diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +94 -3
- diffusers/commands/env.py +1 -5
- diffusers/configuration_utils.py +4 -9
- diffusers/dependency_versions_table.py +2 -2
- diffusers/image_processor.py +1 -2
- diffusers/loaders/__init__.py +17 -2
- diffusers/loaders/ip_adapter.py +10 -7
- diffusers/loaders/lora_base.py +752 -0
- diffusers/loaders/lora_pipeline.py +2252 -0
- diffusers/loaders/peft.py +213 -5
- diffusers/loaders/single_file.py +3 -14
- diffusers/loaders/single_file_model.py +31 -10
- diffusers/loaders/single_file_utils.py +293 -8
- diffusers/loaders/textual_inversion.py +1 -6
- diffusers/loaders/unet.py +23 -208
- diffusers/models/__init__.py +20 -0
- diffusers/models/activations.py +22 -0
- diffusers/models/attention.py +386 -7
- diffusers/models/attention_processor.py +1937 -629
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_kl.py +14 -3
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vq_model.py +4 -4
- diffusers/models/controlnet.py +2 -3
- diffusers/models/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnet_sd3.py +11 -11
- diffusers/models/controlnet_sparsectrl.py +789 -0
- diffusers/models/controlnet_xs.py +40 -10
- diffusers/models/downsampling.py +68 -0
- diffusers/models/embeddings.py +403 -36
- diffusers/models/model_loading_utils.py +1 -3
- diffusers/models/modeling_flax_utils.py +1 -6
- diffusers/models/modeling_utils.py +4 -16
- diffusers/models/normalization.py +203 -12
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
- diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +102 -1
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/transformer_flux.py +455 -0
- diffusers/models/transformers/transformer_sd3.py +18 -4
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +8 -1
- diffusers/models/unets/unet_3d_blocks.py +51 -920
- diffusers/models/unets/unet_3d_condition.py +4 -1
- diffusers/models/unets/unet_i2vgen_xl.py +4 -1
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +1330 -84
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +1 -3
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +64 -0
- diffusers/models/vq_model.py +8 -4
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +100 -3
- diffusers/pipelines/animatediff/__init__.py +4 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
- diffusers/pipelines/auto_pipeline.py +97 -19
- diffusers/pipelines/cogvideo/__init__.py +48 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
- diffusers/pipelines/flux/__init__.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +749 -0
- diffusers/pipelines/flux/pipeline_output.py +21 -0
- diffusers/pipelines/free_init_utils.py +2 -0
- diffusers/pipelines/free_noise_utils.py +236 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +334 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
- diffusers/pipelines/pag/__init__.py +67 -0
- diffusers/pipelines/pag/pag_utils.py +237 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
- diffusers/pipelines/pia/pipeline_pia.py +30 -37
- diffusers/pipelines/pipeline_flax_utils.py +4 -9
- diffusers/pipelines/pipeline_loading_utils.py +0 -3
- diffusers/pipelines/pipeline_utils.py +2 -14
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
- diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
- diffusers/schedulers/__init__.py +8 -0
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +1 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
- diffusers/schedulers/scheduling_ddpm.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +2 -2
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
- diffusers/schedulers/scheduling_ipndm.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
- diffusers/schedulers/scheduling_utils.py +1 -3
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/training_utils.py +99 -14
- diffusers/utils/__init__.py +2 -2
- diffusers/utils/dummy_pt_objects.py +210 -0
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
- diffusers/utils/dynamic_modules_utils.py +1 -11
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +45 -42
- diffusers/utils/import_utils.py +37 -15
- diffusers/utils/loading_utils.py +80 -3
- diffusers/utils/testing_utils.py +11 -8
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1728
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,881 @@
|
|
1
|
+
# Copyright 2024 the Latte Team and The HuggingFace Team.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
import html
|
17
|
+
import inspect
|
18
|
+
import re
|
19
|
+
import urllib.parse as ul
|
20
|
+
from dataclasses import dataclass
|
21
|
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
22
|
+
|
23
|
+
import torch
|
24
|
+
from transformers import T5EncoderModel, T5Tokenizer
|
25
|
+
|
26
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
27
|
+
from ...models import AutoencoderKL, LatteTransformer3DModel
|
28
|
+
from ...pipelines.pipeline_utils import DiffusionPipeline
|
29
|
+
from ...schedulers import KarrasDiffusionSchedulers
|
30
|
+
from ...utils import (
|
31
|
+
BACKENDS_MAPPING,
|
32
|
+
BaseOutput,
|
33
|
+
is_bs4_available,
|
34
|
+
is_ftfy_available,
|
35
|
+
logging,
|
36
|
+
replace_example_docstring,
|
37
|
+
)
|
38
|
+
from ...utils.torch_utils import is_compiled_module, randn_tensor
|
39
|
+
from ...video_processor import VideoProcessor
|
40
|
+
|
41
|
+
|
42
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
43
|
+
|
44
|
+
if is_bs4_available():
|
45
|
+
from bs4 import BeautifulSoup
|
46
|
+
|
47
|
+
if is_ftfy_available():
|
48
|
+
import ftfy
|
49
|
+
|
50
|
+
|
51
|
+
EXAMPLE_DOC_STRING = """
|
52
|
+
Examples:
|
53
|
+
```py
|
54
|
+
>>> import torch
|
55
|
+
>>> from diffusers import LattePipeline
|
56
|
+
>>> from diffusers.utils import export_to_gif
|
57
|
+
|
58
|
+
>>> # You can replace the checkpoint id with "maxin-cn/Latte-1" too.
|
59
|
+
>>> pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16).to("cuda")
|
60
|
+
>>> # Enable memory optimizations.
|
61
|
+
>>> pipe.enable_model_cpu_offload()
|
62
|
+
|
63
|
+
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
64
|
+
>>> videos = pipe(prompt).frames[0]
|
65
|
+
>>> export_to_gif(videos, "latte.gif")
|
66
|
+
```
|
67
|
+
"""
|
68
|
+
|
69
|
+
|
70
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
71
|
+
def retrieve_timesteps(
|
72
|
+
scheduler,
|
73
|
+
num_inference_steps: Optional[int] = None,
|
74
|
+
device: Optional[Union[str, torch.device]] = None,
|
75
|
+
timesteps: Optional[List[int]] = None,
|
76
|
+
sigmas: Optional[List[float]] = None,
|
77
|
+
**kwargs,
|
78
|
+
):
|
79
|
+
"""
|
80
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
81
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
82
|
+
|
83
|
+
Args:
|
84
|
+
scheduler (`SchedulerMixin`):
|
85
|
+
The scheduler to get timesteps from.
|
86
|
+
num_inference_steps (`int`):
|
87
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
88
|
+
must be `None`.
|
89
|
+
device (`str` or `torch.device`, *optional*):
|
90
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
91
|
+
timesteps (`List[int]`, *optional*):
|
92
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
93
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
94
|
+
sigmas (`List[float]`, *optional*):
|
95
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
96
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
97
|
+
|
98
|
+
Returns:
|
99
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
100
|
+
second element is the number of inference steps.
|
101
|
+
"""
|
102
|
+
if timesteps is not None and sigmas is not None:
|
103
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
104
|
+
if timesteps is not None:
|
105
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
106
|
+
if not accepts_timesteps:
|
107
|
+
raise ValueError(
|
108
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
109
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
110
|
+
)
|
111
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
112
|
+
timesteps = scheduler.timesteps
|
113
|
+
num_inference_steps = len(timesteps)
|
114
|
+
elif sigmas is not None:
|
115
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
116
|
+
if not accept_sigmas:
|
117
|
+
raise ValueError(
|
118
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
119
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
120
|
+
)
|
121
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
122
|
+
timesteps = scheduler.timesteps
|
123
|
+
num_inference_steps = len(timesteps)
|
124
|
+
else:
|
125
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
126
|
+
timesteps = scheduler.timesteps
|
127
|
+
return timesteps, num_inference_steps
|
128
|
+
|
129
|
+
|
130
|
+
@dataclass
|
131
|
+
class LattePipelineOutput(BaseOutput):
|
132
|
+
frames: torch.Tensor
|
133
|
+
|
134
|
+
|
135
|
+
class LattePipeline(DiffusionPipeline):
|
136
|
+
r"""
|
137
|
+
Pipeline for text-to-video generation using Latte.
|
138
|
+
|
139
|
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
140
|
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
141
|
+
|
142
|
+
Args:
|
143
|
+
vae ([`AutoencoderKL`]):
|
144
|
+
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
145
|
+
text_encoder ([`T5EncoderModel`]):
|
146
|
+
Frozen text-encoder. Latte uses
|
147
|
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
148
|
+
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
149
|
+
tokenizer (`T5Tokenizer`):
|
150
|
+
Tokenizer of class
|
151
|
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
152
|
+
transformer ([`LatteTransformer3DModel`]):
|
153
|
+
A text conditioned `LatteTransformer3DModel` to denoise the encoded video latents.
|
154
|
+
scheduler ([`SchedulerMixin`]):
|
155
|
+
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
156
|
+
"""
|
157
|
+
|
158
|
+
bad_punct_regex = re.compile(r"[#®•©™&@·º½¾¿¡§~\)\(\]\[\}\{\|\\/\\*]{1,}")
|
159
|
+
|
160
|
+
_optional_components = ["tokenizer", "text_encoder"]
|
161
|
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
162
|
+
|
163
|
+
_callback_tensor_inputs = [
|
164
|
+
"latents",
|
165
|
+
"prompt_embeds",
|
166
|
+
"negative_prompt_embeds",
|
167
|
+
]
|
168
|
+
|
169
|
+
def __init__(
|
170
|
+
self,
|
171
|
+
tokenizer: T5Tokenizer,
|
172
|
+
text_encoder: T5EncoderModel,
|
173
|
+
vae: AutoencoderKL,
|
174
|
+
transformer: LatteTransformer3DModel,
|
175
|
+
scheduler: KarrasDiffusionSchedulers,
|
176
|
+
):
|
177
|
+
super().__init__()
|
178
|
+
|
179
|
+
self.register_modules(
|
180
|
+
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
181
|
+
)
|
182
|
+
|
183
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
184
|
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
|
185
|
+
|
186
|
+
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
|
187
|
+
def mask_text_embeddings(self, emb, mask):
|
188
|
+
if emb.shape[0] == 1:
|
189
|
+
keep_index = mask.sum().item()
|
190
|
+
return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096
|
191
|
+
else:
|
192
|
+
masked_feature = emb * mask[:, None, :, None] # 1 120 4096
|
193
|
+
return masked_feature, emb.shape[2]
|
194
|
+
|
195
|
+
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
196
|
+
def encode_prompt(
|
197
|
+
self,
|
198
|
+
prompt: Union[str, List[str]],
|
199
|
+
do_classifier_free_guidance: bool = True,
|
200
|
+
negative_prompt: str = "",
|
201
|
+
num_images_per_prompt: int = 1,
|
202
|
+
device: Optional[torch.device] = None,
|
203
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
204
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
205
|
+
clean_caption: bool = False,
|
206
|
+
mask_feature: bool = True,
|
207
|
+
dtype=None,
|
208
|
+
):
|
209
|
+
r"""
|
210
|
+
Encodes the prompt into text encoder hidden states.
|
211
|
+
|
212
|
+
Args:
|
213
|
+
prompt (`str` or `List[str]`, *optional*):
|
214
|
+
prompt to be encoded
|
215
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
216
|
+
The prompt not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds`
|
217
|
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
218
|
+
Latte, this should be "".
|
219
|
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
220
|
+
whether to use classifier free guidance or not
|
221
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
222
|
+
number of video that should be generated per prompt
|
223
|
+
device: (`torch.device`, *optional*):
|
224
|
+
torch device to place the resulting embeddings on
|
225
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
226
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
227
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
228
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
229
|
+
Pre-generated negative text embeddings. For Latte, it's should be the embeddings of the "" string.
|
230
|
+
clean_caption (bool, defaults to `False`):
|
231
|
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
232
|
+
mask_feature: (bool, defaults to `True`):
|
233
|
+
If `True`, the function will mask the text embeddings.
|
234
|
+
"""
|
235
|
+
embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None
|
236
|
+
|
237
|
+
if device is None:
|
238
|
+
device = self._execution_device
|
239
|
+
|
240
|
+
if prompt is not None and isinstance(prompt, str):
|
241
|
+
batch_size = 1
|
242
|
+
elif prompt is not None and isinstance(prompt, list):
|
243
|
+
batch_size = len(prompt)
|
244
|
+
else:
|
245
|
+
batch_size = prompt_embeds.shape[0]
|
246
|
+
|
247
|
+
max_length = 120
|
248
|
+
if prompt_embeds is None:
|
249
|
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
250
|
+
text_inputs = self.tokenizer(
|
251
|
+
prompt,
|
252
|
+
padding="max_length",
|
253
|
+
max_length=max_length,
|
254
|
+
truncation=True,
|
255
|
+
return_attention_mask=True,
|
256
|
+
add_special_tokens=True,
|
257
|
+
return_tensors="pt",
|
258
|
+
)
|
259
|
+
text_input_ids = text_inputs.input_ids
|
260
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
261
|
+
|
262
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
263
|
+
text_input_ids, untruncated_ids
|
264
|
+
):
|
265
|
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
266
|
+
logger.warning(
|
267
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
268
|
+
f" {max_length} tokens: {removed_text}"
|
269
|
+
)
|
270
|
+
|
271
|
+
attention_mask = text_inputs.attention_mask.to(device)
|
272
|
+
prompt_embeds_attention_mask = attention_mask
|
273
|
+
|
274
|
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
275
|
+
prompt_embeds = prompt_embeds[0]
|
276
|
+
else:
|
277
|
+
prompt_embeds_attention_mask = torch.ones_like(prompt_embeds)
|
278
|
+
|
279
|
+
if self.text_encoder is not None:
|
280
|
+
dtype = self.text_encoder.dtype
|
281
|
+
elif self.transformer is not None:
|
282
|
+
dtype = self.transformer.dtype
|
283
|
+
else:
|
284
|
+
dtype = None
|
285
|
+
|
286
|
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
287
|
+
|
288
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
289
|
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
290
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
291
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
292
|
+
prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1)
|
293
|
+
prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1)
|
294
|
+
|
295
|
+
# get unconditional embeddings for classifier free guidance
|
296
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
297
|
+
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
298
|
+
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
299
|
+
max_length = prompt_embeds.shape[1]
|
300
|
+
uncond_input = self.tokenizer(
|
301
|
+
uncond_tokens,
|
302
|
+
padding="max_length",
|
303
|
+
max_length=max_length,
|
304
|
+
truncation=True,
|
305
|
+
return_attention_mask=True,
|
306
|
+
add_special_tokens=True,
|
307
|
+
return_tensors="pt",
|
308
|
+
)
|
309
|
+
attention_mask = uncond_input.attention_mask.to(device)
|
310
|
+
|
311
|
+
negative_prompt_embeds = self.text_encoder(
|
312
|
+
uncond_input.input_ids.to(device),
|
313
|
+
attention_mask=attention_mask,
|
314
|
+
)
|
315
|
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
316
|
+
|
317
|
+
if do_classifier_free_guidance:
|
318
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
319
|
+
seq_len = negative_prompt_embeds.shape[1]
|
320
|
+
|
321
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
322
|
+
|
323
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
324
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
325
|
+
|
326
|
+
# For classifier free guidance, we need to do two forward passes.
|
327
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
328
|
+
# to avoid doing two forward passes
|
329
|
+
else:
|
330
|
+
negative_prompt_embeds = None
|
331
|
+
|
332
|
+
# Perform additional masking.
|
333
|
+
if mask_feature and not embeds_initially_provided:
|
334
|
+
prompt_embeds = prompt_embeds.unsqueeze(1)
|
335
|
+
masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask)
|
336
|
+
masked_prompt_embeds = masked_prompt_embeds.squeeze(1)
|
337
|
+
masked_negative_prompt_embeds = (
|
338
|
+
negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None
|
339
|
+
)
|
340
|
+
|
341
|
+
return masked_prompt_embeds, masked_negative_prompt_embeds
|
342
|
+
|
343
|
+
return prompt_embeds, negative_prompt_embeds
|
344
|
+
|
345
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
346
|
+
def prepare_extra_step_kwargs(self, generator, eta):
|
347
|
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
348
|
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
349
|
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
350
|
+
# and should be between [0, 1]
|
351
|
+
|
352
|
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
353
|
+
extra_step_kwargs = {}
|
354
|
+
if accepts_eta:
|
355
|
+
extra_step_kwargs["eta"] = eta
|
356
|
+
|
357
|
+
# check if the scheduler accepts generator
|
358
|
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
359
|
+
if accepts_generator:
|
360
|
+
extra_step_kwargs["generator"] = generator
|
361
|
+
return extra_step_kwargs
|
362
|
+
|
363
|
+
def check_inputs(
|
364
|
+
self,
|
365
|
+
prompt,
|
366
|
+
height,
|
367
|
+
width,
|
368
|
+
negative_prompt,
|
369
|
+
callback_on_step_end_tensor_inputs,
|
370
|
+
prompt_embeds=None,
|
371
|
+
negative_prompt_embeds=None,
|
372
|
+
):
|
373
|
+
if height % 8 != 0 or width % 8 != 0:
|
374
|
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
375
|
+
|
376
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
377
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
378
|
+
):
|
379
|
+
raise ValueError(
|
380
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
381
|
+
)
|
382
|
+
if prompt is not None and prompt_embeds is not None:
|
383
|
+
raise ValueError(
|
384
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
385
|
+
" only forward one of the two."
|
386
|
+
)
|
387
|
+
elif prompt is None and prompt_embeds is None:
|
388
|
+
raise ValueError(
|
389
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
390
|
+
)
|
391
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
392
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
393
|
+
|
394
|
+
if prompt is not None and negative_prompt_embeds is not None:
|
395
|
+
raise ValueError(
|
396
|
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
397
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
398
|
+
)
|
399
|
+
|
400
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
401
|
+
raise ValueError(
|
402
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
403
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
404
|
+
)
|
405
|
+
|
406
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
407
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
408
|
+
raise ValueError(
|
409
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
410
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
411
|
+
f" {negative_prompt_embeds.shape}."
|
412
|
+
)
|
413
|
+
|
414
|
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
415
|
+
def _text_preprocessing(self, text, clean_caption=False):
|
416
|
+
if clean_caption and not is_bs4_available():
|
417
|
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
418
|
+
logger.warning("Setting `clean_caption` to False...")
|
419
|
+
clean_caption = False
|
420
|
+
|
421
|
+
if clean_caption and not is_ftfy_available():
|
422
|
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
423
|
+
logger.warning("Setting `clean_caption` to False...")
|
424
|
+
clean_caption = False
|
425
|
+
|
426
|
+
if not isinstance(text, (tuple, list)):
|
427
|
+
text = [text]
|
428
|
+
|
429
|
+
def process(text: str):
|
430
|
+
if clean_caption:
|
431
|
+
text = self._clean_caption(text)
|
432
|
+
text = self._clean_caption(text)
|
433
|
+
else:
|
434
|
+
text = text.lower().strip()
|
435
|
+
return text
|
436
|
+
|
437
|
+
return [process(t) for t in text]
|
438
|
+
|
439
|
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
440
|
+
def _clean_caption(self, caption):
|
441
|
+
caption = str(caption)
|
442
|
+
caption = ul.unquote_plus(caption)
|
443
|
+
caption = caption.strip().lower()
|
444
|
+
caption = re.sub("<person>", "person", caption)
|
445
|
+
# urls:
|
446
|
+
caption = re.sub(
|
447
|
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
448
|
+
"",
|
449
|
+
caption,
|
450
|
+
) # regex for urls
|
451
|
+
caption = re.sub(
|
452
|
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
453
|
+
"",
|
454
|
+
caption,
|
455
|
+
) # regex for urls
|
456
|
+
# html:
|
457
|
+
caption = BeautifulSoup(caption, features="html.parser").text
|
458
|
+
|
459
|
+
# @<nickname>
|
460
|
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
461
|
+
|
462
|
+
# 31C0—31EF CJK Strokes
|
463
|
+
# 31F0—31FF Katakana Phonetic Extensions
|
464
|
+
# 3200—32FF Enclosed CJK Letters and Months
|
465
|
+
# 3300—33FF CJK Compatibility
|
466
|
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
467
|
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
468
|
+
# 4E00—9FFF CJK Unified Ideographs
|
469
|
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
470
|
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
471
|
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
472
|
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
473
|
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
474
|
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
475
|
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
476
|
+
#######################################################
|
477
|
+
|
478
|
+
# все виды тире / all types of dash --> "-"
|
479
|
+
caption = re.sub(
|
480
|
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
481
|
+
"-",
|
482
|
+
caption,
|
483
|
+
)
|
484
|
+
|
485
|
+
# кавычки к одному стандарту
|
486
|
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
487
|
+
caption = re.sub(r"[‘’]", "'", caption)
|
488
|
+
|
489
|
+
# "
|
490
|
+
caption = re.sub(r""?", "", caption)
|
491
|
+
# &
|
492
|
+
caption = re.sub(r"&", "", caption)
|
493
|
+
|
494
|
+
# ip adresses:
|
495
|
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
496
|
+
|
497
|
+
# article ids:
|
498
|
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
499
|
+
|
500
|
+
# \n
|
501
|
+
caption = re.sub(r"\\n", " ", caption)
|
502
|
+
|
503
|
+
# "#123"
|
504
|
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
505
|
+
# "#12345.."
|
506
|
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
507
|
+
# "123456.."
|
508
|
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
509
|
+
# filenames:
|
510
|
+
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
511
|
+
|
512
|
+
#
|
513
|
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
514
|
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
515
|
+
|
516
|
+
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
517
|
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
518
|
+
|
519
|
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
520
|
+
regex2 = re.compile(r"(?:\-|\_)")
|
521
|
+
if len(re.findall(regex2, caption)) > 3:
|
522
|
+
caption = re.sub(regex2, " ", caption)
|
523
|
+
|
524
|
+
caption = ftfy.fix_text(caption)
|
525
|
+
caption = html.unescape(html.unescape(caption))
|
526
|
+
|
527
|
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
528
|
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
529
|
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
530
|
+
|
531
|
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
532
|
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
533
|
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
534
|
+
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
535
|
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
536
|
+
|
537
|
+
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
538
|
+
|
539
|
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
540
|
+
|
541
|
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
542
|
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
543
|
+
caption = re.sub(r"\s+", " ", caption)
|
544
|
+
|
545
|
+
caption.strip()
|
546
|
+
|
547
|
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
548
|
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
549
|
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
550
|
+
caption = re.sub(r"^\.\S+$", "", caption)
|
551
|
+
|
552
|
+
return caption.strip()
|
553
|
+
|
554
|
+
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
|
555
|
+
def prepare_latents(
|
556
|
+
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
557
|
+
):
|
558
|
+
shape = (
|
559
|
+
batch_size,
|
560
|
+
num_channels_latents,
|
561
|
+
num_frames,
|
562
|
+
height // self.vae_scale_factor,
|
563
|
+
width // self.vae_scale_factor,
|
564
|
+
)
|
565
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
566
|
+
raise ValueError(
|
567
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
568
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
569
|
+
)
|
570
|
+
|
571
|
+
if latents is None:
|
572
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
573
|
+
else:
|
574
|
+
latents = latents.to(device)
|
575
|
+
|
576
|
+
# scale the initial noise by the standard deviation required by the scheduler
|
577
|
+
latents = latents * self.scheduler.init_noise_sigma
|
578
|
+
return latents
|
579
|
+
|
580
|
+
@property
|
581
|
+
def guidance_scale(self):
|
582
|
+
return self._guidance_scale
|
583
|
+
|
584
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
585
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
586
|
+
# corresponds to doing no classifier free guidance.
|
587
|
+
@property
|
588
|
+
def do_classifier_free_guidance(self):
|
589
|
+
return self._guidance_scale > 1
|
590
|
+
|
591
|
+
@property
|
592
|
+
def num_timesteps(self):
|
593
|
+
return self._num_timesteps
|
594
|
+
|
595
|
+
@property
|
596
|
+
def interrupt(self):
|
597
|
+
return self._interrupt
|
598
|
+
|
599
|
+
@torch.no_grad()
|
600
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
601
|
+
def __call__(
|
602
|
+
self,
|
603
|
+
prompt: Union[str, List[str]] = None,
|
604
|
+
negative_prompt: str = "",
|
605
|
+
num_inference_steps: int = 50,
|
606
|
+
timesteps: Optional[List[int]] = None,
|
607
|
+
guidance_scale: float = 7.5,
|
608
|
+
num_images_per_prompt: int = 1,
|
609
|
+
video_length: int = 16,
|
610
|
+
height: int = 512,
|
611
|
+
width: int = 512,
|
612
|
+
eta: float = 0.0,
|
613
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
614
|
+
latents: Optional[torch.FloatTensor] = None,
|
615
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
616
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
617
|
+
output_type: str = "pil",
|
618
|
+
return_dict: bool = True,
|
619
|
+
callback_on_step_end: Optional[
|
620
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
621
|
+
] = None,
|
622
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
623
|
+
clean_caption: bool = True,
|
624
|
+
mask_feature: bool = True,
|
625
|
+
enable_temporal_attentions: bool = True,
|
626
|
+
decode_chunk_size: Optional[int] = None,
|
627
|
+
) -> Union[LattePipelineOutput, Tuple]:
|
628
|
+
"""
|
629
|
+
Function invoked when calling the pipeline for generation.
|
630
|
+
|
631
|
+
Args:
|
632
|
+
prompt (`str` or `List[str]`, *optional*):
|
633
|
+
The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
|
634
|
+
instead.
|
635
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
636
|
+
The prompt or prompts not to guide the video generation. If not defined, one has to pass
|
637
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
638
|
+
less than `1`).
|
639
|
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
640
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality video at the
|
641
|
+
expense of slower inference.
|
642
|
+
timesteps (`List[int]`, *optional*):
|
643
|
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
644
|
+
timesteps are used. Must be in descending order.
|
645
|
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
646
|
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
647
|
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
648
|
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
649
|
+
1`. Higher guidance scale encourages to generate videos that are closely linked to the text `prompt`,
|
650
|
+
usually at the expense of lower video quality.
|
651
|
+
video_length (`int`, *optional*, defaults to 16):
|
652
|
+
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
653
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
654
|
+
The number of videos to generate per prompt.
|
655
|
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
656
|
+
The height in pixels of the generated video.
|
657
|
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
658
|
+
The width in pixels of the generated video.
|
659
|
+
eta (`float`, *optional*, defaults to 0.0):
|
660
|
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
661
|
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
662
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
663
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
664
|
+
to make generation deterministic.
|
665
|
+
latents (`torch.FloatTensor`, *optional*):
|
666
|
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
|
667
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
668
|
+
tensor will ge generated by sampling using the supplied random `generator`.
|
669
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
670
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
671
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
672
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
673
|
+
Pre-generated negative text embeddings. For Latte this negative prompt should be "". If not provided,
|
674
|
+
negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
675
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
676
|
+
The output format of the generate video. Choose between
|
677
|
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
678
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
679
|
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
680
|
+
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
681
|
+
A callback function or a list of callback functions to be called at the end of each denoising step.
|
682
|
+
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
|
683
|
+
A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
|
684
|
+
inputs will be passed.
|
685
|
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
686
|
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
687
|
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
688
|
+
prompt.
|
689
|
+
mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked.
|
690
|
+
enable_temporal_attentions (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions
|
691
|
+
decode_chunk_size (`int`, *optional*):
|
692
|
+
The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the
|
693
|
+
expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality.
|
694
|
+
For lower memory usage, reduce `decode_chunk_size`.
|
695
|
+
|
696
|
+
Examples:
|
697
|
+
|
698
|
+
Returns:
|
699
|
+
[`~pipelines.latte.pipeline_latte.LattePipelineOutput`] or `tuple`:
|
700
|
+
If `return_dict` is `True`, [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] is returned,
|
701
|
+
otherwise a `tuple` is returned where the first element is a list with the generated images
|
702
|
+
"""
|
703
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
704
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
705
|
+
|
706
|
+
# 0. Default
|
707
|
+
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else video_length
|
708
|
+
|
709
|
+
# 1. Check inputs. Raise error if not correct
|
710
|
+
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
711
|
+
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
712
|
+
self.check_inputs(
|
713
|
+
prompt,
|
714
|
+
height,
|
715
|
+
width,
|
716
|
+
negative_prompt,
|
717
|
+
callback_on_step_end_tensor_inputs,
|
718
|
+
prompt_embeds,
|
719
|
+
negative_prompt_embeds,
|
720
|
+
)
|
721
|
+
self._guidance_scale = guidance_scale
|
722
|
+
self._interrupt = False
|
723
|
+
|
724
|
+
# 2. Default height and width to transformer
|
725
|
+
if prompt is not None and isinstance(prompt, str):
|
726
|
+
batch_size = 1
|
727
|
+
elif prompt is not None and isinstance(prompt, list):
|
728
|
+
batch_size = len(prompt)
|
729
|
+
else:
|
730
|
+
batch_size = prompt_embeds.shape[0]
|
731
|
+
|
732
|
+
device = self._execution_device
|
733
|
+
|
734
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
735
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
736
|
+
# corresponds to doing no classifier free guidance.
|
737
|
+
do_classifier_free_guidance = guidance_scale > 1.0
|
738
|
+
|
739
|
+
# 3. Encode input prompt
|
740
|
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
741
|
+
prompt,
|
742
|
+
do_classifier_free_guidance,
|
743
|
+
negative_prompt=negative_prompt,
|
744
|
+
num_images_per_prompt=num_images_per_prompt,
|
745
|
+
device=device,
|
746
|
+
prompt_embeds=prompt_embeds,
|
747
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
748
|
+
clean_caption=clean_caption,
|
749
|
+
mask_feature=mask_feature,
|
750
|
+
)
|
751
|
+
if do_classifier_free_guidance:
|
752
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
753
|
+
|
754
|
+
# 4. Prepare timesteps
|
755
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
756
|
+
self._num_timesteps = len(timesteps)
|
757
|
+
|
758
|
+
# 5. Prepare latents.
|
759
|
+
latent_channels = self.transformer.config.in_channels
|
760
|
+
latents = self.prepare_latents(
|
761
|
+
batch_size * num_images_per_prompt,
|
762
|
+
latent_channels,
|
763
|
+
video_length,
|
764
|
+
height,
|
765
|
+
width,
|
766
|
+
prompt_embeds.dtype,
|
767
|
+
device,
|
768
|
+
generator,
|
769
|
+
latents,
|
770
|
+
)
|
771
|
+
|
772
|
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
773
|
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
774
|
+
|
775
|
+
# 7. Denoising loop
|
776
|
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
777
|
+
|
778
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
779
|
+
for i, t in enumerate(timesteps):
|
780
|
+
if self.interrupt:
|
781
|
+
continue
|
782
|
+
|
783
|
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
784
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
785
|
+
|
786
|
+
current_timestep = t
|
787
|
+
if not torch.is_tensor(current_timestep):
|
788
|
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
789
|
+
# This would be a good case for the `match` statement (Python 3.10+)
|
790
|
+
is_mps = latent_model_input.device.type == "mps"
|
791
|
+
if isinstance(current_timestep, float):
|
792
|
+
dtype = torch.float32 if is_mps else torch.float64
|
793
|
+
else:
|
794
|
+
dtype = torch.int32 if is_mps else torch.int64
|
795
|
+
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
796
|
+
elif len(current_timestep.shape) == 0:
|
797
|
+
current_timestep = current_timestep[None].to(latent_model_input.device)
|
798
|
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
799
|
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
800
|
+
|
801
|
+
# predict noise model_output
|
802
|
+
noise_pred = self.transformer(
|
803
|
+
latent_model_input,
|
804
|
+
encoder_hidden_states=prompt_embeds,
|
805
|
+
timestep=current_timestep,
|
806
|
+
enable_temporal_attentions=enable_temporal_attentions,
|
807
|
+
return_dict=False,
|
808
|
+
)[0]
|
809
|
+
|
810
|
+
# perform guidance
|
811
|
+
if do_classifier_free_guidance:
|
812
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
813
|
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
814
|
+
|
815
|
+
# use learned sigma?
|
816
|
+
if not (
|
817
|
+
hasattr(self.scheduler.config, "variance_type")
|
818
|
+
and self.scheduler.config.variance_type in ["learned", "learned_range"]
|
819
|
+
):
|
820
|
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
821
|
+
|
822
|
+
# compute previous video: x_t -> x_t-1
|
823
|
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
824
|
+
|
825
|
+
# call the callback, if provided
|
826
|
+
if callback_on_step_end is not None:
|
827
|
+
callback_kwargs = {}
|
828
|
+
for k in callback_on_step_end_tensor_inputs:
|
829
|
+
callback_kwargs[k] = locals()[k]
|
830
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
831
|
+
|
832
|
+
latents = callback_outputs.pop("latents", latents)
|
833
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
834
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
835
|
+
|
836
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
837
|
+
progress_bar.update()
|
838
|
+
|
839
|
+
if not output_type == "latents":
|
840
|
+
video = self.decode_latents(latents, video_length, decode_chunk_size=14)
|
841
|
+
video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
842
|
+
else:
|
843
|
+
video = latents
|
844
|
+
|
845
|
+
# Offload all models
|
846
|
+
self.maybe_free_model_hooks()
|
847
|
+
|
848
|
+
if not return_dict:
|
849
|
+
return (video,)
|
850
|
+
|
851
|
+
return LattePipelineOutput(frames=video)
|
852
|
+
|
853
|
+
# Similar to diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion.decode_latents
|
854
|
+
def decode_latents(self, latents: torch.Tensor, video_length: int, decode_chunk_size: int = 14):
|
855
|
+
# [batch, channels, frames, height, width] -> [batch*frames, channels, height, width]
|
856
|
+
latents = latents.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
857
|
+
|
858
|
+
latents = 1 / self.vae.config.scaling_factor * latents
|
859
|
+
|
860
|
+
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
|
861
|
+
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
|
862
|
+
|
863
|
+
# decode decode_chunk_size frames at a time to avoid OOM
|
864
|
+
frames = []
|
865
|
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
866
|
+
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
867
|
+
decode_kwargs = {}
|
868
|
+
if accepts_num_frames:
|
869
|
+
# we only pass num_frames_in if it's expected
|
870
|
+
decode_kwargs["num_frames"] = num_frames_in
|
871
|
+
|
872
|
+
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
|
873
|
+
frames.append(frame)
|
874
|
+
frames = torch.cat(frames, dim=0)
|
875
|
+
|
876
|
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
877
|
+
frames = frames.reshape(-1, video_length, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
|
878
|
+
|
879
|
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
880
|
+
frames = frames.float()
|
881
|
+
return frames
|