteps = scheduler.timesteps
104
+ return timesteps, num_inference_steps
105
+
106
+
107
+ class AuraFlowPipeline(DiffusionPipeline):
108
+ r"""
109
+ Args:
110
+ tokenizer (`T5TokenizerFast`):
111
+ Tokenizer of class
112
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
113
+ text_encoder ([`T5EncoderModel`]):
114
+ Frozen text-encoder. AuraFlow uses
115
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
116
+ [EleutherAI/pile-t5-xl](https://huggingface.co/EleutherAI/pile-t5-xl) variant.
117
+ vae ([`AutoencoderKL`]):
118
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
119
+ transformer ([`AuraFlowTransformer2DModel`]):
120
+ Conditional Transformer (MMDiT and DiT) architecture to denoise the encoded image latents.
121
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
122
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
123
+ """
124
+
125
+ _optional_components = []
126
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
127
+
128
+ def __init__(
129
+ self,
130
+ tokenizer: T5Tokenizer,
131
+ text_encoder: UMT5EncoderModel,
132
+ vae: AutoencoderKL,
133
+ transformer: AuraFlowTransformer2DModel,
134
+ scheduler: FlowMatchEulerDiscreteScheduler,
135
+ ):
136
+ super().__init__()
137
+
138
+ self.register_modules(
139
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
140
+ )
141
+
142
+ self.vae_scale_factor = (
143
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
144
+ )
145
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
146
+
147
+ def check_inputs(
148
+ self,
149
+ prompt,
150
+ height,
151
+ width,
152
+ negative_prompt,
153
+ prompt_embeds=None,
154
+ negative_prompt_embeds=None,
155
+ prompt_attention_mask=None,
156
+ negative_prompt_attention_mask=None,
157
+ ):
158
+ if height % 8 != 0 or width % 8 != 0:
159
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
160
+
161
+ if prompt is not None and prompt_embeds is not None:
162
+ raise ValueError(
163
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
164
+ " only forward one of the two."
165
+ )
166
+ elif prompt is None and prompt_embeds is None:
167
+ raise ValueError(
168
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
169
+ )
170
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
171
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
172
+
173
+ if prompt is not None and negative_prompt_embeds is not None:
174
+ raise ValueError(
175
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
176
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
177
+ )
178
+
179
+ if negative_prompt is not None and negative_prompt_embeds is not None:
180
+ raise ValueError(
181
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
182
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
183
+ )
184
+
185
+ if prompt_embeds is not None and prompt_attention_mask is None:
186
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
187
+
188
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
189
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
190
+
191
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
192
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
193
+ raise ValueError(
194
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
195
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
196
+ f" {negative_prompt_embeds.shape}."
197
+ )
198
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
199
+ raise ValueError(
200
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
201
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
202
+ f" {negative_prompt_attention_mask.shape}."
203
+ )
204
+
205
+ def encode_prompt(
206
+ self,
207
+ prompt: Union[str, List[str]],
208
+ negative_prompt: Union[str, List[str]] = None,
209
+ do_classifier_free_guidance: bool = True,
210
+ num_images_per_prompt: int = 1,
211
+ device: Optional[torch.device] = None,
212
+ prompt_embeds: Optional[torch.Tensor] = None,
213
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
214
+ prompt_attention_mask: Optional[torch.Tensor] = None,
215
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
216
+ max_sequence_length: int = 256,
217
+ ):
218
+ r"""
219
+ Encodes the prompt into text encoder hidden states.
220
+
221
+ Args:
222
+ prompt (`str` or `List[str]`, *optional*):
223
+ prompt to be encoded
224
+ negative_prompt (`str` or `List[str]`, *optional*):
225
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
226
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
227
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
228
+ whether to use classifier free guidance or not
229
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
230
+ number of images that should be generated per prompt
231
+ device: (`torch.device`, *optional*):
232
+ torch device to place the resulting embeddings on
233
+ prompt_embeds (`torch.Tensor`, *optional*):
234
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
235
+ provided, text embeddings will be generated from `prompt` input argument.
236
+ prompt_attention_mask (`torch.Tensor`, *optional*):
237
+ Pre-generated attention mask for text embeddings.
238
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
239
+ Pre-generated negative text embeddings.
240
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
241
+ Pre-generated attention mask for negative text embeddings.
242
+ max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
243
+ """
244
+ if device is None:
245
+ device = self._execution_device
246
+
247
+ if prompt is not None and isinstance(prompt, str):
248
+ batch_size = 1
249
+ elif prompt is not None and isinstance(prompt, list):
250
+ batch_size = len(prompt)
251
+ else:
252
+ batch_size = prompt_embeds.shape[0]
253
+
254
+ max_length = max_sequence_length
255
+ if prompt_embeds is None:
256
+ text_inputs = self.tokenizer(
257
+ prompt,
258
+ truncation=True,
259
+ max_length=max_length,
260
+ padding="max_length",
261
+ return_tensors="pt",
262
+ )
263
+ text_input_ids = text_inputs["input_ids"]
264
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
265
+
266
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
267
+ text_input_ids, untruncated_ids
268
+ ):
269
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
270
+ logger.warning(
271
+ "The following part of your input was truncated because T5 can only handle sequences up to"
272
+ f" {max_length} tokens: {removed_text}"
273
+ )
274
+
275
+ text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
276
+ prompt_embeds = self.text_encoder(**text_inputs)[0]
277
+ prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
278
+ prompt_embeds = prompt_embeds * prompt_attention_mask
279
+
280
+ if self.text_encoder is not None:
281
+ dtype = self.text_encoder.dtype
282
+ elif self.transformer is not None:
283
+ dtype = self.transformer.dtype
284
+ else:
285
+ dtype = None
286
+
287
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
288
+
289
+ bs_embed, seq_len, _ = prompt_embeds.shape
290
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
291
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
292
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
293
+ prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1)
294
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
295
+
296
+ # get unconditional embeddings for classifier free guidance
297
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
298
+ negative_prompt = negative_prompt or ""
299
+ uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
300
+ max_length = prompt_embeds.shape[1]
301
+ uncond_input = self.tokenizer(
302
+ uncond_tokens,
303
+ truncation=True,
304
+ max_length=max_length,
305
+ padding="max_length",
306
+ return_tensors="pt",
307
+ )
308
+ uncond_input = {k: v.to(device) for k, v in uncond_input.items()}
309
+ negative_prompt_embeds = self.text_encoder(**uncond_input)[0]
310
+ negative_prompt_attention_mask = (
311
+ uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape)
312
+ )
313
+ negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask
314
+
315
+ if do_classifier_free_guidance:
316
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
317
+ seq_len = negative_prompt_embeds.shape[1]
318
+
319
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
320
+
321
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
322
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
323
+
324
+ negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1)
325
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
326
+ else:
327
+ negative_prompt_embeds = None
328
+ negative_prompt_attention_mask = None
329
+
330
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
331
+
332
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
333
+ def prepare_latents(
334
+ self,
335
+ batch_size,
336
+ num_channels_latents,
337
+ height,
338
+ width,
339
+ dtype,
340
+ device,
341
+ generator,
342
+ latents=None,
343
+ ):
344
+ if latents is not None:
345
+ return latents.to(device=device, dtype=dtype)
346
+
347
+ shape = (
348
+ batch_size,
349
+ num_channels_latents,
350
+ int(height) // self.vae_scale_factor,
351
+ int(width) // self.vae_scale_factor,
352
+ )
353
+
354
+ if isinstance(generator, list) and len(generator) != batch_size:
355
+ raise ValueError(
356
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
357
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
358
+ )
359
+
360
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
361
+
362
+ return latents
363
+
364
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
365
+ def upcast_vae(self):
366
+ dtype = self.vae.dtype
367
+ self.vae.to(dtype=torch.float32)
368
+ use_torch_2_0_or_xformers = isinstance(
369
+ self.vae.decoder.mid_block.attentions[0].processor,
370
+ (
371
+ AttnProcessor2_0,
372
+ XFormersAttnProcessor,
373
+ FusedAttnProcessor2_0,
374
+ ),
375
+ )
376
+ # if xformers or torch_2_0 is used attention block does not need
377
+ # to be in float32 which can save lots of memory
378
+ if use_torch_2_0_or_xformers:
379
+ self.vae.post_quant_conv.to(dtype)
380
+ self.vae.decoder.conv_in.to(dtype)
381
+ self.vae.decoder.mid_block.to(dtype)
382
+
383
+ @torch.no_grad()
384
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
385
+ def __call__(
386
+ self,
387
+ prompt: Union[str, List[str]] = None,
388
+ negative_prompt: Union[str, List[str]] = None,
389
+ num_inference_steps: int = 50,
390
+ timesteps: List[int] = None,
391
+ sigmas: List[float] = None,
392
+ guidance_scale: float = 3.5,
393
+ num_images_per_prompt: Optional[int] = 1,
394
+ height: Optional[int] = 1024,
395
+ width: Optional[int] = 1024,
396
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
397
+ latents: Optional[torch.Tensor] = None,
398
+ prompt_embeds: Optional[torch.Tensor] = None,
399
+ prompt_attention_mask: Optional[torch.Tensor] = None,
400
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
401
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
402
+ max_sequence_length: int = 256,
403
+ output_type: Optional[str] = "pil",
404
+ return_dict: bool = True,
405
+ ) -> Union[ImagePipelineOutput, Tuple]:
406
+ r"""
407
+ Function invoked when calling the pipeline for generation.
408
+
409
+ Args:
410
+ prompt (`str` or `List[str]`, *optional*):
411
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
412
+ instead.
413
+ negative_prompt (`str` or `List[str]`, *optional*):
414
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
415
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
416
+ less than `1`).
417
+ height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
418
+ The height in pixels of the generated image. This is set to 1024 by default for best results.
419
+ width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
420
+ The width in pixels of the generated image. This is set to 1024 by default for best results.
421
+ num_inference_steps (`int`, *optional*, defaults to 50):
422
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
423
+ expense of slower inference.
424
+ sigmas (`List[float]`, *optional*):
425
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
426
+ `num_inference_steps` and `timesteps` must be `None`.
427
+ timesteps (`List[int]`, *optional*):
428
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
429
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
430
+ passed will be used. Must be in descending order.
431
+ guidance_scale (`float`, *optional*, defaults to 5.0):
432
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
433
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
434
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
435
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
436
+ usually at the expense of lower image quality.
437
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
438
+ The number of images to generate per prompt.
439
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
440
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
441
+ to make generation deterministic.
442
+ latents (`torch.FloatTensor`, *optional*):
443
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
444
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
445
+ tensor will ge generated by sampling using the supplied random `generator`.
446
+ prompt_embeds (`torch.FloatTensor`, *optional*):
447
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
448
+ provided, text embeddings will be generated from `prompt` input argument.
449
+ prompt_attention_mask (`torch.Tensor`, *optional*):
450
+ Pre-generated attention mask for text embeddings.
451
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
452
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
453
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
454
+ argument.
455
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
456
+ Pre-generated attention mask for negative text embeddings.
457
+ output_type (`str`, *optional*, defaults to `"pil"`):
458
+ The output format of the generate image. Choose between
459
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
460
+ return_dict (`bool`, *optional*, defaults to `True`):
461
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
462
+ of a plain tuple.
463
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
464
+
465
+ Examples:
466
+
467
+ Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`:
468
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned
469
+ where the first element is a list with the generated images.
470
+ """
471
+ # 1. Check inputs. Raise error if not correct
472
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor
473
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor
474
+
475
+ self.check_inputs(
476
+ prompt,
477
+ height,
478
+ width,
479
+ negative_prompt,
480
+ prompt_embeds,
481
+ negative_prompt_embeds,
482
+ prompt_attention_mask,
483
+ negative_prompt_attention_mask,
484
+ )
485
+
486
+ # 2. Determine batch size.
487
+ if prompt is not None and isinstance(prompt, str):
488
+ batch_size = 1
489
+ elif prompt is not None and isinstance(prompt, list):
490
+ batch_size = len(prompt)
491
+ else:
492
+ batch_size = prompt_embeds.shape[0]
493
+
494
+ device = self._execution_device
495
+
496
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
497
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
498
+ # corresponds to doing no classifier free guidance.
499
+ do_classifier_free_guidance = guidance_scale > 1.0
500
+
501
+ # 3. Encode input prompt
502
+ (
503
+ prompt_embeds,
504
+ prompt_attention_mask,
505
+ negative_prompt_embeds,
506
+ negative_prompt_attention_mask,
507
+ ) = self.encode_prompt(
508
+ prompt=prompt,
509
+ negative_prompt=negative_prompt,
510
+ do_classifier_free_guidance=do_classifier_free_guidance,
511
+ num_images_per_prompt=num_images_per_prompt,
512
+ device=device,
513
+ prompt_embeds=prompt_embeds,
514
+ negative_prompt_embeds=negative_prompt_embeds,
515
+ prompt_attention_mask=prompt_attention_mask,
516
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
517
+ max_sequence_length=max_sequence_length,
518
+ )
519
+ if do_classifier_free_guidance:
520
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
521
+
522
+ # 4. Prepare timesteps
523
+
524
+ # sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
525
+ timesteps, num_inference_steps = retrieve_timesteps(
526
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
527
+ )
528
+
529
+ # 5. Prepare latents.
530
+ latent_channels = self.transformer.config.in_channels
531
+ latents = self.prepare_latents(
532
+ batch_size * num_images_per_prompt,
533
+ latent_channels,
534
+ height,
535
+ width,
536
+ prompt_embeds.dtype,
537
+ device,
538
+ generator,
539
+ latents,
540
+ )
541
+
542
+ # 6. Denoising loop
543
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
544
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
545
+ for i, t in enumerate(timesteps):
546
+ # expand the latents if we are doing classifier free guidance
547
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
548
+
549
+ # aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image
550
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
551
+ timestep = torch.tensor([t / 1000]).expand(latent_model_input.shape[0])
552
+ timestep = timestep.to(latents.device, dtype=latents.dtype)
553
+
554
+ # predict noise model_output
555
+ noise_pred = self.transformer(
556
+ latent_model_input,
557
+ encoder_hidden_states=prompt_embeds,
558
+ timestep=timestep,
559
+ return_dict=False,
560
+ )[0]
561
+
562
+ # perform guidance
563
+ if do_classifier_free_guidance:
564
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
565
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
566
+
567
+ # compute the previous noisy sample x_t -> x_t-1
568
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
569
+
570
+ # call the callback, if provided
571
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
572
+ progress_bar.update()
573
+
574
+ if output_type == "latent":
575
+ image = latents
576
+ else:
577
+ # make sure the VAE is in float32 mode, as it overflows in float16
578
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
579
+ if needs_upcasting:
580
+ self.upcast_vae()
581
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
582
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
583
+ image = self.image_processor.postprocess(image, output_type=output_type)
584
+
585
+ # Offload all models
586
+ self.maybe_free_model_hooks()
587
+
588
+ if not return_dict:
589
+ return (image,)
590
+
591
+ return ImagePipelineOutput(images=image)