diffusers 0.29.2__py3-none-any.whl → 0.30.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +94 -3
- diffusers/commands/env.py +1 -5
- diffusers/configuration_utils.py +4 -9
- diffusers/dependency_versions_table.py +2 -2
- diffusers/image_processor.py +1 -2
- diffusers/loaders/__init__.py +17 -2
- diffusers/loaders/ip_adapter.py +10 -7
- diffusers/loaders/lora_base.py +752 -0
- diffusers/loaders/lora_pipeline.py +2252 -0
- diffusers/loaders/peft.py +213 -5
- diffusers/loaders/single_file.py +3 -14
- diffusers/loaders/single_file_model.py +31 -10
- diffusers/loaders/single_file_utils.py +293 -8
- diffusers/loaders/textual_inversion.py +1 -6
- diffusers/loaders/unet.py +23 -208
- diffusers/models/__init__.py +20 -0
- diffusers/models/activations.py +22 -0
- diffusers/models/attention.py +386 -7
- diffusers/models/attention_processor.py +1937 -629
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_kl.py +14 -3
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1271 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vq_model.py +4 -4
- diffusers/models/controlnet.py +2 -3
- diffusers/models/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnet_sd3.py +11 -11
- diffusers/models/controlnet_sparsectrl.py +789 -0
- diffusers/models/controlnet_xs.py +40 -10
- diffusers/models/downsampling.py +68 -0
- diffusers/models/embeddings.py +403 -36
- diffusers/models/model_loading_utils.py +1 -3
- diffusers/models/modeling_flax_utils.py +1 -6
- diffusers/models/modeling_utils.py +4 -16
- diffusers/models/normalization.py +203 -12
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +543 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +485 -0
- diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +102 -1
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/transformer_flux.py +455 -0
- diffusers/models/transformers/transformer_sd3.py +18 -4
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +8 -1
- diffusers/models/unets/unet_3d_blocks.py +51 -920
- diffusers/models/unets/unet_3d_condition.py +4 -1
- diffusers/models/unets/unet_i2vgen_xl.py +4 -1
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +1330 -84
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +1 -3
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +64 -0
- diffusers/models/vq_model.py +8 -4
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +100 -3
- diffusers/pipelines/animatediff/__init__.py +4 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
- diffusers/pipelines/auto_pipeline.py +97 -19
- diffusers/pipelines/cogvideo/__init__.py +48 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +746 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
- diffusers/pipelines/flux/__init__.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +749 -0
- diffusers/pipelines/flux/pipeline_output.py +21 -0
- diffusers/pipelines/free_init_utils.py +2 -0
- diffusers/pipelines/free_noise_utils.py +236 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +334 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
- diffusers/pipelines/pag/__init__.py +67 -0
- diffusers/pipelines/pag/pag_utils.py +237 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
- diffusers/pipelines/pia/pipeline_pia.py +30 -37
- diffusers/pipelines/pipeline_flax_utils.py +4 -9
- diffusers/pipelines/pipeline_loading_utils.py +0 -3
- diffusers/pipelines/pipeline_utils.py +2 -14
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
- diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
- diffusers/schedulers/__init__.py +8 -0
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +1 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
- diffusers/schedulers/scheduling_ddpm.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +2 -2
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
- diffusers/schedulers/scheduling_ipndm.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
- diffusers/schedulers/scheduling_utils.py +1 -3
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/training_utils.py +99 -14
- diffusers/utils/__init__.py +2 -2
- diffusers/utils/dummy_pt_objects.py +210 -0
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
- diffusers/utils/dynamic_modules_utils.py +1 -11
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +45 -42
- diffusers/utils/import_utils.py +37 -15
- diffusers/utils/loading_utils.py +80 -3
- diffusers/utils/testing_utils.py +11 -8
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/METADATA +73 -83
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/RECORD +217 -164
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1728
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/LICENSE +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/entry_points.txt +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,889 @@
|
|
1
|
+
# Copyright 2024 ChatGLM3-6B Model Team, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from typing import List, Optional, Tuple
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn.functional as F
|
20
|
+
from torch import nn
|
21
|
+
from torch.nn import LayerNorm
|
22
|
+
from torch.nn.utils import skip_init
|
23
|
+
from transformers import PretrainedConfig, PreTrainedModel
|
24
|
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
25
|
+
|
26
|
+
from ...utils import logging
|
27
|
+
|
28
|
+
|
29
|
+
logger = logging.get_logger(__name__)
|
30
|
+
|
31
|
+
|
32
|
+
class ChatGLMConfig(PretrainedConfig):
|
33
|
+
model_type = "chatglm"
|
34
|
+
|
35
|
+
def __init__(
|
36
|
+
self,
|
37
|
+
num_layers=28,
|
38
|
+
padded_vocab_size=65024,
|
39
|
+
hidden_size=4096,
|
40
|
+
ffn_hidden_size=13696,
|
41
|
+
kv_channels=128,
|
42
|
+
num_attention_heads=32,
|
43
|
+
seq_length=2048,
|
44
|
+
hidden_dropout=0.0,
|
45
|
+
classifier_dropout=None,
|
46
|
+
attention_dropout=0.0,
|
47
|
+
layernorm_epsilon=1e-5,
|
48
|
+
rmsnorm=True,
|
49
|
+
apply_residual_connection_post_layernorm=False,
|
50
|
+
post_layer_norm=True,
|
51
|
+
add_bias_linear=False,
|
52
|
+
add_qkv_bias=False,
|
53
|
+
bias_dropout_fusion=True,
|
54
|
+
multi_query_attention=False,
|
55
|
+
multi_query_group_num=1,
|
56
|
+
apply_query_key_layer_scaling=True,
|
57
|
+
attention_softmax_in_fp32=True,
|
58
|
+
fp32_residual_connection=False,
|
59
|
+
quantization_bit=0,
|
60
|
+
pre_seq_len=None,
|
61
|
+
prefix_projection=False,
|
62
|
+
**kwargs,
|
63
|
+
):
|
64
|
+
self.num_layers = num_layers
|
65
|
+
self.vocab_size = padded_vocab_size
|
66
|
+
self.padded_vocab_size = padded_vocab_size
|
67
|
+
self.hidden_size = hidden_size
|
68
|
+
self.ffn_hidden_size = ffn_hidden_size
|
69
|
+
self.kv_channels = kv_channels
|
70
|
+
self.num_attention_heads = num_attention_heads
|
71
|
+
self.seq_length = seq_length
|
72
|
+
self.hidden_dropout = hidden_dropout
|
73
|
+
self.classifier_dropout = classifier_dropout
|
74
|
+
self.attention_dropout = attention_dropout
|
75
|
+
self.layernorm_epsilon = layernorm_epsilon
|
76
|
+
self.rmsnorm = rmsnorm
|
77
|
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
78
|
+
self.post_layer_norm = post_layer_norm
|
79
|
+
self.add_bias_linear = add_bias_linear
|
80
|
+
self.add_qkv_bias = add_qkv_bias
|
81
|
+
self.bias_dropout_fusion = bias_dropout_fusion
|
82
|
+
self.multi_query_attention = multi_query_attention
|
83
|
+
self.multi_query_group_num = multi_query_group_num
|
84
|
+
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
85
|
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
86
|
+
self.fp32_residual_connection = fp32_residual_connection
|
87
|
+
self.quantization_bit = quantization_bit
|
88
|
+
self.pre_seq_len = pre_seq_len
|
89
|
+
self.prefix_projection = prefix_projection
|
90
|
+
super().__init__(**kwargs)
|
91
|
+
|
92
|
+
|
93
|
+
class RMSNorm(torch.nn.Module):
|
94
|
+
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
95
|
+
super().__init__()
|
96
|
+
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
97
|
+
self.eps = eps
|
98
|
+
|
99
|
+
def forward(self, hidden_states: torch.Tensor):
|
100
|
+
input_dtype = hidden_states.dtype
|
101
|
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
102
|
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
103
|
+
|
104
|
+
return (self.weight * hidden_states).to(input_dtype)
|
105
|
+
|
106
|
+
|
107
|
+
def _config_to_kwargs(args):
|
108
|
+
common_kwargs = {
|
109
|
+
"dtype": args.torch_dtype,
|
110
|
+
}
|
111
|
+
return common_kwargs
|
112
|
+
|
113
|
+
|
114
|
+
class CoreAttention(torch.nn.Module):
|
115
|
+
def __init__(self, config: ChatGLMConfig, layer_number):
|
116
|
+
super(CoreAttention, self).__init__()
|
117
|
+
|
118
|
+
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
119
|
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
120
|
+
if self.apply_query_key_layer_scaling:
|
121
|
+
self.attention_softmax_in_fp32 = True
|
122
|
+
self.layer_number = max(1, layer_number)
|
123
|
+
|
124
|
+
projection_size = config.kv_channels * config.num_attention_heads
|
125
|
+
|
126
|
+
# Per attention head and per partition values.
|
127
|
+
self.hidden_size_per_partition = projection_size
|
128
|
+
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
|
129
|
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
130
|
+
|
131
|
+
coeff = None
|
132
|
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
133
|
+
if self.apply_query_key_layer_scaling:
|
134
|
+
coeff = self.layer_number
|
135
|
+
self.norm_factor *= coeff
|
136
|
+
self.coeff = coeff
|
137
|
+
|
138
|
+
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
139
|
+
|
140
|
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
141
|
+
pytorch_major_version = int(torch.__version__.split(".")[0])
|
142
|
+
if pytorch_major_version >= 2:
|
143
|
+
query_layer, key_layer, value_layer = [
|
144
|
+
k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]
|
145
|
+
]
|
146
|
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
147
|
+
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
148
|
+
query_layer, key_layer, value_layer, is_causal=True
|
149
|
+
)
|
150
|
+
else:
|
151
|
+
if attention_mask is not None:
|
152
|
+
attention_mask = ~attention_mask
|
153
|
+
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
154
|
+
query_layer, key_layer, value_layer, attention_mask
|
155
|
+
)
|
156
|
+
context_layer = context_layer.permute(2, 0, 1, 3)
|
157
|
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
158
|
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
159
|
+
else:
|
160
|
+
# Raw attention scores
|
161
|
+
|
162
|
+
# [b, np, sq, sk]
|
163
|
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
164
|
+
|
165
|
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
166
|
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
167
|
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
168
|
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
169
|
+
|
170
|
+
# preallocting input tensor: [b * np, sq, sk]
|
171
|
+
matmul_input_buffer = torch.empty(
|
172
|
+
output_size[0] * output_size[1],
|
173
|
+
output_size[2],
|
174
|
+
output_size[3],
|
175
|
+
dtype=query_layer.dtype,
|
176
|
+
device=query_layer.device,
|
177
|
+
)
|
178
|
+
|
179
|
+
# Raw attention scores. [b * np, sq, sk]
|
180
|
+
matmul_result = torch.baddbmm(
|
181
|
+
matmul_input_buffer,
|
182
|
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
183
|
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
184
|
+
beta=0.0,
|
185
|
+
alpha=(1.0 / self.norm_factor),
|
186
|
+
)
|
187
|
+
|
188
|
+
# change view to [b, np, sq, sk]
|
189
|
+
attention_scores = matmul_result.view(*output_size)
|
190
|
+
|
191
|
+
# ===========================
|
192
|
+
# Attention probs and dropout
|
193
|
+
# ===========================
|
194
|
+
|
195
|
+
# attention scores and attention mask [b, np, sq, sk]
|
196
|
+
if self.attention_softmax_in_fp32:
|
197
|
+
attention_scores = attention_scores.float()
|
198
|
+
if self.coeff is not None:
|
199
|
+
attention_scores = attention_scores * self.coeff
|
200
|
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
201
|
+
attention_mask = torch.ones(
|
202
|
+
output_size[0], 1, output_size[2], output_size[3], device=attention_scores.device, dtype=torch.bool
|
203
|
+
)
|
204
|
+
attention_mask.tril_()
|
205
|
+
attention_mask = ~attention_mask
|
206
|
+
if attention_mask is not None:
|
207
|
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
208
|
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
209
|
+
attention_probs = attention_probs.type_as(value_layer)
|
210
|
+
|
211
|
+
# This is actually dropping out entire tokens to attend to, which might
|
212
|
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
213
|
+
attention_probs = self.attention_dropout(attention_probs)
|
214
|
+
# =========================
|
215
|
+
# Context layer. [sq, b, hp]
|
216
|
+
# =========================
|
217
|
+
|
218
|
+
# value_layer -> context layer.
|
219
|
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
220
|
+
|
221
|
+
# context layer shape: [b, np, sq, hn]
|
222
|
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
223
|
+
# change view [sk, b * np, hn]
|
224
|
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
225
|
+
# change view [b * np, sq, sk]
|
226
|
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
227
|
+
# matmul: [b * np, sq, hn]
|
228
|
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
229
|
+
# change view [b, np, sq, hn]
|
230
|
+
context_layer = context_layer.view(*output_size)
|
231
|
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
232
|
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
233
|
+
# [sq, b, np, hn] --> [sq, b, hp]
|
234
|
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
235
|
+
context_layer = context_layer.view(*new_context_layer_shape)
|
236
|
+
|
237
|
+
return context_layer
|
238
|
+
|
239
|
+
|
240
|
+
def split_tensor_along_last_dim(
|
241
|
+
tensor: torch.Tensor,
|
242
|
+
num_partitions: int,
|
243
|
+
contiguous_split_chunks: bool = False,
|
244
|
+
) -> List[torch.Tensor]:
|
245
|
+
"""Split a tensor along its last dimension.
|
246
|
+
|
247
|
+
Arguments:
|
248
|
+
tensor: input tensor.
|
249
|
+
num_partitions: number of partitions to split the tensor
|
250
|
+
contiguous_split_chunks: If True, make each chunk contiguous
|
251
|
+
in memory.
|
252
|
+
|
253
|
+
Returns:
|
254
|
+
A list of Tensors
|
255
|
+
"""
|
256
|
+
# Get the size and dimension.
|
257
|
+
last_dim = tensor.dim() - 1
|
258
|
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
259
|
+
# Split.
|
260
|
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
261
|
+
# Note: torch.split does not create contiguous tensors by default.
|
262
|
+
if contiguous_split_chunks:
|
263
|
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
264
|
+
|
265
|
+
return tensor_list
|
266
|
+
|
267
|
+
|
268
|
+
@torch.jit.script
|
269
|
+
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
270
|
+
# x: [sq, b, np, hn]
|
271
|
+
sq, _b, np, _hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
272
|
+
rot_dim = rope_cache.shape[-2] * 2
|
273
|
+
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
274
|
+
# truncate to support variable sizes
|
275
|
+
rope_cache = rope_cache[:sq]
|
276
|
+
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
277
|
+
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
278
|
+
x_out2 = torch.stack(
|
279
|
+
[
|
280
|
+
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
281
|
+
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
282
|
+
],
|
283
|
+
-1,
|
284
|
+
)
|
285
|
+
x_out2 = x_out2.flatten(3)
|
286
|
+
return torch.cat((x_out2, x_pass), dim=-1)
|
287
|
+
|
288
|
+
|
289
|
+
class SelfAttention(torch.nn.Module):
|
290
|
+
"""Parallel self-attention layer abstract class.
|
291
|
+
|
292
|
+
Self-attention layer takes input with size [s, b, h] and returns output of the same size.
|
293
|
+
"""
|
294
|
+
|
295
|
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
296
|
+
super(SelfAttention, self).__init__()
|
297
|
+
self.layer_number = max(1, layer_number)
|
298
|
+
|
299
|
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
300
|
+
|
301
|
+
# Per attention head and per partition values.
|
302
|
+
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
|
303
|
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
304
|
+
|
305
|
+
self.multi_query_attention = config.multi_query_attention
|
306
|
+
self.qkv_hidden_size = 3 * self.projection_size
|
307
|
+
if self.multi_query_attention:
|
308
|
+
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
309
|
+
self.qkv_hidden_size = (
|
310
|
+
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
311
|
+
)
|
312
|
+
self.query_key_value = nn.Linear(
|
313
|
+
config.hidden_size,
|
314
|
+
self.qkv_hidden_size,
|
315
|
+
bias=config.add_bias_linear or config.add_qkv_bias,
|
316
|
+
device=device,
|
317
|
+
**_config_to_kwargs(config),
|
318
|
+
)
|
319
|
+
|
320
|
+
self.core_attention = CoreAttention(config, self.layer_number)
|
321
|
+
|
322
|
+
# Output.
|
323
|
+
self.dense = nn.Linear(
|
324
|
+
self.projection_size,
|
325
|
+
config.hidden_size,
|
326
|
+
bias=config.add_bias_linear,
|
327
|
+
device=device,
|
328
|
+
**_config_to_kwargs(config),
|
329
|
+
)
|
330
|
+
|
331
|
+
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
332
|
+
if self.multi_query_attention:
|
333
|
+
num_attention_heads = self.num_multi_query_groups_per_partition
|
334
|
+
else:
|
335
|
+
num_attention_heads = self.num_attention_heads_per_partition
|
336
|
+
return torch.empty(
|
337
|
+
inference_max_sequence_len,
|
338
|
+
batch_size,
|
339
|
+
num_attention_heads,
|
340
|
+
self.hidden_size_per_attention_head,
|
341
|
+
dtype=dtype,
|
342
|
+
device=device,
|
343
|
+
)
|
344
|
+
|
345
|
+
def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True):
|
346
|
+
# hidden_states: [sq, b, h]
|
347
|
+
|
348
|
+
# =================================================
|
349
|
+
# Pre-allocate memory for key-values for inference.
|
350
|
+
# =================================================
|
351
|
+
# =====================
|
352
|
+
# Query, Key, and Value
|
353
|
+
# =====================
|
354
|
+
|
355
|
+
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
356
|
+
mixed_x_layer = self.query_key_value(hidden_states)
|
357
|
+
|
358
|
+
if self.multi_query_attention:
|
359
|
+
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
360
|
+
[
|
361
|
+
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
362
|
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
363
|
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
364
|
+
],
|
365
|
+
dim=-1,
|
366
|
+
)
|
367
|
+
query_layer = query_layer.view(
|
368
|
+
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
369
|
+
)
|
370
|
+
key_layer = key_layer.view(
|
371
|
+
key_layer.size()[:-1]
|
372
|
+
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
373
|
+
)
|
374
|
+
value_layer = value_layer.view(
|
375
|
+
value_layer.size()[:-1]
|
376
|
+
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
377
|
+
)
|
378
|
+
else:
|
379
|
+
new_tensor_shape = mixed_x_layer.size()[:-1] + (
|
380
|
+
self.num_attention_heads_per_partition,
|
381
|
+
3 * self.hidden_size_per_attention_head,
|
382
|
+
)
|
383
|
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
384
|
+
|
385
|
+
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
386
|
+
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
387
|
+
|
388
|
+
# apply relative positional encoding (rotary embedding)
|
389
|
+
if rotary_pos_emb is not None:
|
390
|
+
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
391
|
+
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
392
|
+
|
393
|
+
# adjust key and value for inference
|
394
|
+
if kv_cache is not None:
|
395
|
+
cache_k, cache_v = kv_cache
|
396
|
+
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
397
|
+
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
398
|
+
if use_cache:
|
399
|
+
kv_cache = (key_layer, value_layer)
|
400
|
+
else:
|
401
|
+
kv_cache = None
|
402
|
+
|
403
|
+
if self.multi_query_attention:
|
404
|
+
key_layer = key_layer.unsqueeze(-2)
|
405
|
+
key_layer = key_layer.expand(
|
406
|
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
407
|
+
)
|
408
|
+
key_layer = key_layer.contiguous().view(
|
409
|
+
key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
410
|
+
)
|
411
|
+
value_layer = value_layer.unsqueeze(-2)
|
412
|
+
value_layer = value_layer.expand(
|
413
|
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
414
|
+
)
|
415
|
+
value_layer = value_layer.contiguous().view(
|
416
|
+
value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
417
|
+
)
|
418
|
+
|
419
|
+
# ==================================
|
420
|
+
# core attention computation
|
421
|
+
# ==================================
|
422
|
+
|
423
|
+
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
424
|
+
|
425
|
+
# =================
|
426
|
+
# Output. [sq, b, h]
|
427
|
+
# =================
|
428
|
+
|
429
|
+
output = self.dense(context_layer)
|
430
|
+
|
431
|
+
return output, kv_cache
|
432
|
+
|
433
|
+
|
434
|
+
class MLP(torch.nn.Module):
|
435
|
+
"""MLP.
|
436
|
+
|
437
|
+
MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation,
|
438
|
+
and project the state back into h hidden dimension.
|
439
|
+
"""
|
440
|
+
|
441
|
+
def __init__(self, config: ChatGLMConfig, device=None):
|
442
|
+
super(MLP, self).__init__()
|
443
|
+
|
444
|
+
self.add_bias = config.add_bias_linear
|
445
|
+
|
446
|
+
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
447
|
+
self.dense_h_to_4h = nn.Linear(
|
448
|
+
config.hidden_size,
|
449
|
+
config.ffn_hidden_size * 2,
|
450
|
+
bias=self.add_bias,
|
451
|
+
device=device,
|
452
|
+
**_config_to_kwargs(config),
|
453
|
+
)
|
454
|
+
|
455
|
+
def swiglu(x):
|
456
|
+
x = torch.chunk(x, 2, dim=-1)
|
457
|
+
return F.silu(x[0]) * x[1]
|
458
|
+
|
459
|
+
self.activation_func = swiglu
|
460
|
+
|
461
|
+
# Project back to h.
|
462
|
+
self.dense_4h_to_h = nn.Linear(
|
463
|
+
config.ffn_hidden_size, config.hidden_size, bias=self.add_bias, device=device, **_config_to_kwargs(config)
|
464
|
+
)
|
465
|
+
|
466
|
+
def forward(self, hidden_states):
|
467
|
+
# [s, b, 4hp]
|
468
|
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
469
|
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
470
|
+
# [s, b, h]
|
471
|
+
output = self.dense_4h_to_h(intermediate_parallel)
|
472
|
+
return output
|
473
|
+
|
474
|
+
|
475
|
+
class GLMBlock(torch.nn.Module):
|
476
|
+
"""A single transformer layer.
|
477
|
+
|
478
|
+
Transformer layer takes input with size [s, b, h] and returns an output of the same size.
|
479
|
+
"""
|
480
|
+
|
481
|
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
482
|
+
super(GLMBlock, self).__init__()
|
483
|
+
self.layer_number = layer_number
|
484
|
+
|
485
|
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
486
|
+
|
487
|
+
self.fp32_residual_connection = config.fp32_residual_connection
|
488
|
+
|
489
|
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
490
|
+
# Layernorm on the input data.
|
491
|
+
self.input_layernorm = LayerNormFunc(
|
492
|
+
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype
|
493
|
+
)
|
494
|
+
|
495
|
+
# Self attention.
|
496
|
+
self.self_attention = SelfAttention(config, layer_number, device=device)
|
497
|
+
self.hidden_dropout = config.hidden_dropout
|
498
|
+
|
499
|
+
# Layernorm on the attention output
|
500
|
+
self.post_attention_layernorm = LayerNormFunc(
|
501
|
+
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype
|
502
|
+
)
|
503
|
+
|
504
|
+
# MLP
|
505
|
+
self.mlp = MLP(config, device=device)
|
506
|
+
|
507
|
+
def forward(
|
508
|
+
self,
|
509
|
+
hidden_states,
|
510
|
+
attention_mask,
|
511
|
+
rotary_pos_emb,
|
512
|
+
kv_cache=None,
|
513
|
+
use_cache=True,
|
514
|
+
):
|
515
|
+
# hidden_states: [s, b, h]
|
516
|
+
|
517
|
+
# Layer norm at the beginning of the transformer layer.
|
518
|
+
layernorm_output = self.input_layernorm(hidden_states)
|
519
|
+
# Self attention.
|
520
|
+
attention_output, kv_cache = self.self_attention(
|
521
|
+
layernorm_output, attention_mask, rotary_pos_emb, kv_cache=kv_cache, use_cache=use_cache
|
522
|
+
)
|
523
|
+
|
524
|
+
# Residual connection.
|
525
|
+
if self.apply_residual_connection_post_layernorm:
|
526
|
+
residual = layernorm_output
|
527
|
+
else:
|
528
|
+
residual = hidden_states
|
529
|
+
|
530
|
+
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
531
|
+
layernorm_input = residual + layernorm_input
|
532
|
+
|
533
|
+
# Layer norm post the self attention.
|
534
|
+
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
535
|
+
|
536
|
+
# MLP.
|
537
|
+
mlp_output = self.mlp(layernorm_output)
|
538
|
+
|
539
|
+
# Second residual connection.
|
540
|
+
if self.apply_residual_connection_post_layernorm:
|
541
|
+
residual = layernorm_output
|
542
|
+
else:
|
543
|
+
residual = layernorm_input
|
544
|
+
|
545
|
+
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
546
|
+
output = residual + output
|
547
|
+
|
548
|
+
return output, kv_cache
|
549
|
+
|
550
|
+
|
551
|
+
class GLMTransformer(torch.nn.Module):
|
552
|
+
"""Transformer class."""
|
553
|
+
|
554
|
+
def __init__(self, config: ChatGLMConfig, device=None):
|
555
|
+
super(GLMTransformer, self).__init__()
|
556
|
+
|
557
|
+
self.fp32_residual_connection = config.fp32_residual_connection
|
558
|
+
self.post_layer_norm = config.post_layer_norm
|
559
|
+
|
560
|
+
# Number of layers.
|
561
|
+
self.num_layers = config.num_layers
|
562
|
+
|
563
|
+
# Transformer layers.
|
564
|
+
def build_layer(layer_number):
|
565
|
+
return GLMBlock(config, layer_number, device=device)
|
566
|
+
|
567
|
+
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
|
568
|
+
|
569
|
+
if self.post_layer_norm:
|
570
|
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
571
|
+
# Final layer norm before output.
|
572
|
+
self.final_layernorm = LayerNormFunc(
|
573
|
+
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype
|
574
|
+
)
|
575
|
+
|
576
|
+
self.gradient_checkpointing = False
|
577
|
+
|
578
|
+
def _get_layer(self, layer_number):
|
579
|
+
return self.layers[layer_number]
|
580
|
+
|
581
|
+
def forward(
|
582
|
+
self,
|
583
|
+
hidden_states,
|
584
|
+
attention_mask,
|
585
|
+
rotary_pos_emb,
|
586
|
+
kv_caches=None,
|
587
|
+
use_cache: Optional[bool] = True,
|
588
|
+
output_hidden_states: Optional[bool] = False,
|
589
|
+
):
|
590
|
+
if not kv_caches:
|
591
|
+
kv_caches = [None for _ in range(self.num_layers)]
|
592
|
+
presents = () if use_cache else None
|
593
|
+
if self.gradient_checkpointing and self.training:
|
594
|
+
if use_cache:
|
595
|
+
logger.warning_once(
|
596
|
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
597
|
+
)
|
598
|
+
use_cache = False
|
599
|
+
|
600
|
+
all_self_attentions = None
|
601
|
+
all_hidden_states = () if output_hidden_states else None
|
602
|
+
for index in range(self.num_layers):
|
603
|
+
if output_hidden_states:
|
604
|
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
605
|
+
|
606
|
+
layer = self._get_layer(index)
|
607
|
+
if self.gradient_checkpointing and self.training:
|
608
|
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
609
|
+
layer, hidden_states, attention_mask, rotary_pos_emb, kv_caches[index], use_cache
|
610
|
+
)
|
611
|
+
else:
|
612
|
+
layer_ret = layer(
|
613
|
+
hidden_states, attention_mask, rotary_pos_emb, kv_cache=kv_caches[index], use_cache=use_cache
|
614
|
+
)
|
615
|
+
hidden_states, kv_cache = layer_ret
|
616
|
+
if use_cache:
|
617
|
+
presents = presents + (kv_cache,)
|
618
|
+
|
619
|
+
if output_hidden_states:
|
620
|
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
621
|
+
|
622
|
+
# Final layer norm.
|
623
|
+
if self.post_layer_norm:
|
624
|
+
hidden_states = self.final_layernorm(hidden_states)
|
625
|
+
|
626
|
+
return hidden_states, presents, all_hidden_states, all_self_attentions
|
627
|
+
|
628
|
+
|
629
|
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
630
|
+
"""
|
631
|
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
632
|
+
models.
|
633
|
+
"""
|
634
|
+
|
635
|
+
is_parallelizable = False
|
636
|
+
supports_gradient_checkpointing = True
|
637
|
+
config_class = ChatGLMConfig
|
638
|
+
base_model_prefix = "transformer"
|
639
|
+
_no_split_modules = ["GLMBlock"]
|
640
|
+
|
641
|
+
def _init_weights(self, module: nn.Module):
|
642
|
+
"""Initialize the weights."""
|
643
|
+
return
|
644
|
+
|
645
|
+
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
646
|
+
batch_size, seq_length = input_ids.shape
|
647
|
+
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
648
|
+
full_attention_mask.tril_()
|
649
|
+
past_length = 0
|
650
|
+
if past_key_values:
|
651
|
+
past_length = past_key_values[0][0].shape[0]
|
652
|
+
if past_length:
|
653
|
+
full_attention_mask = torch.cat(
|
654
|
+
(torch.ones(batch_size, seq_length, past_length, device=input_ids.device), full_attention_mask), dim=-1
|
655
|
+
)
|
656
|
+
if padding_mask is not None:
|
657
|
+
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
658
|
+
if not past_length and padding_mask is not None:
|
659
|
+
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
660
|
+
full_attention_mask = (full_attention_mask < 0.5).bool()
|
661
|
+
full_attention_mask.unsqueeze_(1)
|
662
|
+
return full_attention_mask
|
663
|
+
|
664
|
+
def get_position_ids(self, input_ids, device):
|
665
|
+
batch_size, seq_length = input_ids.shape
|
666
|
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
667
|
+
return position_ids
|
668
|
+
|
669
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
670
|
+
if isinstance(module, GLMTransformer):
|
671
|
+
module.gradient_checkpointing = value
|
672
|
+
|
673
|
+
|
674
|
+
def default_init(cls, *args, **kwargs):
|
675
|
+
return cls(*args, **kwargs)
|
676
|
+
|
677
|
+
|
678
|
+
class Embedding(torch.nn.Module):
|
679
|
+
"""Language model embeddings."""
|
680
|
+
|
681
|
+
def __init__(self, config: ChatGLMConfig, device=None):
|
682
|
+
super(Embedding, self).__init__()
|
683
|
+
|
684
|
+
self.hidden_size = config.hidden_size
|
685
|
+
# Word embeddings (parallel).
|
686
|
+
self.word_embeddings = nn.Embedding(
|
687
|
+
config.padded_vocab_size, self.hidden_size, dtype=config.torch_dtype, device=device
|
688
|
+
)
|
689
|
+
self.fp32_residual_connection = config.fp32_residual_connection
|
690
|
+
|
691
|
+
def forward(self, input_ids):
|
692
|
+
# Embeddings.
|
693
|
+
words_embeddings = self.word_embeddings(input_ids)
|
694
|
+
embeddings = words_embeddings
|
695
|
+
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
|
696
|
+
embeddings = embeddings.transpose(0, 1).contiguous()
|
697
|
+
# If the input flag for fp32 residual connection is set, convert for float.
|
698
|
+
if self.fp32_residual_connection:
|
699
|
+
embeddings = embeddings.float()
|
700
|
+
return embeddings
|
701
|
+
|
702
|
+
|
703
|
+
class RotaryEmbedding(nn.Module):
|
704
|
+
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
705
|
+
super().__init__()
|
706
|
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
707
|
+
self.register_buffer("inv_freq", inv_freq)
|
708
|
+
self.dim = dim
|
709
|
+
self.original_impl = original_impl
|
710
|
+
|
711
|
+
def forward_impl(self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000):
|
712
|
+
"""Enhanced Transformer with Rotary Position Embedding.
|
713
|
+
|
714
|
+
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
715
|
+
transformers/rope/__init__.py. MIT License:
|
716
|
+
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
717
|
+
"""
|
718
|
+
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
719
|
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
|
720
|
+
|
721
|
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
722
|
+
seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
|
723
|
+
|
724
|
+
# Calculate the product of position index and $\theta_i$
|
725
|
+
idx_theta = torch.outer(seq_idx, theta).float()
|
726
|
+
|
727
|
+
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
|
728
|
+
|
729
|
+
# this is to mimic the behaviour of complex32, else we will get different results
|
730
|
+
if dtype in (torch.float16, torch.bfloat16, torch.int8):
|
731
|
+
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
|
732
|
+
return cache
|
733
|
+
|
734
|
+
def forward(self, max_seq_len, offset=0):
|
735
|
+
return self.forward_impl(max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device)
|
736
|
+
|
737
|
+
|
738
|
+
class PrefixEncoder(torch.nn.Module):
|
739
|
+
"""
|
740
|
+
The torch.nn model to encode the prefix Input shape: (batch-size, prefix-length) Output shape: (batch-size,
|
741
|
+
prefix-length, 2*layers*hidden)
|
742
|
+
"""
|
743
|
+
|
744
|
+
def __init__(self, config: ChatGLMConfig):
|
745
|
+
super().__init__()
|
746
|
+
self.prefix_projection = config.prefix_projection
|
747
|
+
if self.prefix_projection:
|
748
|
+
# Use a two-layer MLP to encode the prefix
|
749
|
+
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
750
|
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
751
|
+
self.trans = torch.nn.Sequential(
|
752
|
+
torch.nn.Linear(kv_size, config.hidden_size),
|
753
|
+
torch.nn.Tanh(),
|
754
|
+
torch.nn.Linear(config.hidden_size, kv_size),
|
755
|
+
)
|
756
|
+
else:
|
757
|
+
self.embedding = torch.nn.Embedding(
|
758
|
+
config.pre_seq_len, config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
759
|
+
)
|
760
|
+
|
761
|
+
def forward(self, prefix: torch.Tensor):
|
762
|
+
if self.prefix_projection:
|
763
|
+
prefix_tokens = self.embedding(prefix)
|
764
|
+
past_key_values = self.trans(prefix_tokens)
|
765
|
+
else:
|
766
|
+
past_key_values = self.embedding(prefix)
|
767
|
+
return past_key_values
|
768
|
+
|
769
|
+
|
770
|
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
771
|
+
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
772
|
+
super().__init__(config)
|
773
|
+
if empty_init:
|
774
|
+
init_method = skip_init
|
775
|
+
else:
|
776
|
+
init_method = default_init
|
777
|
+
init_kwargs = {}
|
778
|
+
if device is not None:
|
779
|
+
init_kwargs["device"] = device
|
780
|
+
self.embedding = init_method(Embedding, config, **init_kwargs)
|
781
|
+
self.num_layers = config.num_layers
|
782
|
+
self.multi_query_group_num = config.multi_query_group_num
|
783
|
+
self.kv_channels = config.kv_channels
|
784
|
+
|
785
|
+
# Rotary positional embeddings
|
786
|
+
self.seq_length = config.seq_length
|
787
|
+
rotary_dim = (
|
788
|
+
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
789
|
+
)
|
790
|
+
|
791
|
+
self.rotary_pos_emb = RotaryEmbedding(
|
792
|
+
rotary_dim // 2, original_impl=config.original_rope, device=device, dtype=config.torch_dtype
|
793
|
+
)
|
794
|
+
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
795
|
+
self.output_layer = init_method(
|
796
|
+
nn.Linear,
|
797
|
+
config.hidden_size,
|
798
|
+
config.padded_vocab_size,
|
799
|
+
bias=False,
|
800
|
+
dtype=config.torch_dtype,
|
801
|
+
**init_kwargs,
|
802
|
+
)
|
803
|
+
self.pre_seq_len = config.pre_seq_len
|
804
|
+
self.prefix_projection = config.prefix_projection
|
805
|
+
if self.pre_seq_len is not None:
|
806
|
+
for param in self.parameters():
|
807
|
+
param.requires_grad = False
|
808
|
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
809
|
+
self.prefix_encoder = PrefixEncoder(config)
|
810
|
+
self.dropout = torch.nn.Dropout(0.1)
|
811
|
+
|
812
|
+
def get_input_embeddings(self):
|
813
|
+
return self.embedding.word_embeddings
|
814
|
+
|
815
|
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
816
|
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
817
|
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
818
|
+
past_key_values = past_key_values.view(
|
819
|
+
batch_size, self.pre_seq_len, self.num_layers * 2, self.multi_query_group_num, self.kv_channels
|
820
|
+
)
|
821
|
+
# seq_len, b, nh, hidden_size
|
822
|
+
past_key_values = self.dropout(past_key_values)
|
823
|
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
824
|
+
return past_key_values
|
825
|
+
|
826
|
+
def forward(
|
827
|
+
self,
|
828
|
+
input_ids,
|
829
|
+
position_ids: Optional[torch.Tensor] = None,
|
830
|
+
attention_mask: Optional[torch.BoolTensor] = None,
|
831
|
+
full_attention_mask: Optional[torch.BoolTensor] = None,
|
832
|
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
833
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
834
|
+
use_cache: Optional[bool] = None,
|
835
|
+
output_hidden_states: Optional[bool] = None,
|
836
|
+
return_dict: Optional[bool] = None,
|
837
|
+
):
|
838
|
+
output_hidden_states = (
|
839
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
840
|
+
)
|
841
|
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
842
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
843
|
+
|
844
|
+
batch_size, seq_length = input_ids.shape
|
845
|
+
|
846
|
+
if inputs_embeds is None:
|
847
|
+
inputs_embeds = self.embedding(input_ids)
|
848
|
+
|
849
|
+
if self.pre_seq_len is not None:
|
850
|
+
if past_key_values is None:
|
851
|
+
past_key_values = self.get_prompt(
|
852
|
+
batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype
|
853
|
+
)
|
854
|
+
if attention_mask is not None:
|
855
|
+
attention_mask = torch.cat(
|
856
|
+
[attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1
|
857
|
+
)
|
858
|
+
|
859
|
+
if full_attention_mask is None:
|
860
|
+
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
861
|
+
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
862
|
+
|
863
|
+
# Rotary positional embeddings
|
864
|
+
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
865
|
+
if position_ids is not None:
|
866
|
+
rotary_pos_emb = rotary_pos_emb[position_ids]
|
867
|
+
else:
|
868
|
+
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
869
|
+
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
870
|
+
|
871
|
+
# Run encoder.
|
872
|
+
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
873
|
+
inputs_embeds,
|
874
|
+
full_attention_mask,
|
875
|
+
rotary_pos_emb=rotary_pos_emb,
|
876
|
+
kv_caches=past_key_values,
|
877
|
+
use_cache=use_cache,
|
878
|
+
output_hidden_states=output_hidden_states,
|
879
|
+
)
|
880
|
+
|
881
|
+
if not return_dict:
|
882
|
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
883
|
+
|
884
|
+
return BaseModelOutputWithPast(
|
885
|
+
last_hidden_state=hidden_states,
|
886
|
+
past_key_values=presents,
|
887
|
+
hidden_states=all_hidden_states,
|
888
|
+
attentions=all_self_attentions,
|
889
|
+
)
|