diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2252 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +3 -14
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +293 -8
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1937 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +403 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +50 -6
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +37 -15
  210. diffusers/utils/loading_utils.py +80 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1042 @@
1
+ # Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
21
+
22
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
26
+ from ...models import AutoencoderKL, HunyuanDiT2DControlNetModel, HunyuanDiT2DModel, HunyuanDiT2DMultiControlNetModel
27
+ from ...models.embeddings import get_2d_rotary_pos_embed
28
+ from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
29
+ from ...schedulers import DDPMScheduler
30
+ from ...utils import (
31
+ is_torch_xla_available,
32
+ logging,
33
+ replace_example_docstring,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+
38
+
39
+ if is_torch_xla_available():
40
+ import torch_xla.core.xla_model as xm
41
+
42
+ XLA_AVAILABLE = True
43
+ else:
44
+ XLA_AVAILABLE = False
45
+
46
+
47
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
+
49
+ EXAMPLE_DOC_STRING = """
50
+ Examples:
51
+ ```py
52
+ from diffusers import HunyuanDiT2DControlNetModel, HunyuanDiTControlNetPipeline
53
+ import torch
54
+
55
+ controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
56
+ "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16
57
+ )
58
+
59
+ pipe = HunyuanDiTControlNetPipeline.from_pretrained(
60
+ "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
61
+ )
62
+ pipe.to("cuda")
63
+
64
+ from diffusers.utils import load_image
65
+
66
+ cond_image = load_image(
67
+ "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true"
68
+ )
69
+
70
+ ## You may also use English prompt as HunyuanDiT supports both English and Chinese
71
+ prompt = "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围"
72
+ # prompt="At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere."
73
+ image = pipe(
74
+ prompt,
75
+ height=1024,
76
+ width=1024,
77
+ control_image=cond_image,
78
+ num_inference_steps=50,
79
+ ).images[0]
80
+ ```
81
+ """
82
+
83
+ STANDARD_RATIO = np.array(
84
+ [
85
+ 1.0, # 1:1
86
+ 4.0 / 3.0, # 4:3
87
+ 3.0 / 4.0, # 3:4
88
+ 16.0 / 9.0, # 16:9
89
+ 9.0 / 16.0, # 9:16
90
+ ]
91
+ )
92
+ STANDARD_SHAPE = [
93
+ [(1024, 1024), (1280, 1280)], # 1:1
94
+ [(1024, 768), (1152, 864), (1280, 960)], # 4:3
95
+ [(768, 1024), (864, 1152), (960, 1280)], # 3:4
96
+ [(1280, 768)], # 16:9
97
+ [(768, 1280)], # 9:16
98
+ ]
99
+ STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE]
100
+ SUPPORTED_SHAPE = [
101
+ (1024, 1024),
102
+ (1280, 1280), # 1:1
103
+ (1024, 768),
104
+ (1152, 864),
105
+ (1280, 960), # 4:3
106
+ (768, 1024),
107
+ (864, 1152),
108
+ (960, 1280), # 3:4
109
+ (1280, 768), # 16:9
110
+ (768, 1280), # 9:16
111
+ ]
112
+
113
+
114
+ def map_to_standard_shapes(target_width, target_height):
115
+ target_ratio = target_width / target_height
116
+ closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
117
+ closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
118
+ width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
119
+ return width, height
120
+
121
+
122
+ def get_resize_crop_region_for_grid(src, tgt_size):
123
+ th = tw = tgt_size
124
+ h, w = src
125
+
126
+ r = h / w
127
+
128
+ # resize
129
+ if r > 1:
130
+ resize_height = th
131
+ resize_width = int(round(th / h * w))
132
+ else:
133
+ resize_width = tw
134
+ resize_height = int(round(tw / w * h))
135
+
136
+ crop_top = int(round((th - resize_height) / 2.0))
137
+ crop_left = int(round((tw - resize_width) / 2.0))
138
+
139
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
140
+
141
+
142
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
143
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
144
+ """
145
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
146
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
147
+ """
148
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
149
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
150
+ # rescale the results from guidance (fixes overexposure)
151
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
152
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
153
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
154
+ return noise_cfg
155
+
156
+
157
+ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
158
+ r"""
159
+ Pipeline for English/Chinese-to-image generation using HunyuanDiT.
160
+
161
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
162
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
163
+
164
+ HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
165
+ ourselves)
166
+
167
+ Args:
168
+ vae ([`AutoencoderKL`]):
169
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
170
+ `sdxl-vae-fp16-fix`.
171
+ text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
172
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
173
+ HunyuanDiT uses a fine-tuned [bilingual CLIP].
174
+ tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
175
+ A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
176
+ transformer ([`HunyuanDiT2DModel`]):
177
+ The HunyuanDiT model designed by Tencent Hunyuan.
178
+ text_encoder_2 (`T5EncoderModel`):
179
+ The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
180
+ tokenizer_2 (`MT5Tokenizer`):
181
+ The tokenizer for the mT5 embedder.
182
+ scheduler ([`DDPMScheduler`]):
183
+ A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
184
+ controlnet ([`HunyuanDiT2DControlNetModel`] or `List[HunyuanDiT2DControlNetModel]` or [`HunyuanDiT2DControlNetModel`]):
185
+ Provides additional conditioning to the `unet` during the denoising process. If you set multiple
186
+ ControlNets as a list, the outputs from each ControlNet are added together to create one combined
187
+ additional conditioning.
188
+ """
189
+
190
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
191
+ _optional_components = [
192
+ "safety_checker",
193
+ "feature_extractor",
194
+ "text_encoder_2",
195
+ "tokenizer_2",
196
+ "text_encoder",
197
+ "tokenizer",
198
+ ]
199
+ _exclude_from_cpu_offload = ["safety_checker"]
200
+ _callback_tensor_inputs = [
201
+ "latents",
202
+ "prompt_embeds",
203
+ "negative_prompt_embeds",
204
+ "prompt_embeds_2",
205
+ "negative_prompt_embeds_2",
206
+ ]
207
+
208
+ def __init__(
209
+ self,
210
+ vae: AutoencoderKL,
211
+ text_encoder: BertModel,
212
+ tokenizer: BertTokenizer,
213
+ transformer: HunyuanDiT2DModel,
214
+ scheduler: DDPMScheduler,
215
+ safety_checker: StableDiffusionSafetyChecker,
216
+ feature_extractor: CLIPImageProcessor,
217
+ controlnet: Union[
218
+ HunyuanDiT2DControlNetModel,
219
+ List[HunyuanDiT2DControlNetModel],
220
+ Tuple[HunyuanDiT2DControlNetModel],
221
+ HunyuanDiT2DMultiControlNetModel,
222
+ ],
223
+ text_encoder_2=T5EncoderModel,
224
+ tokenizer_2=MT5Tokenizer,
225
+ requires_safety_checker: bool = True,
226
+ ):
227
+ super().__init__()
228
+
229
+ self.register_modules(
230
+ vae=vae,
231
+ text_encoder=text_encoder,
232
+ tokenizer=tokenizer,
233
+ tokenizer_2=tokenizer_2,
234
+ transformer=transformer,
235
+ scheduler=scheduler,
236
+ safety_checker=safety_checker,
237
+ feature_extractor=feature_extractor,
238
+ text_encoder_2=text_encoder_2,
239
+ controlnet=controlnet,
240
+ )
241
+
242
+ if safety_checker is None and requires_safety_checker:
243
+ logger.warning(
244
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
245
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
246
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
247
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
248
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
249
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
250
+ )
251
+
252
+ if safety_checker is not None and feature_extractor is None:
253
+ raise ValueError(
254
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
255
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
256
+ )
257
+
258
+ self.vae_scale_factor = (
259
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
260
+ )
261
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
262
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
263
+ self.default_sample_size = (
264
+ self.transformer.config.sample_size
265
+ if hasattr(self, "transformer") and self.transformer is not None
266
+ else 128
267
+ )
268
+
269
+ # Copied from diffusers.pipelines.hunyuandit.pipeline_hunyuandit.HunyuanDiTPipeline.encode_prompt
270
+ def encode_prompt(
271
+ self,
272
+ prompt: str,
273
+ device: torch.device = None,
274
+ dtype: torch.dtype = None,
275
+ num_images_per_prompt: int = 1,
276
+ do_classifier_free_guidance: bool = True,
277
+ negative_prompt: Optional[str] = None,
278
+ prompt_embeds: Optional[torch.Tensor] = None,
279
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
280
+ prompt_attention_mask: Optional[torch.Tensor] = None,
281
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
282
+ max_sequence_length: Optional[int] = None,
283
+ text_encoder_index: int = 0,
284
+ ):
285
+ r"""
286
+ Encodes the prompt into text encoder hidden states.
287
+
288
+ Args:
289
+ prompt (`str` or `List[str]`, *optional*):
290
+ prompt to be encoded
291
+ device: (`torch.device`):
292
+ torch device
293
+ dtype (`torch.dtype`):
294
+ torch dtype
295
+ num_images_per_prompt (`int`):
296
+ number of images that should be generated per prompt
297
+ do_classifier_free_guidance (`bool`):
298
+ whether to use classifier free guidance or not
299
+ negative_prompt (`str` or `List[str]`, *optional*):
300
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
301
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
302
+ less than `1`).
303
+ prompt_embeds (`torch.Tensor`, *optional*):
304
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
305
+ provided, text embeddings will be generated from `prompt` input argument.
306
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
307
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
308
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
309
+ argument.
310
+ prompt_attention_mask (`torch.Tensor`, *optional*):
311
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
312
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
313
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
314
+ max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
315
+ text_encoder_index (`int`, *optional*):
316
+ Index of the text encoder to use. `0` for clip and `1` for T5.
317
+ """
318
+ if dtype is None:
319
+ if self.text_encoder_2 is not None:
320
+ dtype = self.text_encoder_2.dtype
321
+ elif self.transformer is not None:
322
+ dtype = self.transformer.dtype
323
+ else:
324
+ dtype = None
325
+
326
+ if device is None:
327
+ device = self._execution_device
328
+
329
+ tokenizers = [self.tokenizer, self.tokenizer_2]
330
+ text_encoders = [self.text_encoder, self.text_encoder_2]
331
+
332
+ tokenizer = tokenizers[text_encoder_index]
333
+ text_encoder = text_encoders[text_encoder_index]
334
+
335
+ if max_sequence_length is None:
336
+ if text_encoder_index == 0:
337
+ max_length = 77
338
+ if text_encoder_index == 1:
339
+ max_length = 256
340
+ else:
341
+ max_length = max_sequence_length
342
+
343
+ if prompt is not None and isinstance(prompt, str):
344
+ batch_size = 1
345
+ elif prompt is not None and isinstance(prompt, list):
346
+ batch_size = len(prompt)
347
+ else:
348
+ batch_size = prompt_embeds.shape[0]
349
+
350
+ if prompt_embeds is None:
351
+ text_inputs = tokenizer(
352
+ prompt,
353
+ padding="max_length",
354
+ max_length=max_length,
355
+ truncation=True,
356
+ return_attention_mask=True,
357
+ return_tensors="pt",
358
+ )
359
+ text_input_ids = text_inputs.input_ids
360
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
361
+
362
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
363
+ text_input_ids, untruncated_ids
364
+ ):
365
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
366
+ logger.warning(
367
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
368
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
369
+ )
370
+
371
+ prompt_attention_mask = text_inputs.attention_mask.to(device)
372
+ prompt_embeds = text_encoder(
373
+ text_input_ids.to(device),
374
+ attention_mask=prompt_attention_mask,
375
+ )
376
+ prompt_embeds = prompt_embeds[0]
377
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
378
+
379
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
380
+
381
+ bs_embed, seq_len, _ = prompt_embeds.shape
382
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
383
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
384
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
385
+
386
+ # get unconditional embeddings for classifier free guidance
387
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
388
+ uncond_tokens: List[str]
389
+ if negative_prompt is None:
390
+ uncond_tokens = [""] * batch_size
391
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
392
+ raise TypeError(
393
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
394
+ f" {type(prompt)}."
395
+ )
396
+ elif isinstance(negative_prompt, str):
397
+ uncond_tokens = [negative_prompt]
398
+ elif batch_size != len(negative_prompt):
399
+ raise ValueError(
400
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
401
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
402
+ " the batch size of `prompt`."
403
+ )
404
+ else:
405
+ uncond_tokens = negative_prompt
406
+
407
+ max_length = prompt_embeds.shape[1]
408
+ uncond_input = tokenizer(
409
+ uncond_tokens,
410
+ padding="max_length",
411
+ max_length=max_length,
412
+ truncation=True,
413
+ return_tensors="pt",
414
+ )
415
+
416
+ negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
417
+ negative_prompt_embeds = text_encoder(
418
+ uncond_input.input_ids.to(device),
419
+ attention_mask=negative_prompt_attention_mask,
420
+ )
421
+ negative_prompt_embeds = negative_prompt_embeds[0]
422
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
423
+
424
+ if do_classifier_free_guidance:
425
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
426
+ seq_len = negative_prompt_embeds.shape[1]
427
+
428
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
429
+
430
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
431
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
432
+
433
+ return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
434
+
435
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
436
+ def run_safety_checker(self, image, device, dtype):
437
+ if self.safety_checker is None:
438
+ has_nsfw_concept = None
439
+ else:
440
+ if torch.is_tensor(image):
441
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
442
+ else:
443
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
444
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
445
+ image, has_nsfw_concept = self.safety_checker(
446
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
447
+ )
448
+ return image, has_nsfw_concept
449
+
450
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
451
+ def prepare_extra_step_kwargs(self, generator, eta):
452
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
453
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
454
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
455
+ # and should be between [0, 1]
456
+
457
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
458
+ extra_step_kwargs = {}
459
+ if accepts_eta:
460
+ extra_step_kwargs["eta"] = eta
461
+
462
+ # check if the scheduler accepts generator
463
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
464
+ if accepts_generator:
465
+ extra_step_kwargs["generator"] = generator
466
+ return extra_step_kwargs
467
+
468
+ # Copied from diffusers.pipelines.hunyuandit.pipeline_hunyuandit.HunyuanDiTPipeline.check_inputs
469
+ def check_inputs(
470
+ self,
471
+ prompt,
472
+ height,
473
+ width,
474
+ negative_prompt=None,
475
+ prompt_embeds=None,
476
+ negative_prompt_embeds=None,
477
+ prompt_attention_mask=None,
478
+ negative_prompt_attention_mask=None,
479
+ prompt_embeds_2=None,
480
+ negative_prompt_embeds_2=None,
481
+ prompt_attention_mask_2=None,
482
+ negative_prompt_attention_mask_2=None,
483
+ callback_on_step_end_tensor_inputs=None,
484
+ ):
485
+ if height % 8 != 0 or width % 8 != 0:
486
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
487
+
488
+ if callback_on_step_end_tensor_inputs is not None and not all(
489
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
490
+ ):
491
+ raise ValueError(
492
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
493
+ )
494
+
495
+ if prompt is not None and prompt_embeds is not None:
496
+ raise ValueError(
497
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
498
+ " only forward one of the two."
499
+ )
500
+ elif prompt is None and prompt_embeds is None:
501
+ raise ValueError(
502
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
503
+ )
504
+ elif prompt is None and prompt_embeds_2 is None:
505
+ raise ValueError(
506
+ "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
507
+ )
508
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
509
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
510
+
511
+ if prompt_embeds is not None and prompt_attention_mask is None:
512
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
513
+
514
+ if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
515
+ raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
516
+
517
+ if negative_prompt is not None and negative_prompt_embeds is not None:
518
+ raise ValueError(
519
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
520
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
521
+ )
522
+
523
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
524
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
525
+
526
+ if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
527
+ raise ValueError(
528
+ "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
529
+ )
530
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
531
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
532
+ raise ValueError(
533
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
534
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
535
+ f" {negative_prompt_embeds.shape}."
536
+ )
537
+ if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
538
+ if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
539
+ raise ValueError(
540
+ "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
541
+ f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
542
+ f" {negative_prompt_embeds_2.shape}."
543
+ )
544
+
545
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
546
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
547
+ shape = (
548
+ batch_size,
549
+ num_channels_latents,
550
+ int(height) // self.vae_scale_factor,
551
+ int(width) // self.vae_scale_factor,
552
+ )
553
+ if isinstance(generator, list) and len(generator) != batch_size:
554
+ raise ValueError(
555
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
556
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
557
+ )
558
+
559
+ if latents is None:
560
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
561
+ else:
562
+ latents = latents.to(device)
563
+
564
+ # scale the initial noise by the standard deviation required by the scheduler
565
+ latents = latents * self.scheduler.init_noise_sigma
566
+ return latents
567
+
568
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
569
+ def prepare_image(
570
+ self,
571
+ image,
572
+ width,
573
+ height,
574
+ batch_size,
575
+ num_images_per_prompt,
576
+ device,
577
+ dtype,
578
+ do_classifier_free_guidance=False,
579
+ guess_mode=False,
580
+ ):
581
+ if isinstance(image, torch.Tensor):
582
+ pass
583
+ else:
584
+ image = self.image_processor.preprocess(image, height=height, width=width)
585
+
586
+ image_batch_size = image.shape[0]
587
+
588
+ if image_batch_size == 1:
589
+ repeat_by = batch_size
590
+ else:
591
+ # image batch size is the same as prompt batch size
592
+ repeat_by = num_images_per_prompt
593
+
594
+ image = image.repeat_interleave(repeat_by, dim=0)
595
+
596
+ image = image.to(device=device, dtype=dtype)
597
+
598
+ if do_classifier_free_guidance and not guess_mode:
599
+ image = torch.cat([image] * 2)
600
+
601
+ return image
602
+
603
+ @property
604
+ def guidance_scale(self):
605
+ return self._guidance_scale
606
+
607
+ @property
608
+ def guidance_rescale(self):
609
+ return self._guidance_rescale
610
+
611
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
612
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
613
+ # corresponds to doing no classifier free guidance.
614
+ @property
615
+ def do_classifier_free_guidance(self):
616
+ return self._guidance_scale > 1
617
+
618
+ @property
619
+ def num_timesteps(self):
620
+ return self._num_timesteps
621
+
622
+ @property
623
+ def interrupt(self):
624
+ return self._interrupt
625
+
626
+ @torch.no_grad()
627
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
628
+ def __call__(
629
+ self,
630
+ prompt: Union[str, List[str]] = None,
631
+ height: Optional[int] = None,
632
+ width: Optional[int] = None,
633
+ num_inference_steps: Optional[int] = 50,
634
+ guidance_scale: Optional[float] = 5.0,
635
+ control_image: PipelineImageInput = None,
636
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
637
+ negative_prompt: Optional[Union[str, List[str]]] = None,
638
+ num_images_per_prompt: Optional[int] = 1,
639
+ eta: Optional[float] = 0.0,
640
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
641
+ latents: Optional[torch.Tensor] = None,
642
+ prompt_embeds: Optional[torch.Tensor] = None,
643
+ prompt_embeds_2: Optional[torch.Tensor] = None,
644
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
645
+ negative_prompt_embeds_2: Optional[torch.Tensor] = None,
646
+ prompt_attention_mask: Optional[torch.Tensor] = None,
647
+ prompt_attention_mask_2: Optional[torch.Tensor] = None,
648
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
649
+ negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
650
+ output_type: Optional[str] = "pil",
651
+ return_dict: bool = True,
652
+ callback_on_step_end: Optional[
653
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
654
+ ] = None,
655
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
656
+ guidance_rescale: float = 0.0,
657
+ original_size: Optional[Tuple[int, int]] = (1024, 1024),
658
+ target_size: Optional[Tuple[int, int]] = None,
659
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
660
+ use_resolution_binning: bool = True,
661
+ ):
662
+ r"""
663
+ The call function to the pipeline for generation with HunyuanDiT.
664
+
665
+ Args:
666
+ prompt (`str` or `List[str]`, *optional*):
667
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
668
+ height (`int`):
669
+ The height in pixels of the generated image.
670
+ width (`int`):
671
+ The width in pixels of the generated image.
672
+ num_inference_steps (`int`, *optional*, defaults to 50):
673
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
674
+ expense of slower inference. This parameter is modulated by `strength`.
675
+ guidance_scale (`float`, *optional*, defaults to 7.5):
676
+ A higher guidance scale value encourages the model to generate images closely linked to the text
677
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
678
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
679
+ The percentage of total steps at which the ControlNet starts applying.
680
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
681
+ The percentage of total steps at which the ControlNet stops applying.
682
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
683
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
684
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
685
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
686
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
687
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
688
+ images must be passed as a list such that each element of the list can be correctly batched for input
689
+ to a single ControlNet.
690
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
691
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
692
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
693
+ the corresponding scale as a list.
694
+ negative_prompt (`str` or `List[str]`, *optional*):
695
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
696
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
697
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
698
+ The number of images to generate per prompt.
699
+ eta (`float`, *optional*, defaults to 0.0):
700
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
701
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
702
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
703
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
704
+ generation deterministic.
705
+ prompt_embeds (`torch.Tensor`, *optional*):
706
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
707
+ provided, text embeddings are generated from the `prompt` input argument.
708
+ prompt_embeds_2 (`torch.Tensor`, *optional*):
709
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
710
+ provided, text embeddings are generated from the `prompt` input argument.
711
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
712
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
713
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
714
+ negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
715
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
716
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
717
+ prompt_attention_mask (`torch.Tensor`, *optional*):
718
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
719
+ prompt_attention_mask_2 (`torch.Tensor`, *optional*):
720
+ Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
721
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
722
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
723
+ negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
724
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
725
+ output_type (`str`, *optional*, defaults to `"pil"`):
726
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
727
+ return_dict (`bool`, *optional*, defaults to `True`):
728
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
729
+ plain tuple.
730
+ callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
731
+ A callback function or a list of callback functions to be called at the end of each denoising step.
732
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
733
+ A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
734
+ inputs will be passed.
735
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
736
+ Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
737
+ Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
738
+ original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
739
+ The original size of the image. Used to calculate the time ids.
740
+ target_size (`Tuple[int, int]`, *optional*):
741
+ The target size of the image. Used to calculate the time ids.
742
+ crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
743
+ The top left coordinates of the crop. Used to calculate the time ids.
744
+ use_resolution_binning (`bool`, *optional*, defaults to `True`):
745
+ Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
746
+ standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
747
+ 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
748
+
749
+ Examples:
750
+
751
+ Returns:
752
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
753
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
754
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
755
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
756
+ "not-safe-for-work" (nsfw) content.
757
+ """
758
+
759
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
760
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
761
+
762
+ # 0. default height and width
763
+ height = height or self.default_sample_size * self.vae_scale_factor
764
+ width = width or self.default_sample_size * self.vae_scale_factor
765
+ height = int((height // 16) * 16)
766
+ width = int((width // 16) * 16)
767
+
768
+ if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
769
+ width, height = map_to_standard_shapes(width, height)
770
+ height = int(height)
771
+ width = int(width)
772
+ logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")
773
+
774
+ # 1. Check inputs. Raise error if not correct
775
+ self.check_inputs(
776
+ prompt,
777
+ height,
778
+ width,
779
+ negative_prompt,
780
+ prompt_embeds,
781
+ negative_prompt_embeds,
782
+ prompt_attention_mask,
783
+ negative_prompt_attention_mask,
784
+ prompt_embeds_2,
785
+ negative_prompt_embeds_2,
786
+ prompt_attention_mask_2,
787
+ negative_prompt_attention_mask_2,
788
+ callback_on_step_end_tensor_inputs,
789
+ )
790
+ self._guidance_scale = guidance_scale
791
+ self._guidance_rescale = guidance_rescale
792
+ self._interrupt = False
793
+
794
+ # 2. Define call parameters
795
+ if prompt is not None and isinstance(prompt, str):
796
+ batch_size = 1
797
+ elif prompt is not None and isinstance(prompt, list):
798
+ batch_size = len(prompt)
799
+ else:
800
+ batch_size = prompt_embeds.shape[0]
801
+
802
+ device = self._execution_device
803
+
804
+ # 3. Encode input prompt
805
+
806
+ (
807
+ prompt_embeds,
808
+ negative_prompt_embeds,
809
+ prompt_attention_mask,
810
+ negative_prompt_attention_mask,
811
+ ) = self.encode_prompt(
812
+ prompt=prompt,
813
+ device=device,
814
+ dtype=self.transformer.dtype,
815
+ num_images_per_prompt=num_images_per_prompt,
816
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
817
+ negative_prompt=negative_prompt,
818
+ prompt_embeds=prompt_embeds,
819
+ negative_prompt_embeds=negative_prompt_embeds,
820
+ prompt_attention_mask=prompt_attention_mask,
821
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
822
+ max_sequence_length=77,
823
+ text_encoder_index=0,
824
+ )
825
+ (
826
+ prompt_embeds_2,
827
+ negative_prompt_embeds_2,
828
+ prompt_attention_mask_2,
829
+ negative_prompt_attention_mask_2,
830
+ ) = self.encode_prompt(
831
+ prompt=prompt,
832
+ device=device,
833
+ dtype=self.transformer.dtype,
834
+ num_images_per_prompt=num_images_per_prompt,
835
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
836
+ negative_prompt=negative_prompt,
837
+ prompt_embeds=prompt_embeds_2,
838
+ negative_prompt_embeds=negative_prompt_embeds_2,
839
+ prompt_attention_mask=prompt_attention_mask_2,
840
+ negative_prompt_attention_mask=negative_prompt_attention_mask_2,
841
+ max_sequence_length=256,
842
+ text_encoder_index=1,
843
+ )
844
+
845
+ # 4. Prepare control image
846
+ if isinstance(self.controlnet, HunyuanDiT2DControlNetModel):
847
+ control_image = self.prepare_image(
848
+ image=control_image,
849
+ width=width,
850
+ height=height,
851
+ batch_size=batch_size * num_images_per_prompt,
852
+ num_images_per_prompt=num_images_per_prompt,
853
+ device=device,
854
+ dtype=self.dtype,
855
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
856
+ guess_mode=False,
857
+ )
858
+ height, width = control_image.shape[-2:]
859
+
860
+ control_image = self.vae.encode(control_image).latent_dist.sample()
861
+ control_image = control_image * self.vae.config.scaling_factor
862
+
863
+ elif isinstance(self.controlnet, HunyuanDiT2DMultiControlNetModel):
864
+ control_images = []
865
+
866
+ for control_image_ in control_image:
867
+ control_image_ = self.prepare_image(
868
+ image=control_image_,
869
+ width=width,
870
+ height=height,
871
+ batch_size=batch_size * num_images_per_prompt,
872
+ num_images_per_prompt=num_images_per_prompt,
873
+ device=device,
874
+ dtype=self.dtype,
875
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
876
+ guess_mode=False,
877
+ )
878
+
879
+ control_image_ = self.vae.encode(control_image_).latent_dist.sample()
880
+ control_image_ = control_image_ * self.vae.config.scaling_factor
881
+
882
+ control_images.append(control_image_)
883
+
884
+ control_image = control_images
885
+ else:
886
+ assert False
887
+
888
+ # 5. Prepare timesteps
889
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
890
+ timesteps = self.scheduler.timesteps
891
+
892
+ # 6. Prepare latent variables
893
+ num_channels_latents = self.transformer.config.in_channels
894
+ latents = self.prepare_latents(
895
+ batch_size * num_images_per_prompt,
896
+ num_channels_latents,
897
+ height,
898
+ width,
899
+ prompt_embeds.dtype,
900
+ device,
901
+ generator,
902
+ latents,
903
+ )
904
+
905
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
906
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
907
+
908
+ # 8. create image_rotary_emb, style embedding & time ids
909
+ grid_height = height // 8 // self.transformer.config.patch_size
910
+ grid_width = width // 8 // self.transformer.config.patch_size
911
+ base_size = 512 // 8 // self.transformer.config.patch_size
912
+ grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
913
+ image_rotary_emb = get_2d_rotary_pos_embed(
914
+ self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)
915
+ )
916
+
917
+ style = torch.tensor([0], device=device)
918
+
919
+ target_size = target_size or (height, width)
920
+ add_time_ids = list(original_size + target_size + crops_coords_top_left)
921
+ add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
922
+
923
+ if self.do_classifier_free_guidance:
924
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
925
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
926
+ prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
927
+ prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
928
+ add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
929
+ style = torch.cat([style] * 2, dim=0)
930
+
931
+ prompt_embeds = prompt_embeds.to(device=device)
932
+ prompt_attention_mask = prompt_attention_mask.to(device=device)
933
+ prompt_embeds_2 = prompt_embeds_2.to(device=device)
934
+ prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
935
+ add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
936
+ batch_size * num_images_per_prompt, 1
937
+ )
938
+ style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
939
+
940
+ # 9. Denoising loop
941
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
942
+ self._num_timesteps = len(timesteps)
943
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
944
+ for i, t in enumerate(timesteps):
945
+ if self.interrupt:
946
+ continue
947
+
948
+ # expand the latents if we are doing classifier free guidance
949
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
950
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
951
+
952
+ # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
953
+ t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
954
+ dtype=latent_model_input.dtype
955
+ )
956
+
957
+ # controlnet(s) inference
958
+ control_block_samples = self.controlnet(
959
+ latent_model_input,
960
+ t_expand,
961
+ encoder_hidden_states=prompt_embeds,
962
+ text_embedding_mask=prompt_attention_mask,
963
+ encoder_hidden_states_t5=prompt_embeds_2,
964
+ text_embedding_mask_t5=prompt_attention_mask_2,
965
+ image_meta_size=add_time_ids,
966
+ style=style,
967
+ image_rotary_emb=image_rotary_emb,
968
+ return_dict=False,
969
+ controlnet_cond=control_image,
970
+ conditioning_scale=controlnet_conditioning_scale,
971
+ )[0]
972
+
973
+ # predict the noise residual
974
+ noise_pred = self.transformer(
975
+ latent_model_input,
976
+ t_expand,
977
+ encoder_hidden_states=prompt_embeds,
978
+ text_embedding_mask=prompt_attention_mask,
979
+ encoder_hidden_states_t5=prompt_embeds_2,
980
+ text_embedding_mask_t5=prompt_attention_mask_2,
981
+ image_meta_size=add_time_ids,
982
+ style=style,
983
+ image_rotary_emb=image_rotary_emb,
984
+ return_dict=False,
985
+ controlnet_block_samples=control_block_samples,
986
+ )[0]
987
+
988
+ noise_pred, _ = noise_pred.chunk(2, dim=1)
989
+
990
+ # perform guidance
991
+ if self.do_classifier_free_guidance:
992
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
993
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
994
+
995
+ if self.do_classifier_free_guidance and guidance_rescale > 0.0:
996
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
997
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
998
+
999
+ # compute the previous noisy sample x_t -> x_t-1
1000
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1001
+
1002
+ if callback_on_step_end is not None:
1003
+ callback_kwargs = {}
1004
+ for k in callback_on_step_end_tensor_inputs:
1005
+ callback_kwargs[k] = locals()[k]
1006
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1007
+
1008
+ latents = callback_outputs.pop("latents", latents)
1009
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1010
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1011
+ prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
1012
+ negative_prompt_embeds_2 = callback_outputs.pop(
1013
+ "negative_prompt_embeds_2", negative_prompt_embeds_2
1014
+ )
1015
+
1016
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1017
+ progress_bar.update()
1018
+
1019
+ if XLA_AVAILABLE:
1020
+ xm.mark_step()
1021
+
1022
+ if not output_type == "latent":
1023
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1024
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1025
+ else:
1026
+ image = latents
1027
+ has_nsfw_concept = None
1028
+
1029
+ if has_nsfw_concept is None:
1030
+ do_denormalize = [True] * image.shape[0]
1031
+ else:
1032
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1033
+
1034
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1035
+
1036
+ # Offload all models
1037
+ self.maybe_free_model_hooks()
1038
+
1039
+ if not return_dict:
1040
+ return (image, has_nsfw_concept)
1041
+
1042
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)