diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,485 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Any, Dict, Optional, Tuple, Union
17
+
18
+ import torch
19
+ from torch import nn
20
+
21
+ from ...configuration_utils import ConfigMixin, register_to_config
22
+ from ...utils import is_torch_version, logging
23
+ from ...utils.torch_utils import maybe_allow_in_graph
24
+ from ..attention import Attention, FeedForward
25
+ from ..attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0
26
+ from ..embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
27
+ from ..modeling_outputs import Transformer2DModelOutput
28
+ from ..modeling_utils import ModelMixin
29
+ from ..normalization import AdaLayerNorm, CogVideoXLayerNormZero
30
+
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+
35
+ @maybe_allow_in_graph
36
+ class CogVideoXBlock(nn.Module):
37
+ r"""
38
+ Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
39
+
40
+ Parameters:
41
+ dim (`int`):
42
+ The number of channels in the input and output.
43
+ num_attention_heads (`int`):
44
+ The number of heads to use for multi-head attention.
45
+ attention_head_dim (`int`):
46
+ The number of channels in each head.
47
+ time_embed_dim (`int`):
48
+ The number of channels in timestep embedding.
49
+ dropout (`float`, defaults to `0.0`):
50
+ The dropout probability to use.
51
+ activation_fn (`str`, defaults to `"gelu-approximate"`):
52
+ Activation function to be used in feed-forward.
53
+ attention_bias (`bool`, defaults to `False`):
54
+ Whether or not to use bias in attention projection layers.
55
+ qk_norm (`bool`, defaults to `True`):
56
+ Whether or not to use normalization after query and key projections in Attention.
57
+ norm_elementwise_affine (`bool`, defaults to `True`):
58
+ Whether to use learnable elementwise affine parameters for normalization.
59
+ norm_eps (`float`, defaults to `1e-5`):
60
+ Epsilon value for normalization layers.
61
+ final_dropout (`bool` defaults to `False`):
62
+ Whether to apply a final dropout after the last feed-forward layer.
63
+ ff_inner_dim (`int`, *optional*, defaults to `None`):
64
+ Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
65
+ ff_bias (`bool`, defaults to `True`):
66
+ Whether or not to use bias in Feed-forward layer.
67
+ attention_out_bias (`bool`, defaults to `True`):
68
+ Whether or not to use bias in Attention output projection layer.
69
+ """
70
+
71
+ def __init__(
72
+ self,
73
+ dim: int,
74
+ num_attention_heads: int,
75
+ attention_head_dim: int,
76
+ time_embed_dim: int,
77
+ dropout: float = 0.0,
78
+ activation_fn: str = "gelu-approximate",
79
+ attention_bias: bool = False,
80
+ qk_norm: bool = True,
81
+ norm_elementwise_affine: bool = True,
82
+ norm_eps: float = 1e-5,
83
+ final_dropout: bool = True,
84
+ ff_inner_dim: Optional[int] = None,
85
+ ff_bias: bool = True,
86
+ attention_out_bias: bool = True,
87
+ ):
88
+ super().__init__()
89
+
90
+ # 1. Self Attention
91
+ self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
92
+
93
+ self.attn1 = Attention(
94
+ query_dim=dim,
95
+ dim_head=attention_head_dim,
96
+ heads=num_attention_heads,
97
+ qk_norm="layer_norm" if qk_norm else None,
98
+ eps=1e-6,
99
+ bias=attention_bias,
100
+ out_bias=attention_out_bias,
101
+ processor=CogVideoXAttnProcessor2_0(),
102
+ )
103
+
104
+ # 2. Feed Forward
105
+ self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
106
+
107
+ self.ff = FeedForward(
108
+ dim,
109
+ dropout=dropout,
110
+ activation_fn=activation_fn,
111
+ final_dropout=final_dropout,
112
+ inner_dim=ff_inner_dim,
113
+ bias=ff_bias,
114
+ )
115
+
116
+ def forward(
117
+ self,
118
+ hidden_states: torch.Tensor,
119
+ encoder_hidden_states: torch.Tensor,
120
+ temb: torch.Tensor,
121
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
122
+ ) -> torch.Tensor:
123
+ text_seq_length = encoder_hidden_states.size(1)
124
+
125
+ # norm & modulate
126
+ norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
127
+ hidden_states, encoder_hidden_states, temb
128
+ )
129
+
130
+ # attention
131
+ attn_hidden_states, attn_encoder_hidden_states = self.attn1(
132
+ hidden_states=norm_hidden_states,
133
+ encoder_hidden_states=norm_encoder_hidden_states,
134
+ image_rotary_emb=image_rotary_emb,
135
+ )
136
+
137
+ hidden_states = hidden_states + gate_msa * attn_hidden_states
138
+ encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
139
+
140
+ # norm & modulate
141
+ norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
142
+ hidden_states, encoder_hidden_states, temb
143
+ )
144
+
145
+ # feed-forward
146
+ norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
147
+ ff_output = self.ff(norm_hidden_states)
148
+
149
+ hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
150
+ encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
151
+
152
+ return hidden_states, encoder_hidden_states
153
+
154
+
155
+ class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
156
+ """
157
+ A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
158
+
159
+ Parameters:
160
+ num_attention_heads (`int`, defaults to `30`):
161
+ The number of heads to use for multi-head attention.
162
+ attention_head_dim (`int`, defaults to `64`):
163
+ The number of channels in each head.
164
+ in_channels (`int`, defaults to `16`):
165
+ The number of channels in the input.
166
+ out_channels (`int`, *optional*, defaults to `16`):
167
+ The number of channels in the output.
168
+ flip_sin_to_cos (`bool`, defaults to `True`):
169
+ Whether to flip the sin to cos in the time embedding.
170
+ time_embed_dim (`int`, defaults to `512`):
171
+ Output dimension of timestep embeddings.
172
+ text_embed_dim (`int`, defaults to `4096`):
173
+ Input dimension of text embeddings from the text encoder.
174
+ num_layers (`int`, defaults to `30`):
175
+ The number of layers of Transformer blocks to use.
176
+ dropout (`float`, defaults to `0.0`):
177
+ The dropout probability to use.
178
+ attention_bias (`bool`, defaults to `True`):
179
+ Whether or not to use bias in the attention projection layers.
180
+ sample_width (`int`, defaults to `90`):
181
+ The width of the input latents.
182
+ sample_height (`int`, defaults to `60`):
183
+ The height of the input latents.
184
+ sample_frames (`int`, defaults to `49`):
185
+ The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
186
+ instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
187
+ but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
188
+ K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
189
+ patch_size (`int`, defaults to `2`):
190
+ The size of the patches to use in the patch embedding layer.
191
+ temporal_compression_ratio (`int`, defaults to `4`):
192
+ The compression ratio across the temporal dimension. See documentation for `sample_frames`.
193
+ max_text_seq_length (`int`, defaults to `226`):
194
+ The maximum sequence length of the input text embeddings.
195
+ activation_fn (`str`, defaults to `"gelu-approximate"`):
196
+ Activation function to use in feed-forward.
197
+ timestep_activation_fn (`str`, defaults to `"silu"`):
198
+ Activation function to use when generating the timestep embeddings.
199
+ norm_elementwise_affine (`bool`, defaults to `True`):
200
+ Whether or not to use elementwise affine in normalization layers.
201
+ norm_eps (`float`, defaults to `1e-5`):
202
+ The epsilon value to use in normalization layers.
203
+ spatial_interpolation_scale (`float`, defaults to `1.875`):
204
+ Scaling factor to apply in 3D positional embeddings across spatial dimensions.
205
+ temporal_interpolation_scale (`float`, defaults to `1.0`):
206
+ Scaling factor to apply in 3D positional embeddings across temporal dimensions.
207
+ """
208
+
209
+ _supports_gradient_checkpointing = True
210
+
211
+ @register_to_config
212
+ def __init__(
213
+ self,
214
+ num_attention_heads: int = 30,
215
+ attention_head_dim: int = 64,
216
+ in_channels: int = 16,
217
+ out_channels: Optional[int] = 16,
218
+ flip_sin_to_cos: bool = True,
219
+ freq_shift: int = 0,
220
+ time_embed_dim: int = 512,
221
+ text_embed_dim: int = 4096,
222
+ num_layers: int = 30,
223
+ dropout: float = 0.0,
224
+ attention_bias: bool = True,
225
+ sample_width: int = 90,
226
+ sample_height: int = 60,
227
+ sample_frames: int = 49,
228
+ patch_size: int = 2,
229
+ temporal_compression_ratio: int = 4,
230
+ max_text_seq_length: int = 226,
231
+ activation_fn: str = "gelu-approximate",
232
+ timestep_activation_fn: str = "silu",
233
+ norm_elementwise_affine: bool = True,
234
+ norm_eps: float = 1e-5,
235
+ spatial_interpolation_scale: float = 1.875,
236
+ temporal_interpolation_scale: float = 1.0,
237
+ use_rotary_positional_embeddings: bool = False,
238
+ ):
239
+ super().__init__()
240
+ inner_dim = num_attention_heads * attention_head_dim
241
+
242
+ post_patch_height = sample_height // patch_size
243
+ post_patch_width = sample_width // patch_size
244
+ post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1
245
+ self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames
246
+
247
+ # 1. Patch embedding
248
+ self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True)
249
+ self.embedding_dropout = nn.Dropout(dropout)
250
+
251
+ # 2. 3D positional embeddings
252
+ spatial_pos_embedding = get_3d_sincos_pos_embed(
253
+ inner_dim,
254
+ (post_patch_width, post_patch_height),
255
+ post_time_compression_frames,
256
+ spatial_interpolation_scale,
257
+ temporal_interpolation_scale,
258
+ )
259
+ spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1)
260
+ pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False)
261
+ pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding)
262
+ self.register_buffer("pos_embedding", pos_embedding, persistent=False)
263
+
264
+ # 3. Time embeddings
265
+ self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
266
+ self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
267
+
268
+ # 4. Define spatio-temporal transformers blocks
269
+ self.transformer_blocks = nn.ModuleList(
270
+ [
271
+ CogVideoXBlock(
272
+ dim=inner_dim,
273
+ num_attention_heads=num_attention_heads,
274
+ attention_head_dim=attention_head_dim,
275
+ time_embed_dim=time_embed_dim,
276
+ dropout=dropout,
277
+ activation_fn=activation_fn,
278
+ attention_bias=attention_bias,
279
+ norm_elementwise_affine=norm_elementwise_affine,
280
+ norm_eps=norm_eps,
281
+ )
282
+ for _ in range(num_layers)
283
+ ]
284
+ )
285
+ self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
286
+
287
+ # 5. Output blocks
288
+ self.norm_out = AdaLayerNorm(
289
+ embedding_dim=time_embed_dim,
290
+ output_dim=2 * inner_dim,
291
+ norm_elementwise_affine=norm_elementwise_affine,
292
+ norm_eps=norm_eps,
293
+ chunk_dim=1,
294
+ )
295
+ self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
296
+
297
+ self.gradient_checkpointing = False
298
+
299
+ def _set_gradient_checkpointing(self, module, value=False):
300
+ self.gradient_checkpointing = value
301
+
302
+ @property
303
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
304
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
305
+ r"""
306
+ Returns:
307
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
308
+ indexed by its weight name.
309
+ """
310
+ # set recursively
311
+ processors = {}
312
+
313
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
314
+ if hasattr(module, "get_processor"):
315
+ processors[f"{name}.processor"] = module.get_processor()
316
+
317
+ for sub_name, child in module.named_children():
318
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
319
+
320
+ return processors
321
+
322
+ for name, module in self.named_children():
323
+ fn_recursive_add_processors(name, module, processors)
324
+
325
+ return processors
326
+
327
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
328
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
329
+ r"""
330
+ Sets the attention processor to use to compute attention.
331
+
332
+ Parameters:
333
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
334
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
335
+ for **all** `Attention` layers.
336
+
337
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
338
+ processor. This is strongly recommended when setting trainable attention processors.
339
+
340
+ """
341
+ count = len(self.attn_processors.keys())
342
+
343
+ if isinstance(processor, dict) and len(processor) != count:
344
+ raise ValueError(
345
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
346
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
347
+ )
348
+
349
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
350
+ if hasattr(module, "set_processor"):
351
+ if not isinstance(processor, dict):
352
+ module.set_processor(processor)
353
+ else:
354
+ module.set_processor(processor.pop(f"{name}.processor"))
355
+
356
+ for sub_name, child in module.named_children():
357
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
358
+
359
+ for name, module in self.named_children():
360
+ fn_recursive_attn_processor(name, module, processor)
361
+
362
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0
363
+ def fuse_qkv_projections(self):
364
+ """
365
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
366
+ are fused. For cross-attention modules, key and value projection matrices are fused.
367
+
368
+ <Tip warning={true}>
369
+
370
+ This API is 🧪 experimental.
371
+
372
+ </Tip>
373
+ """
374
+ self.original_attn_processors = None
375
+
376
+ for _, attn_processor in self.attn_processors.items():
377
+ if "Added" in str(attn_processor.__class__.__name__):
378
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
379
+
380
+ self.original_attn_processors = self.attn_processors
381
+
382
+ for module in self.modules():
383
+ if isinstance(module, Attention):
384
+ module.fuse_projections(fuse=True)
385
+
386
+ self.set_attn_processor(FusedCogVideoXAttnProcessor2_0())
387
+
388
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
389
+ def unfuse_qkv_projections(self):
390
+ """Disables the fused QKV projection if enabled.
391
+
392
+ <Tip warning={true}>
393
+
394
+ This API is 🧪 experimental.
395
+
396
+ </Tip>
397
+
398
+ """
399
+ if self.original_attn_processors is not None:
400
+ self.set_attn_processor(self.original_attn_processors)
401
+
402
+ def forward(
403
+ self,
404
+ hidden_states: torch.Tensor,
405
+ encoder_hidden_states: torch.Tensor,
406
+ timestep: Union[int, float, torch.LongTensor],
407
+ timestep_cond: Optional[torch.Tensor] = None,
408
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
409
+ return_dict: bool = True,
410
+ ):
411
+ batch_size, num_frames, channels, height, width = hidden_states.shape
412
+
413
+ # 1. Time embedding
414
+ timesteps = timestep
415
+ t_emb = self.time_proj(timesteps)
416
+
417
+ # timesteps does not contain any weights and will always return f32 tensors
418
+ # but time_embedding might actually be running in fp16. so we need to cast here.
419
+ # there might be better ways to encapsulate this.
420
+ t_emb = t_emb.to(dtype=hidden_states.dtype)
421
+ emb = self.time_embedding(t_emb, timestep_cond)
422
+
423
+ # 2. Patch embedding
424
+ hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
425
+
426
+ # 3. Position embedding
427
+ text_seq_length = encoder_hidden_states.shape[1]
428
+ if not self.config.use_rotary_positional_embeddings:
429
+ seq_length = height * width * num_frames // (self.config.patch_size**2)
430
+
431
+ pos_embeds = self.pos_embedding[:, : text_seq_length + seq_length]
432
+ hidden_states = hidden_states + pos_embeds
433
+ hidden_states = self.embedding_dropout(hidden_states)
434
+
435
+ encoder_hidden_states = hidden_states[:, :text_seq_length]
436
+ hidden_states = hidden_states[:, text_seq_length:]
437
+
438
+ # 4. Transformer blocks
439
+ for i, block in enumerate(self.transformer_blocks):
440
+ if self.training and self.gradient_checkpointing:
441
+
442
+ def create_custom_forward(module):
443
+ def custom_forward(*inputs):
444
+ return module(*inputs)
445
+
446
+ return custom_forward
447
+
448
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
449
+ hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
450
+ create_custom_forward(block),
451
+ hidden_states,
452
+ encoder_hidden_states,
453
+ emb,
454
+ image_rotary_emb,
455
+ **ckpt_kwargs,
456
+ )
457
+ else:
458
+ hidden_states, encoder_hidden_states = block(
459
+ hidden_states=hidden_states,
460
+ encoder_hidden_states=encoder_hidden_states,
461
+ temb=emb,
462
+ image_rotary_emb=image_rotary_emb,
463
+ )
464
+
465
+ if not self.config.use_rotary_positional_embeddings:
466
+ # CogVideoX-2B
467
+ hidden_states = self.norm_final(hidden_states)
468
+ else:
469
+ # CogVideoX-5B
470
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
471
+ hidden_states = self.norm_final(hidden_states)
472
+ hidden_states = hidden_states[:, text_seq_length:]
473
+
474
+ # 5. Final block
475
+ hidden_states = self.norm_out(hidden_states, temb=emb)
476
+ hidden_states = self.proj_out(hidden_states)
477
+
478
+ # 6. Unpatchify
479
+ p = self.config.patch_size
480
+ output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p)
481
+ output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
482
+
483
+ if not return_dict:
484
+ return (output,)
485
+ return Transformer2DModelOutput(sample=output)
@@ -1,4 +1,4 @@
1
- # Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -14,14 +14,13 @@
14
14
  from typing import Dict, Optional, Union
15
15
 
16
16
  import torch
17
- import torch.nn.functional as F
18
17
  from torch import nn
19
18
 
20
19
  from ...configuration_utils import ConfigMixin, register_to_config
21
20
  from ...utils import logging
22
21
  from ...utils.torch_utils import maybe_allow_in_graph
23
22
  from ..attention import FeedForward
24
- from ..attention_processor import Attention, AttentionProcessor, HunyuanAttnProcessor2_0
23
+ from ..attention_processor import Attention, AttentionProcessor, FusedHunyuanAttnProcessor2_0, HunyuanAttnProcessor2_0
25
24
  from ..embeddings import (
26
25
  HunyuanCombinedTimestepTextSizeStyleEmbedding,
27
26
  PatchEmbed,
@@ -29,20 +28,12 @@ from ..embeddings import (
29
28
  )
30
29
  from ..modeling_outputs import Transformer2DModelOutput
31
30
  from ..modeling_utils import ModelMixin
32
- from ..normalization import AdaLayerNormContinuous
31
+ from ..normalization import AdaLayerNormContinuous, FP32LayerNorm
33
32
 
34
33
 
35
34
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
36
35
 
37
36
 
38
- class FP32LayerNorm(nn.LayerNorm):
39
- def forward(self, inputs: torch.Tensor) -> torch.Tensor:
40
- origin_dtype = inputs.dtype
41
- return F.layer_norm(
42
- inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps
43
- ).to(origin_dtype)
44
-
45
-
46
37
  class AdaLayerNormShift(nn.Module):
47
38
  r"""
48
39
  Norm layer modified to incorporate timestep embeddings.
@@ -249,6 +240,8 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
249
240
  The length of the clip text embedding.
250
241
  text_len_t5 (`int`, *optional*):
251
242
  The length of the T5 text embedding.
243
+ use_style_cond_and_image_meta_size (`bool`, *optional*):
244
+ Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2
252
245
  """
253
246
 
254
247
  @register_to_config
@@ -270,6 +263,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
270
263
  pooled_projection_dim: int = 1024,
271
264
  text_len: int = 77,
272
265
  text_len_t5: int = 256,
266
+ use_style_cond_and_image_meta_size: bool = True,
273
267
  ):
274
268
  super().__init__()
275
269
  self.out_channels = in_channels * 2 if learn_sigma else in_channels
@@ -301,6 +295,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
301
295
  pooled_projection_dim=pooled_projection_dim,
302
296
  seq_len=text_len_t5,
303
297
  cross_attention_dim=cross_attention_dim_t5,
298
+ use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size,
304
299
  )
305
300
 
306
301
  # HunyuanDiT Blocks
@@ -322,7 +317,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
322
317
  self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
323
318
  self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
324
319
 
325
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
320
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedHunyuanAttnProcessor2_0
326
321
  def fuse_qkv_projections(self):
327
322
  """
328
323
  Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
@@ -346,6 +341,8 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
346
341
  if isinstance(module, Attention):
347
342
  module.fuse_projections(fuse=True)
348
343
 
344
+ self.set_attn_processor(FusedHunyuanAttnProcessor2_0())
345
+
349
346
  # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
350
347
  def unfuse_qkv_projections(self):
351
348
  """Disables the fused QKV projection if enabled.
@@ -373,7 +370,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
373
370
 
374
371
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
375
372
  if hasattr(module, "get_processor"):
376
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
373
+ processors[f"{name}.processor"] = module.get_processor()
377
374
 
378
375
  for sub_name, child in module.named_children():
379
376
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -437,6 +434,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
437
434
  image_meta_size=None,
438
435
  style=None,
439
436
  image_rotary_emb=None,
437
+ controlnet_block_samples=None,
440
438
  return_dict=True,
441
439
  ):
442
440
  """
@@ -491,7 +489,10 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
491
489
  skips = []
492
490
  for layer, block in enumerate(self.blocks):
493
491
  if layer > self.config.num_layers // 2:
494
- skip = skips.pop()
492
+ if controlnet_block_samples is not None:
493
+ skip = skips.pop() + controlnet_block_samples.pop()
494
+ else:
495
+ skip = skips.pop()
495
496
  hidden_states = block(
496
497
  hidden_states,
497
498
  temb=temb,
@@ -510,6 +511,9 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
510
511
  if layer < (self.config.num_layers // 2 - 1):
511
512
  skips.append(hidden_states)
512
513
 
514
+ if controlnet_block_samples is not None and len(controlnet_block_samples) != 0:
515
+ raise ValueError("The number of controls is not equal to the number of skip connections.")
516
+
513
517
  # final layer
514
518
  hidden_states = self.norm_out(hidden_states, temb.to(torch.float32))
515
519
  hidden_states = self.proj_out(hidden_states)