diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1201 @@
1
+ # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, Dict, List, Optional, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ CLIPTextModelWithProjection,
21
+ CLIPTokenizer,
22
+ T5EncoderModel,
23
+ T5TokenizerFast,
24
+ )
25
+
26
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import SD3LoraLoaderMixin
29
+ from ...models.autoencoders import AutoencoderKL
30
+ from ...models.transformers import SD3Transformer2DModel
31
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
32
+ from ...utils import (
33
+ USE_PEFT_BACKEND,
34
+ is_torch_xla_available,
35
+ logging,
36
+ replace_example_docstring,
37
+ scale_lora_layers,
38
+ unscale_lora_layers,
39
+ )
40
+ from ...utils.torch_utils import randn_tensor
41
+ from ..pipeline_utils import DiffusionPipeline
42
+ from .pipeline_output import StableDiffusion3PipelineOutput
43
+
44
+
45
+ if is_torch_xla_available():
46
+ import torch_xla.core.xla_model as xm
47
+
48
+ XLA_AVAILABLE = True
49
+ else:
50
+ XLA_AVAILABLE = False
51
+
52
+
53
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
54
+
55
+ EXAMPLE_DOC_STRING = """
56
+ Examples:
57
+ ```py
58
+ >>> import torch
59
+ >>> from diffusers import StableDiffusion3InpaintPipeline
60
+ >>> from diffusers.utils import load_image
61
+
62
+ >>> pipe = StableDiffusion3InpaintPipeline.from_pretrained(
63
+ ... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
64
+ ... )
65
+ >>> pipe.to("cuda")
66
+ >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
67
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
68
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
69
+ >>> source = load_image(img_url)
70
+ >>> mask = load_image(mask_url)
71
+ >>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]
72
+ >>> image.save("sd3_inpainting.png")
73
+ ```
74
+ """
75
+
76
+
77
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
78
+ def retrieve_latents(
79
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
80
+ ):
81
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
82
+ return encoder_output.latent_dist.sample(generator)
83
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
84
+ return encoder_output.latent_dist.mode()
85
+ elif hasattr(encoder_output, "latents"):
86
+ return encoder_output.latents
87
+ else:
88
+ raise AttributeError("Could not access latents of provided encoder_output")
89
+
90
+
91
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
92
+ def retrieve_timesteps(
93
+ scheduler,
94
+ num_inference_steps: Optional[int] = None,
95
+ device: Optional[Union[str, torch.device]] = None,
96
+ timesteps: Optional[List[int]] = None,
97
+ sigmas: Optional[List[float]] = None,
98
+ **kwargs,
99
+ ):
100
+ """
101
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
102
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
103
+
104
+ Args:
105
+ scheduler (`SchedulerMixin`):
106
+ The scheduler to get timesteps from.
107
+ num_inference_steps (`int`):
108
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
109
+ must be `None`.
110
+ device (`str` or `torch.device`, *optional*):
111
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
112
+ timesteps (`List[int]`, *optional*):
113
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
114
+ `num_inference_steps` and `sigmas` must be `None`.
115
+ sigmas (`List[float]`, *optional*):
116
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
117
+ `num_inference_steps` and `timesteps` must be `None`.
118
+
119
+ Returns:
120
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
121
+ second element is the number of inference steps.
122
+ """
123
+ if timesteps is not None and sigmas is not None:
124
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
125
+ if timesteps is not None:
126
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
127
+ if not accepts_timesteps:
128
+ raise ValueError(
129
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
130
+ f" timestep schedules. Please check whether you are using the correct scheduler."
131
+ )
132
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
133
+ timesteps = scheduler.timesteps
134
+ num_inference_steps = len(timesteps)
135
+ elif sigmas is not None:
136
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
137
+ if not accept_sigmas:
138
+ raise ValueError(
139
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
140
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
141
+ )
142
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
143
+ timesteps = scheduler.timesteps
144
+ num_inference_steps = len(timesteps)
145
+ else:
146
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
147
+ timesteps = scheduler.timesteps
148
+ return timesteps, num_inference_steps
149
+
150
+
151
+ class StableDiffusion3InpaintPipeline(DiffusionPipeline):
152
+ r"""
153
+ Args:
154
+ transformer ([`SD3Transformer2DModel`]):
155
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
156
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
157
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
158
+ vae ([`AutoencoderKL`]):
159
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
160
+ text_encoder ([`CLIPTextModelWithProjection`]):
161
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
162
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
163
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
164
+ as its dimension.
165
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
166
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
167
+ specifically the
168
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
169
+ variant.
170
+ text_encoder_3 ([`T5EncoderModel`]):
171
+ Frozen text-encoder. Stable Diffusion 3 uses
172
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
173
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
174
+ tokenizer (`CLIPTokenizer`):
175
+ Tokenizer of class
176
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
177
+ tokenizer_2 (`CLIPTokenizer`):
178
+ Second Tokenizer of class
179
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
180
+ tokenizer_3 (`T5TokenizerFast`):
181
+ Tokenizer of class
182
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
183
+ """
184
+
185
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
186
+ _optional_components = []
187
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
188
+
189
+ def __init__(
190
+ self,
191
+ transformer: SD3Transformer2DModel,
192
+ scheduler: FlowMatchEulerDiscreteScheduler,
193
+ vae: AutoencoderKL,
194
+ text_encoder: CLIPTextModelWithProjection,
195
+ tokenizer: CLIPTokenizer,
196
+ text_encoder_2: CLIPTextModelWithProjection,
197
+ tokenizer_2: CLIPTokenizer,
198
+ text_encoder_3: T5EncoderModel,
199
+ tokenizer_3: T5TokenizerFast,
200
+ ):
201
+ super().__init__()
202
+
203
+ self.register_modules(
204
+ vae=vae,
205
+ text_encoder=text_encoder,
206
+ text_encoder_2=text_encoder_2,
207
+ text_encoder_3=text_encoder_3,
208
+ tokenizer=tokenizer,
209
+ tokenizer_2=tokenizer_2,
210
+ tokenizer_3=tokenizer_3,
211
+ transformer=transformer,
212
+ scheduler=scheduler,
213
+ )
214
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
215
+ self.image_processor = VaeImageProcessor(
216
+ vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels
217
+ )
218
+ self.mask_processor = VaeImageProcessor(
219
+ vae_scale_factor=self.vae_scale_factor,
220
+ vae_latent_channels=self.vae.config.latent_channels,
221
+ do_normalize=False,
222
+ do_binarize=True,
223
+ do_convert_grayscale=True,
224
+ )
225
+ self.tokenizer_max_length = self.tokenizer.model_max_length
226
+ self.default_sample_size = self.transformer.config.sample_size
227
+
228
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
229
+ def _get_t5_prompt_embeds(
230
+ self,
231
+ prompt: Union[str, List[str]] = None,
232
+ num_images_per_prompt: int = 1,
233
+ max_sequence_length: int = 256,
234
+ device: Optional[torch.device] = None,
235
+ dtype: Optional[torch.dtype] = None,
236
+ ):
237
+ device = device or self._execution_device
238
+ dtype = dtype or self.text_encoder.dtype
239
+
240
+ prompt = [prompt] if isinstance(prompt, str) else prompt
241
+ batch_size = len(prompt)
242
+
243
+ if self.text_encoder_3 is None:
244
+ return torch.zeros(
245
+ (
246
+ batch_size * num_images_per_prompt,
247
+ self.tokenizer_max_length,
248
+ self.transformer.config.joint_attention_dim,
249
+ ),
250
+ device=device,
251
+ dtype=dtype,
252
+ )
253
+
254
+ text_inputs = self.tokenizer_3(
255
+ prompt,
256
+ padding="max_length",
257
+ max_length=max_sequence_length,
258
+ truncation=True,
259
+ add_special_tokens=True,
260
+ return_tensors="pt",
261
+ )
262
+ text_input_ids = text_inputs.input_ids
263
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
264
+
265
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
266
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
267
+ logger.warning(
268
+ "The following part of your input was truncated because `max_sequence_length` is set to "
269
+ f" {max_sequence_length} tokens: {removed_text}"
270
+ )
271
+
272
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
273
+
274
+ dtype = self.text_encoder_3.dtype
275
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
276
+
277
+ _, seq_len, _ = prompt_embeds.shape
278
+
279
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
280
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
281
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
282
+
283
+ return prompt_embeds
284
+
285
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
286
+ def _get_clip_prompt_embeds(
287
+ self,
288
+ prompt: Union[str, List[str]],
289
+ num_images_per_prompt: int = 1,
290
+ device: Optional[torch.device] = None,
291
+ clip_skip: Optional[int] = None,
292
+ clip_model_index: int = 0,
293
+ ):
294
+ device = device or self._execution_device
295
+
296
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
297
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
298
+
299
+ tokenizer = clip_tokenizers[clip_model_index]
300
+ text_encoder = clip_text_encoders[clip_model_index]
301
+
302
+ prompt = [prompt] if isinstance(prompt, str) else prompt
303
+ batch_size = len(prompt)
304
+
305
+ text_inputs = tokenizer(
306
+ prompt,
307
+ padding="max_length",
308
+ max_length=self.tokenizer_max_length,
309
+ truncation=True,
310
+ return_tensors="pt",
311
+ )
312
+
313
+ text_input_ids = text_inputs.input_ids
314
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
315
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
316
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
317
+ logger.warning(
318
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
319
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
320
+ )
321
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
322
+ pooled_prompt_embeds = prompt_embeds[0]
323
+
324
+ if clip_skip is None:
325
+ prompt_embeds = prompt_embeds.hidden_states[-2]
326
+ else:
327
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
328
+
329
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
330
+
331
+ _, seq_len, _ = prompt_embeds.shape
332
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
333
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
334
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
335
+
336
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
337
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
338
+
339
+ return prompt_embeds, pooled_prompt_embeds
340
+
341
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
342
+ def encode_prompt(
343
+ self,
344
+ prompt: Union[str, List[str]],
345
+ prompt_2: Union[str, List[str]],
346
+ prompt_3: Union[str, List[str]],
347
+ device: Optional[torch.device] = None,
348
+ num_images_per_prompt: int = 1,
349
+ do_classifier_free_guidance: bool = True,
350
+ negative_prompt: Optional[Union[str, List[str]]] = None,
351
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
352
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
353
+ prompt_embeds: Optional[torch.FloatTensor] = None,
354
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
355
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
356
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
357
+ clip_skip: Optional[int] = None,
358
+ max_sequence_length: int = 256,
359
+ lora_scale: Optional[float] = None,
360
+ ):
361
+ r"""
362
+
363
+ Args:
364
+ prompt (`str` or `List[str]`, *optional*):
365
+ prompt to be encoded
366
+ prompt_2 (`str` or `List[str]`, *optional*):
367
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
368
+ used in all text-encoders
369
+ prompt_3 (`str` or `List[str]`, *optional*):
370
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
371
+ used in all text-encoders
372
+ device: (`torch.device`):
373
+ torch device
374
+ num_images_per_prompt (`int`):
375
+ number of images that should be generated per prompt
376
+ do_classifier_free_guidance (`bool`):
377
+ whether to use classifier free guidance or not
378
+ negative_prompt (`str` or `List[str]`, *optional*):
379
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
380
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
381
+ less than `1`).
382
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
383
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
384
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
385
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
386
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
387
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
388
+ prompt_embeds (`torch.FloatTensor`, *optional*):
389
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
390
+ provided, text embeddings will be generated from `prompt` input argument.
391
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
392
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
393
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
394
+ argument.
395
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
396
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
397
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
398
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
399
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
400
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
401
+ input argument.
402
+ clip_skip (`int`, *optional*):
403
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
404
+ the output of the pre-final layer will be used for computing the prompt embeddings.
405
+ lora_scale (`float`, *optional*):
406
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
407
+ """
408
+ device = device or self._execution_device
409
+
410
+ # set lora scale so that monkey patched LoRA
411
+ # function of text encoder can correctly access it
412
+ if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
413
+ self._lora_scale = lora_scale
414
+
415
+ # dynamically adjust the LoRA scale
416
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
417
+ scale_lora_layers(self.text_encoder, lora_scale)
418
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
419
+ scale_lora_layers(self.text_encoder_2, lora_scale)
420
+
421
+ prompt = [prompt] if isinstance(prompt, str) else prompt
422
+ if prompt is not None:
423
+ batch_size = len(prompt)
424
+ else:
425
+ batch_size = prompt_embeds.shape[0]
426
+
427
+ if prompt_embeds is None:
428
+ prompt_2 = prompt_2 or prompt
429
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
430
+
431
+ prompt_3 = prompt_3 or prompt
432
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
433
+
434
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
435
+ prompt=prompt,
436
+ device=device,
437
+ num_images_per_prompt=num_images_per_prompt,
438
+ clip_skip=clip_skip,
439
+ clip_model_index=0,
440
+ )
441
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
442
+ prompt=prompt_2,
443
+ device=device,
444
+ num_images_per_prompt=num_images_per_prompt,
445
+ clip_skip=clip_skip,
446
+ clip_model_index=1,
447
+ )
448
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
449
+
450
+ t5_prompt_embed = self._get_t5_prompt_embeds(
451
+ prompt=prompt_3,
452
+ num_images_per_prompt=num_images_per_prompt,
453
+ max_sequence_length=max_sequence_length,
454
+ device=device,
455
+ )
456
+
457
+ clip_prompt_embeds = torch.nn.functional.pad(
458
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
459
+ )
460
+
461
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
462
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
463
+
464
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
465
+ negative_prompt = negative_prompt or ""
466
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
467
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
468
+
469
+ # normalize str to list
470
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
471
+ negative_prompt_2 = (
472
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
473
+ )
474
+ negative_prompt_3 = (
475
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
476
+ )
477
+
478
+ if prompt is not None and type(prompt) is not type(negative_prompt):
479
+ raise TypeError(
480
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
481
+ f" {type(prompt)}."
482
+ )
483
+ elif batch_size != len(negative_prompt):
484
+ raise ValueError(
485
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
486
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
487
+ " the batch size of `prompt`."
488
+ )
489
+
490
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
491
+ negative_prompt,
492
+ device=device,
493
+ num_images_per_prompt=num_images_per_prompt,
494
+ clip_skip=None,
495
+ clip_model_index=0,
496
+ )
497
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
498
+ negative_prompt_2,
499
+ device=device,
500
+ num_images_per_prompt=num_images_per_prompt,
501
+ clip_skip=None,
502
+ clip_model_index=1,
503
+ )
504
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
505
+
506
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
507
+ prompt=negative_prompt_3,
508
+ num_images_per_prompt=num_images_per_prompt,
509
+ max_sequence_length=max_sequence_length,
510
+ device=device,
511
+ )
512
+
513
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
514
+ negative_clip_prompt_embeds,
515
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
516
+ )
517
+
518
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
519
+ negative_pooled_prompt_embeds = torch.cat(
520
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
521
+ )
522
+
523
+ if self.text_encoder is not None:
524
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
525
+ # Retrieve the original scale by scaling back the LoRA layers
526
+ unscale_lora_layers(self.text_encoder, lora_scale)
527
+
528
+ if self.text_encoder_2 is not None:
529
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
530
+ # Retrieve the original scale by scaling back the LoRA layers
531
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
532
+
533
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
534
+
535
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.check_inputs
536
+ def check_inputs(
537
+ self,
538
+ prompt,
539
+ prompt_2,
540
+ prompt_3,
541
+ strength,
542
+ negative_prompt=None,
543
+ negative_prompt_2=None,
544
+ negative_prompt_3=None,
545
+ prompt_embeds=None,
546
+ negative_prompt_embeds=None,
547
+ pooled_prompt_embeds=None,
548
+ negative_pooled_prompt_embeds=None,
549
+ callback_on_step_end_tensor_inputs=None,
550
+ max_sequence_length=None,
551
+ ):
552
+ if strength < 0 or strength > 1:
553
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
554
+
555
+ if callback_on_step_end_tensor_inputs is not None and not all(
556
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
557
+ ):
558
+ raise ValueError(
559
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
560
+ )
561
+
562
+ if prompt is not None and prompt_embeds is not None:
563
+ raise ValueError(
564
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
565
+ " only forward one of the two."
566
+ )
567
+ elif prompt_2 is not None and prompt_embeds is not None:
568
+ raise ValueError(
569
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
570
+ " only forward one of the two."
571
+ )
572
+ elif prompt_3 is not None and prompt_embeds is not None:
573
+ raise ValueError(
574
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
575
+ " only forward one of the two."
576
+ )
577
+ elif prompt is None and prompt_embeds is None:
578
+ raise ValueError(
579
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
580
+ )
581
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
582
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
583
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
584
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
585
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
586
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
587
+
588
+ if negative_prompt is not None and negative_prompt_embeds is not None:
589
+ raise ValueError(
590
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
591
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
592
+ )
593
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
594
+ raise ValueError(
595
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
596
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
597
+ )
598
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
599
+ raise ValueError(
600
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
601
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
602
+ )
603
+
604
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
605
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
606
+ raise ValueError(
607
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
608
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
609
+ f" {negative_prompt_embeds.shape}."
610
+ )
611
+
612
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
613
+ raise ValueError(
614
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
615
+ )
616
+
617
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
618
+ raise ValueError(
619
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
620
+ )
621
+
622
+ if max_sequence_length is not None and max_sequence_length > 512:
623
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
624
+
625
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
626
+ def get_timesteps(self, num_inference_steps, strength, device):
627
+ # get the original timestep using init_timestep
628
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
629
+
630
+ t_start = int(max(num_inference_steps - init_timestep, 0))
631
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
632
+ if hasattr(self.scheduler, "set_begin_index"):
633
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
634
+
635
+ return timesteps, num_inference_steps - t_start
636
+
637
+ def prepare_latents(
638
+ self,
639
+ batch_size,
640
+ num_channels_latents,
641
+ height,
642
+ width,
643
+ dtype,
644
+ device,
645
+ generator,
646
+ latents=None,
647
+ image=None,
648
+ timestep=None,
649
+ is_strength_max=True,
650
+ return_noise=False,
651
+ return_image_latents=False,
652
+ ):
653
+ shape = (
654
+ batch_size,
655
+ num_channels_latents,
656
+ int(height) // self.vae_scale_factor,
657
+ int(width) // self.vae_scale_factor,
658
+ )
659
+ if isinstance(generator, list) and len(generator) != batch_size:
660
+ raise ValueError(
661
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
662
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
663
+ )
664
+
665
+ if (image is None or timestep is None) and not is_strength_max:
666
+ raise ValueError(
667
+ "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
668
+ "However, either the image or the noise timestep has not been provided."
669
+ )
670
+
671
+ if return_image_latents or (latents is None and not is_strength_max):
672
+ image = image.to(device=device, dtype=dtype)
673
+
674
+ if image.shape[1] == 16:
675
+ image_latents = image
676
+ else:
677
+ image_latents = self._encode_vae_image(image=image, generator=generator)
678
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
679
+
680
+ if latents is None:
681
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
682
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
683
+ latents = noise if is_strength_max else self.scheduler.scale_noise(image_latents, timestep, noise)
684
+ else:
685
+ noise = latents.to(device)
686
+ latents = noise
687
+
688
+ outputs = (latents,)
689
+
690
+ if return_noise:
691
+ outputs += (noise,)
692
+
693
+ if return_image_latents:
694
+ outputs += (image_latents,)
695
+
696
+ return outputs
697
+
698
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
699
+ if isinstance(generator, list):
700
+ image_latents = [
701
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
702
+ for i in range(image.shape[0])
703
+ ]
704
+ image_latents = torch.cat(image_latents, dim=0)
705
+ else:
706
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
707
+
708
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
709
+
710
+ return image_latents
711
+
712
+ def prepare_mask_latents(
713
+ self,
714
+ mask,
715
+ masked_image,
716
+ batch_size,
717
+ num_images_per_prompt,
718
+ height,
719
+ width,
720
+ dtype,
721
+ device,
722
+ generator,
723
+ do_classifier_free_guidance,
724
+ ):
725
+ # resize the mask to latents shape as we concatenate the mask to the latents
726
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
727
+ # and half precision
728
+ mask = torch.nn.functional.interpolate(
729
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
730
+ )
731
+ mask = mask.to(device=device, dtype=dtype)
732
+
733
+ batch_size = batch_size * num_images_per_prompt
734
+
735
+ masked_image = masked_image.to(device=device, dtype=dtype)
736
+
737
+ if masked_image.shape[1] == 16:
738
+ masked_image_latents = masked_image
739
+ else:
740
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
741
+
742
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
743
+
744
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
745
+ if mask.shape[0] < batch_size:
746
+ if not batch_size % mask.shape[0] == 0:
747
+ raise ValueError(
748
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
749
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
750
+ " of masks that you pass is divisible by the total requested batch size."
751
+ )
752
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
753
+ if masked_image_latents.shape[0] < batch_size:
754
+ if not batch_size % masked_image_latents.shape[0] == 0:
755
+ raise ValueError(
756
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
757
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
758
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
759
+ )
760
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
761
+
762
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
763
+ masked_image_latents = (
764
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
765
+ )
766
+
767
+ # aligning device to prevent device errors when concating it with the latent model input
768
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
769
+ return mask, masked_image_latents
770
+
771
+ @property
772
+ def guidance_scale(self):
773
+ return self._guidance_scale
774
+
775
+ @property
776
+ def clip_skip(self):
777
+ return self._clip_skip
778
+
779
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
780
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
781
+ # corresponds to doing no classifier free guidance.
782
+ @property
783
+ def do_classifier_free_guidance(self):
784
+ return self._guidance_scale > 1
785
+
786
+ @property
787
+ def num_timesteps(self):
788
+ return self._num_timesteps
789
+
790
+ @property
791
+ def interrupt(self):
792
+ return self._interrupt
793
+
794
+ @torch.no_grad()
795
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
796
+ def __call__(
797
+ self,
798
+ prompt: Union[str, List[str]] = None,
799
+ prompt_2: Optional[Union[str, List[str]]] = None,
800
+ prompt_3: Optional[Union[str, List[str]]] = None,
801
+ image: PipelineImageInput = None,
802
+ mask_image: PipelineImageInput = None,
803
+ masked_image_latents: PipelineImageInput = None,
804
+ height: int = None,
805
+ width: int = None,
806
+ padding_mask_crop: Optional[int] = None,
807
+ strength: float = 0.6,
808
+ num_inference_steps: int = 50,
809
+ timesteps: List[int] = None,
810
+ guidance_scale: float = 7.0,
811
+ negative_prompt: Optional[Union[str, List[str]]] = None,
812
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
813
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
814
+ num_images_per_prompt: Optional[int] = 1,
815
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
816
+ latents: Optional[torch.Tensor] = None,
817
+ prompt_embeds: Optional[torch.Tensor] = None,
818
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
819
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
820
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
821
+ output_type: Optional[str] = "pil",
822
+ return_dict: bool = True,
823
+ clip_skip: Optional[int] = None,
824
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
825
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
826
+ max_sequence_length: int = 256,
827
+ ):
828
+ r"""
829
+ Function invoked when calling the pipeline for generation.
830
+
831
+ Args:
832
+ prompt (`str` or `List[str]`, *optional*):
833
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
834
+ instead.
835
+ prompt_2 (`str` or `List[str]`, *optional*):
836
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
837
+ will be used instead
838
+ prompt_3 (`str` or `List[str]`, *optional*):
839
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
840
+ will be used instead
841
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
842
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
843
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
844
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
845
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
846
+ latents as `image`, but if passing latents directly it is not encoded again.
847
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
848
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
849
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
850
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
851
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
852
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
853
+ 1)`, or `(H, W)`.
854
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
855
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
856
+ latents tensor will ge generated by `mask_image`.
857
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
858
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
859
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
860
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
861
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
862
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
863
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
864
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
865
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
866
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
867
+ the image is large and contain information irrelevant for inpainting, such as background.
868
+ strength (`float`, *optional*, defaults to 1.0):
869
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
870
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
871
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
872
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
873
+ essentially ignores `image`.
874
+ num_inference_steps (`int`, *optional*, defaults to 50):
875
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
876
+ expense of slower inference.
877
+ timesteps (`List[int]`, *optional*):
878
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
879
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
880
+ passed will be used. Must be in descending order.
881
+ guidance_scale (`float`, *optional*, defaults to 7.0):
882
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
883
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
884
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
885
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
886
+ usually at the expense of lower image quality.
887
+ negative_prompt (`str` or `List[str]`, *optional*):
888
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
889
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
890
+ less than `1`).
891
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
892
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
893
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
894
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
895
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
896
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
897
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
898
+ The number of images to generate per prompt.
899
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
900
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
901
+ to make generation deterministic.
902
+ latents (`torch.FloatTensor`, *optional*):
903
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
904
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
905
+ tensor will ge generated by sampling using the supplied random `generator`.
906
+ prompt_embeds (`torch.FloatTensor`, *optional*):
907
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
908
+ provided, text embeddings will be generated from `prompt` input argument.
909
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
910
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
911
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
912
+ argument.
913
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
914
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
915
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
916
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
917
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
918
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
919
+ input argument.
920
+ output_type (`str`, *optional*, defaults to `"pil"`):
921
+ The output format of the generate image. Choose between
922
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
923
+ return_dict (`bool`, *optional*, defaults to `True`):
924
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
925
+ of a plain tuple.
926
+ callback_on_step_end (`Callable`, *optional*):
927
+ A function that calls at the end of each denoising steps during the inference. The function is called
928
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
929
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
930
+ `callback_on_step_end_tensor_inputs`.
931
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
932
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
933
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
934
+ `._callback_tensor_inputs` attribute of your pipeline class.
935
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
936
+
937
+ Examples:
938
+
939
+ Returns:
940
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
941
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
942
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
943
+ """
944
+
945
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
946
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
947
+
948
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor
949
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor
950
+
951
+ # 1. Check inputs. Raise error if not correct
952
+ self.check_inputs(
953
+ prompt,
954
+ prompt_2,
955
+ prompt_3,
956
+ strength,
957
+ negative_prompt=negative_prompt,
958
+ negative_prompt_2=negative_prompt_2,
959
+ negative_prompt_3=negative_prompt_3,
960
+ prompt_embeds=prompt_embeds,
961
+ negative_prompt_embeds=negative_prompt_embeds,
962
+ pooled_prompt_embeds=pooled_prompt_embeds,
963
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
964
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
965
+ max_sequence_length=max_sequence_length,
966
+ )
967
+
968
+ self._guidance_scale = guidance_scale
969
+ self._clip_skip = clip_skip
970
+ self._interrupt = False
971
+
972
+ # 2. Define call parameters
973
+ if prompt is not None and isinstance(prompt, str):
974
+ batch_size = 1
975
+ elif prompt is not None and isinstance(prompt, list):
976
+ batch_size = len(prompt)
977
+ else:
978
+ batch_size = prompt_embeds.shape[0]
979
+
980
+ device = self._execution_device
981
+
982
+ (
983
+ prompt_embeds,
984
+ negative_prompt_embeds,
985
+ pooled_prompt_embeds,
986
+ negative_pooled_prompt_embeds,
987
+ ) = self.encode_prompt(
988
+ prompt=prompt,
989
+ prompt_2=prompt_2,
990
+ prompt_3=prompt_3,
991
+ negative_prompt=negative_prompt,
992
+ negative_prompt_2=negative_prompt_2,
993
+ negative_prompt_3=negative_prompt_3,
994
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
995
+ prompt_embeds=prompt_embeds,
996
+ negative_prompt_embeds=negative_prompt_embeds,
997
+ pooled_prompt_embeds=pooled_prompt_embeds,
998
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
999
+ device=device,
1000
+ clip_skip=self.clip_skip,
1001
+ num_images_per_prompt=num_images_per_prompt,
1002
+ max_sequence_length=max_sequence_length,
1003
+ )
1004
+
1005
+ if self.do_classifier_free_guidance:
1006
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1007
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
1008
+
1009
+ # 3. Prepare timesteps
1010
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1011
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1012
+ # check that number of inference steps is not < 1 - as this doesn't make sense
1013
+ if num_inference_steps < 1:
1014
+ raise ValueError(
1015
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
1016
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
1017
+ )
1018
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1019
+
1020
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
1021
+ is_strength_max = strength == 1.0
1022
+
1023
+ # 4. Preprocess mask and image
1024
+ if padding_mask_crop is not None:
1025
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
1026
+ resize_mode = "fill"
1027
+ else:
1028
+ crops_coords = None
1029
+ resize_mode = "default"
1030
+
1031
+ original_image = image
1032
+ init_image = self.image_processor.preprocess(
1033
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
1034
+ )
1035
+ init_image = init_image.to(dtype=torch.float32)
1036
+
1037
+ # 5. Prepare latent variables
1038
+ num_channels_latents = self.vae.config.latent_channels
1039
+ num_channels_transformer = self.transformer.config.in_channels
1040
+ return_image_latents = num_channels_transformer == 16
1041
+
1042
+ latents_outputs = self.prepare_latents(
1043
+ batch_size * num_images_per_prompt,
1044
+ num_channels_latents,
1045
+ height,
1046
+ width,
1047
+ prompt_embeds.dtype,
1048
+ device,
1049
+ generator,
1050
+ latents,
1051
+ image=init_image,
1052
+ timestep=latent_timestep,
1053
+ is_strength_max=is_strength_max,
1054
+ return_noise=True,
1055
+ return_image_latents=return_image_latents,
1056
+ )
1057
+
1058
+ if return_image_latents:
1059
+ latents, noise, image_latents = latents_outputs
1060
+ else:
1061
+ latents, noise = latents_outputs
1062
+
1063
+ # 6. Prepare mask latent variables
1064
+ mask_condition = self.mask_processor.preprocess(
1065
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1066
+ )
1067
+
1068
+ if masked_image_latents is None:
1069
+ masked_image = init_image * (mask_condition < 0.5)
1070
+ else:
1071
+ masked_image = masked_image_latents
1072
+
1073
+ mask, masked_image_latents = self.prepare_mask_latents(
1074
+ mask_condition,
1075
+ masked_image,
1076
+ batch_size,
1077
+ num_images_per_prompt,
1078
+ height,
1079
+ width,
1080
+ prompt_embeds.dtype,
1081
+ device,
1082
+ generator,
1083
+ self.do_classifier_free_guidance,
1084
+ )
1085
+
1086
+ # match the inpainting pipeline and will be updated with input + mask inpainting model later
1087
+ if num_channels_transformer == 33:
1088
+ # default case for runwayml/stable-diffusion-inpainting
1089
+ num_channels_mask = mask.shape[1]
1090
+ num_channels_masked_image = masked_image_latents.shape[1]
1091
+ if (
1092
+ num_channels_latents + num_channels_mask + num_channels_masked_image
1093
+ != self.transformer.config.in_channels
1094
+ ):
1095
+ raise ValueError(
1096
+ f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects"
1097
+ f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
1098
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
1099
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
1100
+ " `pipeline.transformer` or your `mask_image` or `image` input."
1101
+ )
1102
+ elif num_channels_transformer != 16:
1103
+ raise ValueError(
1104
+ f"The transformer {self.transformer.__class__} should have 16 input channels or 33 input channels, not {self.transformer.config.in_channels}."
1105
+ )
1106
+
1107
+ # 7. Denoising loop
1108
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1109
+ self._num_timesteps = len(timesteps)
1110
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1111
+ for i, t in enumerate(timesteps):
1112
+ if self.interrupt:
1113
+ continue
1114
+
1115
+ # expand the latents if we are doing classifier free guidance
1116
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1117
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1118
+ timestep = t.expand(latent_model_input.shape[0])
1119
+
1120
+ if num_channels_transformer == 33:
1121
+ latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
1122
+
1123
+ noise_pred = self.transformer(
1124
+ hidden_states=latent_model_input,
1125
+ timestep=timestep,
1126
+ encoder_hidden_states=prompt_embeds,
1127
+ pooled_projections=pooled_prompt_embeds,
1128
+ return_dict=False,
1129
+ )[0]
1130
+
1131
+ # perform guidance
1132
+ if self.do_classifier_free_guidance:
1133
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1134
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1135
+
1136
+ # compute the previous noisy sample x_t -> x_t-1
1137
+ latents_dtype = latents.dtype
1138
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1139
+ if num_channels_transformer == 16:
1140
+ init_latents_proper = image_latents
1141
+ if self.do_classifier_free_guidance:
1142
+ init_mask, _ = mask.chunk(2)
1143
+ else:
1144
+ init_mask = mask
1145
+
1146
+ if i < len(timesteps) - 1:
1147
+ noise_timestep = timesteps[i + 1]
1148
+ init_latents_proper = self.scheduler.scale_noise(
1149
+ init_latents_proper, torch.tensor([noise_timestep]), noise
1150
+ )
1151
+
1152
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1153
+
1154
+ if latents.dtype != latents_dtype:
1155
+ if torch.backends.mps.is_available():
1156
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1157
+ latents = latents.to(latents_dtype)
1158
+
1159
+ if callback_on_step_end is not None:
1160
+ callback_kwargs = {}
1161
+ for k in callback_on_step_end_tensor_inputs:
1162
+ callback_kwargs[k] = locals()[k]
1163
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1164
+
1165
+ latents = callback_outputs.pop("latents", latents)
1166
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1167
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1168
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1169
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1170
+ )
1171
+ mask = callback_outputs.pop("mask", mask)
1172
+ masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
1173
+
1174
+ # call the callback, if provided
1175
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1176
+ progress_bar.update()
1177
+
1178
+ if XLA_AVAILABLE:
1179
+ xm.mark_step()
1180
+
1181
+ if not output_type == "latent":
1182
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1183
+ 0
1184
+ ]
1185
+ else:
1186
+ image = latents
1187
+
1188
+ do_denormalize = [True] * image.shape[0]
1189
+
1190
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1191
+
1192
+ if padding_mask_crop is not None:
1193
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
1194
+
1195
+ # Offload all models
1196
+ self.maybe_free_model_hooks()
1197
+
1198
+ if not return_dict:
1199
+ return (image,)
1200
+
1201
+ return StableDiffusion3PipelineOutput(images=image)