diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +94 -3
- diffusers/commands/env.py +1 -5
- diffusers/configuration_utils.py +4 -9
- diffusers/dependency_versions_table.py +2 -2
- diffusers/image_processor.py +1 -2
- diffusers/loaders/__init__.py +17 -2
- diffusers/loaders/ip_adapter.py +10 -7
- diffusers/loaders/lora_base.py +752 -0
- diffusers/loaders/lora_pipeline.py +2252 -0
- diffusers/loaders/peft.py +213 -5
- diffusers/loaders/single_file.py +3 -14
- diffusers/loaders/single_file_model.py +31 -10
- diffusers/loaders/single_file_utils.py +293 -8
- diffusers/loaders/textual_inversion.py +1 -6
- diffusers/loaders/unet.py +23 -208
- diffusers/models/__init__.py +20 -0
- diffusers/models/activations.py +22 -0
- diffusers/models/attention.py +386 -7
- diffusers/models/attention_processor.py +1937 -629
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_kl.py +14 -3
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vq_model.py +4 -4
- diffusers/models/controlnet.py +2 -3
- diffusers/models/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnet_sd3.py +11 -11
- diffusers/models/controlnet_sparsectrl.py +789 -0
- diffusers/models/controlnet_xs.py +40 -10
- diffusers/models/downsampling.py +68 -0
- diffusers/models/embeddings.py +403 -36
- diffusers/models/model_loading_utils.py +1 -3
- diffusers/models/modeling_flax_utils.py +1 -6
- diffusers/models/modeling_utils.py +4 -16
- diffusers/models/normalization.py +203 -12
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
- diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +102 -1
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/transformer_flux.py +455 -0
- diffusers/models/transformers/transformer_sd3.py +18 -4
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +8 -1
- diffusers/models/unets/unet_3d_blocks.py +51 -920
- diffusers/models/unets/unet_3d_condition.py +4 -1
- diffusers/models/unets/unet_i2vgen_xl.py +4 -1
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +1330 -84
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +1 -3
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +64 -0
- diffusers/models/vq_model.py +8 -4
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +100 -3
- diffusers/pipelines/animatediff/__init__.py +4 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
- diffusers/pipelines/auto_pipeline.py +97 -19
- diffusers/pipelines/cogvideo/__init__.py +48 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
- diffusers/pipelines/flux/__init__.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +749 -0
- diffusers/pipelines/flux/pipeline_output.py +21 -0
- diffusers/pipelines/free_init_utils.py +2 -0
- diffusers/pipelines/free_noise_utils.py +236 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +334 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
- diffusers/pipelines/pag/__init__.py +67 -0
- diffusers/pipelines/pag/pag_utils.py +237 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
- diffusers/pipelines/pia/pipeline_pia.py +30 -37
- diffusers/pipelines/pipeline_flax_utils.py +4 -9
- diffusers/pipelines/pipeline_loading_utils.py +0 -3
- diffusers/pipelines/pipeline_utils.py +2 -14
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
- diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
- diffusers/schedulers/__init__.py +8 -0
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +1 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
- diffusers/schedulers/scheduling_ddpm.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +2 -2
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
- diffusers/schedulers/scheduling_ipndm.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
- diffusers/schedulers/scheduling_utils.py +1 -3
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/training_utils.py +99 -14
- diffusers/utils/__init__.py +2 -2
- diffusers/utils/dummy_pt_objects.py +210 -0
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
- diffusers/utils/dynamic_modules_utils.py +1 -11
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +45 -42
- diffusers/utils/import_utils.py +37 -15
- diffusers/utils/loading_utils.py +80 -3
- diffusers/utils/testing_utils.py +11 -8
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1728
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -75,7 +75,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
|
|
75
75
|
|
76
76
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
77
77
|
if hasattr(module, "get_processor"):
|
78
|
-
processors[f"{name}.processor"] = module.get_processor(
|
78
|
+
processors[f"{name}.processor"] = module.get_processor()
|
79
79
|
|
80
80
|
for sub_name, child in module.named_children():
|
81
81
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
@@ -20,7 +20,7 @@ import numpy as np
|
|
20
20
|
import torch
|
21
21
|
from transformers import CLIPTextModel, CLIPTokenizer
|
22
22
|
|
23
|
-
from ...loaders import
|
23
|
+
from ...loaders import StableDiffusionLoraLoaderMixin
|
24
24
|
from ...schedulers import DDPMWuerstchenScheduler
|
25
25
|
from ...utils import BaseOutput, deprecate, logging, replace_example_docstring
|
26
26
|
from ...utils.torch_utils import randn_tensor
|
@@ -62,7 +62,7 @@ class WuerstchenPriorPipelineOutput(BaseOutput):
|
|
62
62
|
image_embeddings: Union[torch.Tensor, np.ndarray]
|
63
63
|
|
64
64
|
|
65
|
-
class WuerstchenPriorPipeline(DiffusionPipeline,
|
65
|
+
class WuerstchenPriorPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin):
|
66
66
|
"""
|
67
67
|
Pipeline for generating image prior for Wuerstchen.
|
68
68
|
|
@@ -70,8 +70,8 @@ class WuerstchenPriorPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
70
70
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
71
71
|
|
72
72
|
The pipeline also inherits the following loading methods:
|
73
|
-
- [`~loaders.
|
74
|
-
- [`~loaders.
|
73
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
74
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
75
75
|
|
76
76
|
Args:
|
77
77
|
prior ([`Prior`]):
|
@@ -95,6 +95,7 @@ class WuerstchenPriorPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
95
95
|
text_encoder_name = "text_encoder"
|
96
96
|
model_cpu_offload_seq = "text_encoder->prior"
|
97
97
|
_callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"]
|
98
|
+
_lora_loadable_modules = ["prior", "text_encoder"]
|
98
99
|
|
99
100
|
def __init__(
|
100
101
|
self,
|
diffusers/schedulers/__init__.py
CHANGED
@@ -43,12 +43,14 @@ else:
|
|
43
43
|
_import_structure["scheduling_consistency_decoder"] = ["ConsistencyDecoderScheduler"]
|
44
44
|
_import_structure["scheduling_consistency_models"] = ["CMStochasticIterativeScheduler"]
|
45
45
|
_import_structure["scheduling_ddim"] = ["DDIMScheduler"]
|
46
|
+
_import_structure["scheduling_ddim_cogvideox"] = ["CogVideoXDDIMScheduler"]
|
46
47
|
_import_structure["scheduling_ddim_inverse"] = ["DDIMInverseScheduler"]
|
47
48
|
_import_structure["scheduling_ddim_parallel"] = ["DDIMParallelScheduler"]
|
48
49
|
_import_structure["scheduling_ddpm"] = ["DDPMScheduler"]
|
49
50
|
_import_structure["scheduling_ddpm_parallel"] = ["DDPMParallelScheduler"]
|
50
51
|
_import_structure["scheduling_ddpm_wuerstchen"] = ["DDPMWuerstchenScheduler"]
|
51
52
|
_import_structure["scheduling_deis_multistep"] = ["DEISMultistepScheduler"]
|
53
|
+
_import_structure["scheduling_dpm_cogvideox"] = ["CogVideoXDPMScheduler"]
|
52
54
|
_import_structure["scheduling_dpmsolver_multistep"] = ["DPMSolverMultistepScheduler"]
|
53
55
|
_import_structure["scheduling_dpmsolver_multistep_inverse"] = ["DPMSolverMultistepInverseScheduler"]
|
54
56
|
_import_structure["scheduling_dpmsolver_singlestep"] = ["DPMSolverSinglestepScheduler"]
|
@@ -57,6 +59,7 @@ else:
|
|
57
59
|
_import_structure["scheduling_euler_ancestral_discrete"] = ["EulerAncestralDiscreteScheduler"]
|
58
60
|
_import_structure["scheduling_euler_discrete"] = ["EulerDiscreteScheduler"]
|
59
61
|
_import_structure["scheduling_flow_match_euler_discrete"] = ["FlowMatchEulerDiscreteScheduler"]
|
62
|
+
_import_structure["scheduling_flow_match_heun_discrete"] = ["FlowMatchHeunDiscreteScheduler"]
|
60
63
|
_import_structure["scheduling_heun_discrete"] = ["HeunDiscreteScheduler"]
|
61
64
|
_import_structure["scheduling_ipndm"] = ["IPNDMScheduler"]
|
62
65
|
_import_structure["scheduling_k_dpm_2_ancestral_discrete"] = ["KDPM2AncestralDiscreteScheduler"]
|
@@ -117,6 +120,7 @@ except OptionalDependencyNotAvailable:
|
|
117
120
|
_dummy_modules.update(get_objects_from_module(dummy_torch_and_torchsde_objects))
|
118
121
|
|
119
122
|
else:
|
123
|
+
_import_structure["scheduling_cosine_dpmsolver_multistep"] = ["CosineDPMSolverMultistepScheduler"]
|
120
124
|
_import_structure["scheduling_dpmsolver_sde"] = ["DPMSolverSDEScheduler"]
|
121
125
|
|
122
126
|
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
@@ -139,12 +143,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
139
143
|
from .scheduling_consistency_decoder import ConsistencyDecoderScheduler
|
140
144
|
from .scheduling_consistency_models import CMStochasticIterativeScheduler
|
141
145
|
from .scheduling_ddim import DDIMScheduler
|
146
|
+
from .scheduling_ddim_cogvideox import CogVideoXDDIMScheduler
|
142
147
|
from .scheduling_ddim_inverse import DDIMInverseScheduler
|
143
148
|
from .scheduling_ddim_parallel import DDIMParallelScheduler
|
144
149
|
from .scheduling_ddpm import DDPMScheduler
|
145
150
|
from .scheduling_ddpm_parallel import DDPMParallelScheduler
|
146
151
|
from .scheduling_ddpm_wuerstchen import DDPMWuerstchenScheduler
|
147
152
|
from .scheduling_deis_multistep import DEISMultistepScheduler
|
153
|
+
from .scheduling_dpm_cogvideox import CogVideoXDPMScheduler
|
148
154
|
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
|
149
155
|
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
|
150
156
|
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
|
@@ -153,6 +159,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
153
159
|
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
|
154
160
|
from .scheduling_euler_discrete import EulerDiscreteScheduler
|
155
161
|
from .scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
162
|
+
from .scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler
|
156
163
|
from .scheduling_heun_discrete import HeunDiscreteScheduler
|
157
164
|
from .scheduling_ipndm import IPNDMScheduler
|
158
165
|
from .scheduling_k_dpm_2_ancestral_discrete import KDPM2AncestralDiscreteScheduler
|
@@ -203,6 +210,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
203
210
|
except OptionalDependencyNotAvailable:
|
204
211
|
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
|
205
212
|
else:
|
213
|
+
from .scheduling_cosine_dpmsolver_multistep import CosineDPMSolverMultistepScheduler
|
206
214
|
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
|
207
215
|
|
208
216
|
else:
|
@@ -0,0 +1,572 @@
|
|
1
|
+
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
|
16
|
+
|
17
|
+
import math
|
18
|
+
from typing import List, Optional, Tuple, Union
|
19
|
+
|
20
|
+
import numpy as np
|
21
|
+
import torch
|
22
|
+
|
23
|
+
from ..configuration_utils import ConfigMixin, register_to_config
|
24
|
+
from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler
|
25
|
+
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
26
|
+
|
27
|
+
|
28
|
+
class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
29
|
+
"""
|
30
|
+
Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021).
|
31
|
+
This scheduler was used in Stable Audio Open [1].
|
32
|
+
|
33
|
+
[1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358
|
34
|
+
|
35
|
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
36
|
+
methods the library implements for all schedulers such as loading and saving.
|
37
|
+
|
38
|
+
Args:
|
39
|
+
sigma_min (`float`, *optional*, defaults to 0.3):
|
40
|
+
Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
|
41
|
+
sigma_max (`float`, *optional*, defaults to 500):
|
42
|
+
Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
|
43
|
+
sigma_data (`float`, *optional*, defaults to 1.0):
|
44
|
+
The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
|
45
|
+
sigma_schedule (`str`, *optional*, defaults to `exponential`):
|
46
|
+
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
|
47
|
+
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
|
48
|
+
incorporated in this model: https://huggingface.co/stabilityai/cosxl.
|
49
|
+
num_train_timesteps (`int`, defaults to 1000):
|
50
|
+
The number of diffusion steps to train the model.
|
51
|
+
solver_order (`int`, defaults to 2):
|
52
|
+
The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
|
53
|
+
prediction_type (`str`, defaults to `v_prediction`, *optional*):
|
54
|
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
55
|
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
56
|
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
57
|
+
solver_type (`str`, defaults to `midpoint`):
|
58
|
+
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
59
|
+
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
60
|
+
lower_order_final (`bool`, defaults to `True`):
|
61
|
+
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
62
|
+
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
63
|
+
euler_at_final (`bool`, defaults to `False`):
|
64
|
+
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
|
65
|
+
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
|
66
|
+
steps, but sometimes may result in blurring.
|
67
|
+
final_sigmas_type (`str`, defaults to `"zero"`):
|
68
|
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
69
|
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
70
|
+
"""
|
71
|
+
|
72
|
+
_compatibles = []
|
73
|
+
order = 1
|
74
|
+
|
75
|
+
@register_to_config
|
76
|
+
def __init__(
|
77
|
+
self,
|
78
|
+
sigma_min: float = 0.3,
|
79
|
+
sigma_max: float = 500,
|
80
|
+
sigma_data: float = 1.0,
|
81
|
+
sigma_schedule: str = "exponential",
|
82
|
+
num_train_timesteps: int = 1000,
|
83
|
+
solver_order: int = 2,
|
84
|
+
prediction_type: str = "v_prediction",
|
85
|
+
rho: float = 7.0,
|
86
|
+
solver_type: str = "midpoint",
|
87
|
+
lower_order_final: bool = True,
|
88
|
+
euler_at_final: bool = False,
|
89
|
+
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
90
|
+
):
|
91
|
+
if solver_type not in ["midpoint", "heun"]:
|
92
|
+
if solver_type in ["logrho", "bh1", "bh2"]:
|
93
|
+
self.register_to_config(solver_type="midpoint")
|
94
|
+
else:
|
95
|
+
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
96
|
+
|
97
|
+
ramp = torch.linspace(0, 1, num_train_timesteps)
|
98
|
+
if sigma_schedule == "karras":
|
99
|
+
sigmas = self._compute_karras_sigmas(ramp)
|
100
|
+
elif sigma_schedule == "exponential":
|
101
|
+
sigmas = self._compute_exponential_sigmas(ramp)
|
102
|
+
|
103
|
+
self.timesteps = self.precondition_noise(sigmas)
|
104
|
+
|
105
|
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
106
|
+
|
107
|
+
# setable values
|
108
|
+
self.num_inference_steps = None
|
109
|
+
self.model_outputs = [None] * solver_order
|
110
|
+
self.lower_order_nums = 0
|
111
|
+
self._step_index = None
|
112
|
+
self._begin_index = None
|
113
|
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
114
|
+
|
115
|
+
@property
|
116
|
+
def init_noise_sigma(self):
|
117
|
+
# standard deviation of the initial noise distribution
|
118
|
+
return (self.config.sigma_max**2 + 1) ** 0.5
|
119
|
+
|
120
|
+
@property
|
121
|
+
def step_index(self):
|
122
|
+
"""
|
123
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
124
|
+
"""
|
125
|
+
return self._step_index
|
126
|
+
|
127
|
+
@property
|
128
|
+
def begin_index(self):
|
129
|
+
"""
|
130
|
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
131
|
+
"""
|
132
|
+
return self._begin_index
|
133
|
+
|
134
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
135
|
+
def set_begin_index(self, begin_index: int = 0):
|
136
|
+
"""
|
137
|
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
138
|
+
|
139
|
+
Args:
|
140
|
+
begin_index (`int`):
|
141
|
+
The begin index for the scheduler.
|
142
|
+
"""
|
143
|
+
self._begin_index = begin_index
|
144
|
+
|
145
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
|
146
|
+
def precondition_inputs(self, sample, sigma):
|
147
|
+
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
148
|
+
scaled_sample = sample * c_in
|
149
|
+
return scaled_sample
|
150
|
+
|
151
|
+
def precondition_noise(self, sigma):
|
152
|
+
if not isinstance(sigma, torch.Tensor):
|
153
|
+
sigma = torch.tensor([sigma])
|
154
|
+
|
155
|
+
return sigma.atan() / math.pi * 2
|
156
|
+
|
157
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
|
158
|
+
def precondition_outputs(self, sample, model_output, sigma):
|
159
|
+
sigma_data = self.config.sigma_data
|
160
|
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
161
|
+
|
162
|
+
if self.config.prediction_type == "epsilon":
|
163
|
+
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
164
|
+
elif self.config.prediction_type == "v_prediction":
|
165
|
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
166
|
+
else:
|
167
|
+
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
|
168
|
+
|
169
|
+
denoised = c_skip * sample + c_out * model_output
|
170
|
+
|
171
|
+
return denoised
|
172
|
+
|
173
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
|
174
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
175
|
+
"""
|
176
|
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
177
|
+
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
178
|
+
|
179
|
+
Args:
|
180
|
+
sample (`torch.Tensor`):
|
181
|
+
The input sample.
|
182
|
+
timestep (`int`, *optional*):
|
183
|
+
The current timestep in the diffusion chain.
|
184
|
+
|
185
|
+
Returns:
|
186
|
+
`torch.Tensor`:
|
187
|
+
A scaled input sample.
|
188
|
+
"""
|
189
|
+
if self.step_index is None:
|
190
|
+
self._init_step_index(timestep)
|
191
|
+
|
192
|
+
sigma = self.sigmas[self.step_index]
|
193
|
+
sample = self.precondition_inputs(sample, sigma)
|
194
|
+
|
195
|
+
self.is_scale_input_called = True
|
196
|
+
return sample
|
197
|
+
|
198
|
+
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
199
|
+
"""
|
200
|
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
201
|
+
|
202
|
+
Args:
|
203
|
+
num_inference_steps (`int`):
|
204
|
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
205
|
+
device (`str` or `torch.device`, *optional*):
|
206
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
207
|
+
"""
|
208
|
+
|
209
|
+
self.num_inference_steps = num_inference_steps
|
210
|
+
|
211
|
+
ramp = torch.linspace(0, 1, self.num_inference_steps)
|
212
|
+
if self.config.sigma_schedule == "karras":
|
213
|
+
sigmas = self._compute_karras_sigmas(ramp)
|
214
|
+
elif self.config.sigma_schedule == "exponential":
|
215
|
+
sigmas = self._compute_exponential_sigmas(ramp)
|
216
|
+
|
217
|
+
sigmas = sigmas.to(dtype=torch.float32, device=device)
|
218
|
+
self.timesteps = self.precondition_noise(sigmas)
|
219
|
+
|
220
|
+
if self.config.final_sigmas_type == "sigma_min":
|
221
|
+
sigma_last = self.config.sigma_min
|
222
|
+
elif self.config.final_sigmas_type == "zero":
|
223
|
+
sigma_last = 0
|
224
|
+
else:
|
225
|
+
raise ValueError(
|
226
|
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
227
|
+
)
|
228
|
+
|
229
|
+
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
|
230
|
+
|
231
|
+
self.model_outputs = [
|
232
|
+
None,
|
233
|
+
] * self.config.solver_order
|
234
|
+
self.lower_order_nums = 0
|
235
|
+
|
236
|
+
# add an index counter for schedulers that allow duplicated timesteps
|
237
|
+
self._step_index = None
|
238
|
+
self._begin_index = None
|
239
|
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
240
|
+
|
241
|
+
# if a noise sampler is used, reinitialise it
|
242
|
+
self.noise_sampler = None
|
243
|
+
|
244
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
|
245
|
+
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
246
|
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
247
|
+
sigma_min = sigma_min or self.config.sigma_min
|
248
|
+
sigma_max = sigma_max or self.config.sigma_max
|
249
|
+
|
250
|
+
rho = self.config.rho
|
251
|
+
min_inv_rho = sigma_min ** (1 / rho)
|
252
|
+
max_inv_rho = sigma_max ** (1 / rho)
|
253
|
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
254
|
+
return sigmas
|
255
|
+
|
256
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
|
257
|
+
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
258
|
+
"""Implementation closely follows k-diffusion.
|
259
|
+
|
260
|
+
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
|
261
|
+
"""
|
262
|
+
sigma_min = sigma_min or self.config.sigma_min
|
263
|
+
sigma_max = sigma_max or self.config.sigma_max
|
264
|
+
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
|
265
|
+
return sigmas
|
266
|
+
|
267
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
268
|
+
def _sigma_to_t(self, sigma, log_sigmas):
|
269
|
+
# get log sigma
|
270
|
+
log_sigma = np.log(np.maximum(sigma, 1e-10))
|
271
|
+
|
272
|
+
# get distribution
|
273
|
+
dists = log_sigma - log_sigmas[:, np.newaxis]
|
274
|
+
|
275
|
+
# get sigmas range
|
276
|
+
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
277
|
+
high_idx = low_idx + 1
|
278
|
+
|
279
|
+
low = log_sigmas[low_idx]
|
280
|
+
high = log_sigmas[high_idx]
|
281
|
+
|
282
|
+
# interpolate sigmas
|
283
|
+
w = (low - log_sigma) / (low - high)
|
284
|
+
w = np.clip(w, 0, 1)
|
285
|
+
|
286
|
+
# transform interpolation to time range
|
287
|
+
t = (1 - w) * low_idx + w * high_idx
|
288
|
+
t = t.reshape(sigma.shape)
|
289
|
+
return t
|
290
|
+
|
291
|
+
def _sigma_to_alpha_sigma_t(self, sigma):
|
292
|
+
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
|
293
|
+
sigma_t = sigma
|
294
|
+
|
295
|
+
return alpha_t, sigma_t
|
296
|
+
|
297
|
+
def convert_model_output(
|
298
|
+
self,
|
299
|
+
model_output: torch.Tensor,
|
300
|
+
sample: torch.Tensor = None,
|
301
|
+
) -> torch.Tensor:
|
302
|
+
"""
|
303
|
+
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
|
304
|
+
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
|
305
|
+
integral of the data prediction model.
|
306
|
+
|
307
|
+
<Tip>
|
308
|
+
|
309
|
+
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
|
310
|
+
prediction and data prediction models.
|
311
|
+
|
312
|
+
</Tip>
|
313
|
+
|
314
|
+
Args:
|
315
|
+
model_output (`torch.Tensor`):
|
316
|
+
The direct output from the learned diffusion model.
|
317
|
+
sample (`torch.Tensor`):
|
318
|
+
A current instance of a sample created by the diffusion process.
|
319
|
+
|
320
|
+
Returns:
|
321
|
+
`torch.Tensor`:
|
322
|
+
The converted model output.
|
323
|
+
"""
|
324
|
+
sigma = self.sigmas[self.step_index]
|
325
|
+
x0_pred = self.precondition_outputs(sample, model_output, sigma)
|
326
|
+
|
327
|
+
return x0_pred
|
328
|
+
|
329
|
+
def dpm_solver_first_order_update(
|
330
|
+
self,
|
331
|
+
model_output: torch.Tensor,
|
332
|
+
sample: torch.Tensor = None,
|
333
|
+
noise: Optional[torch.Tensor] = None,
|
334
|
+
) -> torch.Tensor:
|
335
|
+
"""
|
336
|
+
One step for the first-order DPMSolver (equivalent to DDIM).
|
337
|
+
|
338
|
+
Args:
|
339
|
+
model_output (`torch.Tensor`):
|
340
|
+
The direct output from the learned diffusion model.
|
341
|
+
sample (`torch.Tensor`):
|
342
|
+
A current instance of a sample created by the diffusion process.
|
343
|
+
|
344
|
+
Returns:
|
345
|
+
`torch.Tensor`:
|
346
|
+
The sample tensor at the previous timestep.
|
347
|
+
"""
|
348
|
+
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
|
349
|
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
350
|
+
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
351
|
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
352
|
+
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
353
|
+
|
354
|
+
h = lambda_t - lambda_s
|
355
|
+
assert noise is not None
|
356
|
+
x_t = (
|
357
|
+
(sigma_t / sigma_s * torch.exp(-h)) * sample
|
358
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
|
359
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
360
|
+
)
|
361
|
+
|
362
|
+
return x_t
|
363
|
+
|
364
|
+
def multistep_dpm_solver_second_order_update(
|
365
|
+
self,
|
366
|
+
model_output_list: List[torch.Tensor],
|
367
|
+
sample: torch.Tensor = None,
|
368
|
+
noise: Optional[torch.Tensor] = None,
|
369
|
+
) -> torch.Tensor:
|
370
|
+
"""
|
371
|
+
One step for the second-order multistep DPMSolver.
|
372
|
+
|
373
|
+
Args:
|
374
|
+
model_output_list (`List[torch.Tensor]`):
|
375
|
+
The direct outputs from learned diffusion model at current and latter timesteps.
|
376
|
+
sample (`torch.Tensor`):
|
377
|
+
A current instance of a sample created by the diffusion process.
|
378
|
+
|
379
|
+
Returns:
|
380
|
+
`torch.Tensor`:
|
381
|
+
The sample tensor at the previous timestep.
|
382
|
+
"""
|
383
|
+
sigma_t, sigma_s0, sigma_s1 = (
|
384
|
+
self.sigmas[self.step_index + 1],
|
385
|
+
self.sigmas[self.step_index],
|
386
|
+
self.sigmas[self.step_index - 1],
|
387
|
+
)
|
388
|
+
|
389
|
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
390
|
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
391
|
+
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
392
|
+
|
393
|
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
394
|
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
395
|
+
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
396
|
+
|
397
|
+
m0, m1 = model_output_list[-1], model_output_list[-2]
|
398
|
+
|
399
|
+
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
400
|
+
r0 = h_0 / h
|
401
|
+
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
402
|
+
|
403
|
+
# sde-dpmsolver++
|
404
|
+
assert noise is not None
|
405
|
+
if self.config.solver_type == "midpoint":
|
406
|
+
x_t = (
|
407
|
+
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
408
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
409
|
+
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
|
410
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
411
|
+
)
|
412
|
+
elif self.config.solver_type == "heun":
|
413
|
+
x_t = (
|
414
|
+
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
415
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
416
|
+
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
|
417
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
418
|
+
)
|
419
|
+
|
420
|
+
return x_t
|
421
|
+
|
422
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
423
|
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
424
|
+
if schedule_timesteps is None:
|
425
|
+
schedule_timesteps = self.timesteps
|
426
|
+
|
427
|
+
index_candidates = (schedule_timesteps == timestep).nonzero()
|
428
|
+
|
429
|
+
if len(index_candidates) == 0:
|
430
|
+
step_index = len(self.timesteps) - 1
|
431
|
+
# The sigma index that is taken for the **very** first `step`
|
432
|
+
# is always the second index (or the last index if there is only 1)
|
433
|
+
# This way we can ensure we don't accidentally skip a sigma in
|
434
|
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
435
|
+
elif len(index_candidates) > 1:
|
436
|
+
step_index = index_candidates[1].item()
|
437
|
+
else:
|
438
|
+
step_index = index_candidates[0].item()
|
439
|
+
|
440
|
+
return step_index
|
441
|
+
|
442
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
443
|
+
def _init_step_index(self, timestep):
|
444
|
+
"""
|
445
|
+
Initialize the step_index counter for the scheduler.
|
446
|
+
"""
|
447
|
+
|
448
|
+
if self.begin_index is None:
|
449
|
+
if isinstance(timestep, torch.Tensor):
|
450
|
+
timestep = timestep.to(self.timesteps.device)
|
451
|
+
self._step_index = self.index_for_timestep(timestep)
|
452
|
+
else:
|
453
|
+
self._step_index = self._begin_index
|
454
|
+
|
455
|
+
def step(
|
456
|
+
self,
|
457
|
+
model_output: torch.Tensor,
|
458
|
+
timestep: Union[int, torch.Tensor],
|
459
|
+
sample: torch.Tensor,
|
460
|
+
generator=None,
|
461
|
+
return_dict: bool = True,
|
462
|
+
) -> Union[SchedulerOutput, Tuple]:
|
463
|
+
"""
|
464
|
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
465
|
+
the multistep DPMSolver.
|
466
|
+
|
467
|
+
Args:
|
468
|
+
model_output (`torch.Tensor`):
|
469
|
+
The direct output from learned diffusion model.
|
470
|
+
timestep (`int`):
|
471
|
+
The current discrete timestep in the diffusion chain.
|
472
|
+
sample (`torch.Tensor`):
|
473
|
+
A current instance of a sample created by the diffusion process.
|
474
|
+
generator (`torch.Generator`, *optional*):
|
475
|
+
A random number generator.
|
476
|
+
return_dict (`bool`):
|
477
|
+
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
478
|
+
|
479
|
+
Returns:
|
480
|
+
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
481
|
+
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
482
|
+
tuple is returned where the first element is the sample tensor.
|
483
|
+
|
484
|
+
"""
|
485
|
+
if self.num_inference_steps is None:
|
486
|
+
raise ValueError(
|
487
|
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
488
|
+
)
|
489
|
+
|
490
|
+
if self.step_index is None:
|
491
|
+
self._init_step_index(timestep)
|
492
|
+
|
493
|
+
# Improve numerical stability for small number of steps
|
494
|
+
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
|
495
|
+
self.config.euler_at_final
|
496
|
+
or (self.config.lower_order_final and len(self.timesteps) < 15)
|
497
|
+
or self.config.final_sigmas_type == "zero"
|
498
|
+
)
|
499
|
+
lower_order_second = (
|
500
|
+
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
|
501
|
+
)
|
502
|
+
|
503
|
+
model_output = self.convert_model_output(model_output, sample=sample)
|
504
|
+
for i in range(self.config.solver_order - 1):
|
505
|
+
self.model_outputs[i] = self.model_outputs[i + 1]
|
506
|
+
self.model_outputs[-1] = model_output
|
507
|
+
|
508
|
+
if self.noise_sampler is None:
|
509
|
+
seed = None
|
510
|
+
if generator is not None:
|
511
|
+
seed = (
|
512
|
+
[g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed()
|
513
|
+
)
|
514
|
+
self.noise_sampler = BrownianTreeNoiseSampler(
|
515
|
+
model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed
|
516
|
+
)
|
517
|
+
noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(
|
518
|
+
model_output.device
|
519
|
+
)
|
520
|
+
|
521
|
+
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
|
522
|
+
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
|
523
|
+
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
|
524
|
+
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
|
525
|
+
|
526
|
+
if self.lower_order_nums < self.config.solver_order:
|
527
|
+
self.lower_order_nums += 1
|
528
|
+
|
529
|
+
# upon completion increase step index by one
|
530
|
+
self._step_index += 1
|
531
|
+
|
532
|
+
if not return_dict:
|
533
|
+
return (prev_sample,)
|
534
|
+
|
535
|
+
return SchedulerOutput(prev_sample=prev_sample)
|
536
|
+
|
537
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
538
|
+
def add_noise(
|
539
|
+
self,
|
540
|
+
original_samples: torch.Tensor,
|
541
|
+
noise: torch.Tensor,
|
542
|
+
timesteps: torch.Tensor,
|
543
|
+
) -> torch.Tensor:
|
544
|
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
545
|
+
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
546
|
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
547
|
+
# mps does not support float64
|
548
|
+
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
549
|
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
550
|
+
else:
|
551
|
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
552
|
+
timesteps = timesteps.to(original_samples.device)
|
553
|
+
|
554
|
+
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
555
|
+
if self.begin_index is None:
|
556
|
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
557
|
+
elif self.step_index is not None:
|
558
|
+
# add_noise is called after first denoising step (for inpainting)
|
559
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
560
|
+
else:
|
561
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
562
|
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
563
|
+
|
564
|
+
sigma = sigmas[step_indices].flatten()
|
565
|
+
while len(sigma.shape) < len(original_samples.shape):
|
566
|
+
sigma = sigma.unsqueeze(-1)
|
567
|
+
|
568
|
+
noisy_samples = original_samples + noise * sigma
|
569
|
+
return noisy_samples
|
570
|
+
|
571
|
+
def __len__(self):
|
572
|
+
return self.config.num_train_timesteps
|