tpu-inference 0.12.0.dev20251222__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. tests/__init__.py +13 -0
  2. tests/core/__init__.py +13 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +67 -0
  6. tests/core/test_dp_scheduler.py +724 -0
  7. tests/core/test_init.py +63 -0
  8. tests/distributed/__init__.py +13 -0
  9. tests/distributed/test_distributed_utils.py +120 -0
  10. tests/distributed/test_tpu_connector.py +478 -0
  11. tests/e2e/__init__.py +13 -0
  12. tests/e2e/test_async_scheduler.py +211 -0
  13. tests/e2e/test_data_parallel.py +393 -0
  14. tests/e2e/test_local_disagg.py +257 -0
  15. tests/e2e/test_model_loader.py +268 -0
  16. tests/e2e/test_multi_modal_inference.py +111 -0
  17. tests/e2e/test_pipeline_parallel.py +265 -0
  18. tests/e2e/test_runai_model_streamer_loader.py +104 -0
  19. tests/e2e/test_sampling_params.py +269 -0
  20. tests/e2e/test_speculative_decoding.py +291 -0
  21. tests/e2e/test_structured_decoding.py +46 -0
  22. tests/executors/__init__.py +13 -0
  23. tests/executors/test_ray_distributed_executor.py +199 -0
  24. tests/experimental/__init__.py +13 -0
  25. tests/experimental/test_llama3_jax_stashed.py +208 -0
  26. tests/kernels/__init__.py +13 -0
  27. tests/kernels/collectives/__init__.py +13 -0
  28. tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
  29. tests/kernels/fused_moe_v1_test.py +388 -0
  30. tests/kernels/gmm_test.py +205 -0
  31. tests/kernels/mla_v1_test.py +498 -0
  32. tests/kernels/quantized_matmul_kernel_test.py +159 -0
  33. tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
  34. tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
  35. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
  36. tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
  37. tests/layers/__init__.py +13 -0
  38. tests/layers/common/__init__.py +13 -0
  39. tests/layers/common/test_attention_interface.py +156 -0
  40. tests/layers/common/test_quantization.py +149 -0
  41. tests/layers/jax/__init__.py +13 -0
  42. tests/layers/jax/attention/__init__.py +13 -0
  43. tests/layers/jax/attention/test_common_attention.py +103 -0
  44. tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
  45. tests/layers/jax/attention/test_llama4_attention.py +135 -0
  46. tests/layers/jax/moe/__init__.py +13 -0
  47. tests/layers/jax/moe/test_deepseek_moe.py +235 -0
  48. tests/layers/jax/sample/__init__.py +13 -0
  49. tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
  50. tests/layers/jax/sample/test_sampling.py +115 -0
  51. tests/layers/jax/sample/test_sampling_metadata.py +254 -0
  52. tests/layers/jax/test_layers.py +155 -0
  53. tests/layers/jax/test_qwix.py +969 -0
  54. tests/layers/jax/test_rope.py +93 -0
  55. tests/layers/jax/test_sharding.py +159 -0
  56. tests/layers/jax/test_transformer_block.py +152 -0
  57. tests/layers/vllm/__init__.py +13 -0
  58. tests/layers/vllm/test_attention.py +363 -0
  59. tests/layers/vllm/test_awq.py +405 -0
  60. tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
  61. tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
  62. tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
  63. tests/layers/vllm/test_fp8.py +17 -0
  64. tests/layers/vllm/test_mxfp4.py +297 -0
  65. tests/layers/vllm/test_unquantized.py +621 -0
  66. tests/layers/vllm/utils.py +72 -0
  67. tests/lora/__init__.py +13 -0
  68. tests/lora/conftest.py +46 -0
  69. tests/lora/test_bgmv.py +57 -0
  70. tests/lora/test_layers.py +666 -0
  71. tests/lora/test_lora.py +147 -0
  72. tests/lora/test_lora_perf.py +67 -0
  73. tests/lora/utils.py +88 -0
  74. tests/models/__init__.py +13 -0
  75. tests/models/common/__init__.py +13 -0
  76. tests/models/common/test_model_loader.py +455 -0
  77. tests/models/jax/__init__.py +13 -0
  78. tests/models/jax/test_deepseek_v3.py +401 -0
  79. tests/models/jax/test_llama3.py +184 -0
  80. tests/models/jax/test_llama4.py +298 -0
  81. tests/models/jax/test_llama_eagle3.py +197 -0
  82. tests/models/jax/test_llama_guard_4.py +242 -0
  83. tests/models/jax/test_qwen2.py +172 -0
  84. tests/models/jax/test_qwen2_5_vl.py +606 -0
  85. tests/models/jax/test_qwen3.py +169 -0
  86. tests/models/jax/test_weight_loading.py +180 -0
  87. tests/models/jax/utils/__init__.py +13 -0
  88. tests/models/jax/utils/test_multi_modal_utils.py +212 -0
  89. tests/platforms/__init__.py +13 -0
  90. tests/platforms/test_tpu_platform.py +54 -0
  91. tests/runner/__init__.py +13 -0
  92. tests/runner/test_block_table.py +395 -0
  93. tests/runner/test_input_batch.py +226 -0
  94. tests/runner/test_kv_cache.py +220 -0
  95. tests/runner/test_kv_cache_manager.py +498 -0
  96. tests/runner/test_multimodal_manager.py +429 -0
  97. tests/runner/test_persistent_batch_manager.py +84 -0
  98. tests/runner/test_speculative_decoding_manager.py +368 -0
  99. tests/runner/test_structured_decoding_manager.py +220 -0
  100. tests/runner/test_tpu_runner.py +202 -0
  101. tests/runner/test_tpu_runner_dp.py +1033 -0
  102. tests/runner/test_tpu_runner_mesh.py +200 -0
  103. tests/runner/test_utils.py +411 -0
  104. tests/spec_decode/__init__.py +13 -0
  105. tests/spec_decode/test_eagle3.py +311 -0
  106. tests/test_base.py +215 -0
  107. tests/test_envs.py +280 -0
  108. tests/test_tpu_info.py +134 -0
  109. tests/test_utils.py +193 -0
  110. tests/worker/__init__.py +13 -0
  111. tests/worker/tpu_worker_test.py +414 -0
  112. tpu_inference/__init__.py +67 -0
  113. tpu_inference/core/__init__.py +13 -0
  114. tpu_inference/core/core_tpu.py +786 -0
  115. tpu_inference/core/disagg_executor.py +118 -0
  116. tpu_inference/core/disagg_utils.py +49 -0
  117. tpu_inference/core/sched/__init__.py +13 -0
  118. tpu_inference/core/sched/dp_scheduler.py +814 -0
  119. tpu_inference/distributed/__init__.py +13 -0
  120. tpu_inference/distributed/jax_parallel_state.py +81 -0
  121. tpu_inference/distributed/tpu_connector.py +732 -0
  122. tpu_inference/distributed/utils.py +112 -0
  123. tpu_inference/env_override.py +9 -0
  124. tpu_inference/envs.py +191 -0
  125. tpu_inference/executors/__init__.py +13 -0
  126. tpu_inference/executors/ray_distributed_executor.py +399 -0
  127. tpu_inference/experimental/__init__.py +13 -0
  128. tpu_inference/experimental/llama3_jax_stashed.py +272 -0
  129. tpu_inference/kernels/__init__.py +13 -0
  130. tpu_inference/kernels/collectives/__init__.py +13 -0
  131. tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
  132. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
  133. tpu_inference/kernels/collectives/util.py +47 -0
  134. tpu_inference/kernels/flash_attention/__init__.py +13 -0
  135. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  136. tpu_inference/kernels/fused_moe/__init__.py +13 -0
  137. tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
  138. tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
  139. tpu_inference/kernels/megablox/__init__.py +13 -0
  140. tpu_inference/kernels/megablox/common.py +54 -0
  141. tpu_inference/kernels/megablox/gmm.py +646 -0
  142. tpu_inference/kernels/mla/__init__.py +13 -0
  143. tpu_inference/kernels/mla/v1/__init__.py +13 -0
  144. tpu_inference/kernels/mla/v1/kernel.py +1340 -0
  145. tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
  146. tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
  147. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  148. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  149. tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
  150. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
  151. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
  152. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
  153. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  154. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
  155. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
  156. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
  157. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
  158. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
  159. tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
  160. tpu_inference/layers/__init__.py +13 -0
  161. tpu_inference/layers/common/__init__.py +13 -0
  162. tpu_inference/layers/common/attention_interface.py +403 -0
  163. tpu_inference/layers/common/attention_metadata.py +48 -0
  164. tpu_inference/layers/common/binary_search.py +295 -0
  165. tpu_inference/layers/common/quant_methods.py +23 -0
  166. tpu_inference/layers/common/quantization.py +270 -0
  167. tpu_inference/layers/common/sharding.py +600 -0
  168. tpu_inference/layers/jax/__init__.py +13 -0
  169. tpu_inference/layers/jax/attention/__init__.py +13 -0
  170. tpu_inference/layers/jax/attention/attention.py +268 -0
  171. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
  172. tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
  173. tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
  174. tpu_inference/layers/jax/base.py +165 -0
  175. tpu_inference/layers/jax/constants.py +101 -0
  176. tpu_inference/layers/jax/layers.py +315 -0
  177. tpu_inference/layers/jax/misc.py +30 -0
  178. tpu_inference/layers/jax/moe/__init__.py +13 -0
  179. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
  180. tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
  181. tpu_inference/layers/jax/moe/moe.py +249 -0
  182. tpu_inference/layers/jax/pp_utils.py +53 -0
  183. tpu_inference/layers/jax/rope.py +294 -0
  184. tpu_inference/layers/jax/rope_interface.py +228 -0
  185. tpu_inference/layers/jax/sample/__init__.py +13 -0
  186. tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
  187. tpu_inference/layers/jax/sample/sampling.py +110 -0
  188. tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
  189. tpu_inference/layers/jax/transformer_block.py +121 -0
  190. tpu_inference/layers/vllm/__init__.py +13 -0
  191. tpu_inference/layers/vllm/attention.py +221 -0
  192. tpu_inference/layers/vllm/fused_moe.py +502 -0
  193. tpu_inference/layers/vllm/linear_common.py +221 -0
  194. tpu_inference/layers/vllm/quantization/__init__.py +55 -0
  195. tpu_inference/layers/vllm/quantization/awq.py +221 -0
  196. tpu_inference/layers/vllm/quantization/common.py +124 -0
  197. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
  198. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
  199. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
  200. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
  201. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
  202. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
  203. tpu_inference/layers/vllm/quantization/fp8.py +118 -0
  204. tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
  205. tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
  206. tpu_inference/layers/vllm/sharding.py +244 -0
  207. tpu_inference/logger.py +10 -0
  208. tpu_inference/lora/__init__.py +13 -0
  209. tpu_inference/lora/torch_lora_ops.py +98 -0
  210. tpu_inference/lora/torch_punica_tpu.py +310 -0
  211. tpu_inference/models/__init__.py +13 -0
  212. tpu_inference/models/common/__init__.py +13 -0
  213. tpu_inference/models/common/model_loader.py +520 -0
  214. tpu_inference/models/jax/__init__.py +13 -0
  215. tpu_inference/models/jax/deepseek_v3.py +978 -0
  216. tpu_inference/models/jax/gpt_oss.py +508 -0
  217. tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
  218. tpu_inference/models/jax/llama3.py +436 -0
  219. tpu_inference/models/jax/llama4.py +643 -0
  220. tpu_inference/models/jax/llama_eagle3.py +350 -0
  221. tpu_inference/models/jax/llama_guard_4.py +375 -0
  222. tpu_inference/models/jax/qwen2.py +390 -0
  223. tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
  224. tpu_inference/models/jax/qwen3.py +318 -0
  225. tpu_inference/models/jax/utils/__init__.py +13 -0
  226. tpu_inference/models/jax/utils/file_utils.py +110 -0
  227. tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
  228. tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
  229. tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
  230. tpu_inference/models/jax/utils/weight_utils.py +621 -0
  231. tpu_inference/models/vllm/__init__.py +13 -0
  232. tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
  233. tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
  234. tpu_inference/platforms/__init__.py +16 -0
  235. tpu_inference/platforms/tpu_platform.py +258 -0
  236. tpu_inference/runner/__init__.py +13 -0
  237. tpu_inference/runner/block_table.py +122 -0
  238. tpu_inference/runner/compilation_manager.py +890 -0
  239. tpu_inference/runner/input_batch.py +435 -0
  240. tpu_inference/runner/kv_cache.py +166 -0
  241. tpu_inference/runner/kv_cache_manager.py +508 -0
  242. tpu_inference/runner/lora_utils.py +106 -0
  243. tpu_inference/runner/multimodal_manager.py +231 -0
  244. tpu_inference/runner/persistent_batch_manager.py +296 -0
  245. tpu_inference/runner/speculative_decoding_manager.py +262 -0
  246. tpu_inference/runner/structured_decoding_manager.py +101 -0
  247. tpu_inference/runner/tpu_runner.py +1768 -0
  248. tpu_inference/runner/utils.py +426 -0
  249. tpu_inference/spec_decode/__init__.py +13 -0
  250. tpu_inference/spec_decode/jax/__init__.py +13 -0
  251. tpu_inference/spec_decode/jax/eagle3.py +430 -0
  252. tpu_inference/tpu_info.py +92 -0
  253. tpu_inference/utils.py +345 -0
  254. tpu_inference/worker/__init__.py +13 -0
  255. tpu_inference/worker/tpu_worker.py +468 -0
  256. tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
  257. tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
  258. tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
  259. tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
  260. tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
@@ -0,0 +1,390 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import List, Optional, Tuple
16
+
17
+ import jax
18
+ import jax.numpy as jnp
19
+ from flax import nnx
20
+ from jax.sharding import Mesh
21
+ from transformers import Qwen2Config, modeling_flax_utils
22
+ from vllm.config import VllmConfig
23
+
24
+ from tpu_inference import utils
25
+ from tpu_inference.layers.common.attention_interface import attention
26
+ from tpu_inference.layers.common.attention_metadata import AttentionMetadata
27
+ from tpu_inference.layers.jax.rope_interface import apply_rope
28
+ from tpu_inference.logger import init_logger
29
+ from tpu_inference.models.jax.utils.weight_utils import (get_default_maps,
30
+ load_hf_weights)
31
+
32
+ logger = init_logger(__name__)
33
+
34
+ init_fn = nnx.initializers.uniform()
35
+
36
+
37
+ class Qwen2MLP(nnx.Module):
38
+
39
+ def __init__(self, config: Qwen2Config, dtype: jnp.dtype, rng: nnx.Rngs):
40
+ hidden_size = config.hidden_size
41
+ intermediate_size = config.intermediate_size
42
+ act = config.hidden_act
43
+
44
+ self.gate_proj = nnx.Linear(
45
+ hidden_size,
46
+ intermediate_size,
47
+ use_bias=False,
48
+ param_dtype=dtype,
49
+ kernel_init=nnx.with_partitioning(init_fn, (None, "model")),
50
+ rngs=rng,
51
+ )
52
+ self.up_proj = nnx.Linear(
53
+ hidden_size,
54
+ intermediate_size,
55
+ use_bias=False,
56
+ param_dtype=dtype,
57
+ kernel_init=nnx.with_partitioning(init_fn, (None, "model")),
58
+ rngs=rng,
59
+ )
60
+ self.down_proj = nnx.Linear(
61
+ intermediate_size,
62
+ hidden_size,
63
+ use_bias=False,
64
+ param_dtype=dtype,
65
+ kernel_init=nnx.with_partitioning(init_fn, ("model", None)),
66
+ rngs=rng,
67
+ )
68
+ self.act_fn = modeling_flax_utils.ACT2FN[act]
69
+
70
+ def __call__(self, x: jax.Array) -> jax.Array:
71
+ gate = self.act_fn(self.gate_proj(x))
72
+ up = self.up_proj(x)
73
+ fuse = gate * up
74
+ result = self.down_proj(fuse)
75
+ return result
76
+
77
+
78
+ class Qwen2Attention(nnx.Module):
79
+
80
+ def __init__(self, config: Qwen2Config, dtype: jnp.dtype, rng: nnx.Rngs,
81
+ mesh: Mesh, kv_cache_dtype: str):
82
+ self.hidden_size = config.hidden_size
83
+ self.num_heads = config.num_attention_heads
84
+ self.num_kv_heads = config.num_key_value_heads
85
+ self.rope_theta = config.rope_theta
86
+ self.rope_scaling = getattr(config, "rope_scaling", None)
87
+
88
+ self.head_dim_original = getattr(config, "head_dim",
89
+ self.hidden_size // self.num_heads)
90
+ self.head_dim = utils.get_padded_head_dim(self.head_dim_original)
91
+
92
+ sharding_size = mesh.shape["model"]
93
+ self.num_heads = utils.get_padded_num_heads(self.num_heads,
94
+ sharding_size)
95
+ self.num_kv_heads = utils.get_padded_num_heads(self.num_kv_heads,
96
+ sharding_size)
97
+
98
+ self.mesh = mesh
99
+
100
+ self.q_proj = nnx.Einsum(
101
+ "TD,DNH->TNH",
102
+ (self.hidden_size, self.num_heads, self.head_dim),
103
+ (self.num_heads, self.head_dim),
104
+ param_dtype=dtype,
105
+ kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
106
+ bias_init=nnx.with_partitioning(init_fn, ("model", None)),
107
+ rngs=rng,
108
+ )
109
+ self.k_proj = nnx.Einsum(
110
+ "TD,DKH->TKH",
111
+ (self.hidden_size, self.num_kv_heads, self.head_dim),
112
+ (self.num_kv_heads, self.head_dim),
113
+ param_dtype=dtype,
114
+ kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
115
+ bias_init=nnx.with_partitioning(init_fn, ("model", None)),
116
+ rngs=rng,
117
+ )
118
+ self.v_proj = nnx.Einsum(
119
+ "TD,DKH->TKH",
120
+ (self.hidden_size, self.num_kv_heads, self.head_dim),
121
+ (self.num_kv_heads, self.head_dim),
122
+ param_dtype=dtype,
123
+ kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
124
+ bias_init=nnx.with_partitioning(init_fn, ("model", None)),
125
+ rngs=rng,
126
+ )
127
+ self.o_proj = nnx.Einsum(
128
+ "TNH,NHD->TD",
129
+ (self.num_heads, self.head_dim, self.hidden_size),
130
+ param_dtype=dtype,
131
+ kernel_init=nnx.with_partitioning(init_fn, ("model", None, None)),
132
+ rngs=rng,
133
+ )
134
+
135
+ self._q_scale = 1.0
136
+ self._k_scale = 1.0
137
+ self._v_scale = 1.0
138
+ self.kv_cache_quantized_dtype = None
139
+ if kv_cache_dtype != "auto":
140
+ self.kv_cache_quantized_dtype = utils.get_jax_dtype_from_str_dtype(
141
+ kv_cache_dtype)
142
+
143
+ def __call__(
144
+ self,
145
+ kv_cache: Optional[jax.Array],
146
+ x: jax.Array,
147
+ attention_metadata: AttentionMetadata,
148
+ ) -> Tuple[jax.Array, jax.Array]:
149
+ md = attention_metadata
150
+ # q: (T, N, H)
151
+ q = self.q_proj(x)
152
+ q = apply_rope(q, md.input_positions, self.head_dim_original,
153
+ self.rope_theta, self.rope_scaling)
154
+
155
+ # k: (T, K, H)
156
+ k = self.k_proj(x)
157
+ k = apply_rope(k, md.input_positions, self.head_dim_original,
158
+ self.rope_theta, self.rope_scaling)
159
+
160
+ # v: (T, K, H)
161
+ v = self.v_proj(x)
162
+ # o: (T, N, H)
163
+ q_scale = k_scale = v_scale = None
164
+ if self.kv_cache_quantized_dtype:
165
+ # TODO(kyuyeunk/jacobplatin): Enable w8a8 when VREG spill issue is resolved.
166
+ # q_scale = self._q_scale
167
+ k_scale = self._k_scale
168
+ v_scale = self._v_scale
169
+ k, v = utils.quantize_kv(k, v, self.kv_cache_quantized_dtype,
170
+ k_scale, v_scale)
171
+ new_kv_cache, outputs = attention(
172
+ kv_cache,
173
+ q,
174
+ k,
175
+ v,
176
+ attention_metadata,
177
+ self.mesh,
178
+ self.head_dim_original,
179
+ q_scale=q_scale,
180
+ k_scale=k_scale,
181
+ v_scale=v_scale,
182
+ )
183
+ # (T, D)
184
+ o = self.o_proj(outputs)
185
+ return new_kv_cache, o
186
+
187
+
188
+ class Qwen2DecoderLayer(nnx.Module):
189
+
190
+ def __init__(self, config: Qwen2Config, dtype: jnp.dtype, rng: nnx.Rngs,
191
+ mesh: Mesh, kv_cache_dtype: str):
192
+ rms_norm_eps = config.rms_norm_eps
193
+ hidden_size = config.hidden_size
194
+
195
+ self.input_layernorm = nnx.RMSNorm(
196
+ hidden_size,
197
+ epsilon=rms_norm_eps,
198
+ param_dtype=dtype,
199
+ scale_init=nnx.with_partitioning(init_fn, (None, )),
200
+ rngs=rng,
201
+ )
202
+ self.self_attn = Qwen2Attention(config=config,
203
+ dtype=dtype,
204
+ rng=rng,
205
+ mesh=mesh,
206
+ kv_cache_dtype=kv_cache_dtype)
207
+ self.post_attention_layernorm = nnx.RMSNorm(
208
+ hidden_size,
209
+ epsilon=rms_norm_eps,
210
+ param_dtype=dtype,
211
+ scale_init=nnx.with_partitioning(init_fn, (None, )),
212
+ rngs=rng,
213
+ )
214
+ self.mlp = Qwen2MLP(
215
+ config=config,
216
+ dtype=dtype,
217
+ rng=rng,
218
+ )
219
+
220
+ def __call__(
221
+ self,
222
+ kv_cache: jax.Array,
223
+ x: jax.Array,
224
+ attention_metadata: AttentionMetadata,
225
+ ) -> Tuple[jax.Array, jax.Array]:
226
+ hidden_states = self.input_layernorm(x)
227
+ kv_cache, attn_output = self.self_attn(
228
+ kv_cache,
229
+ hidden_states,
230
+ attention_metadata,
231
+ )
232
+ attn_output += x
233
+
234
+ residual = attn_output
235
+ attn_output = self.post_attention_layernorm(attn_output)
236
+ outputs = self.mlp(attn_output)
237
+ outputs = residual + outputs
238
+ return kv_cache, outputs
239
+
240
+
241
+ class Qwen2Model(nnx.Module):
242
+
243
+ def __init__(self, vllm_config: VllmConfig, rng: nnx.Rngs,
244
+ mesh: Mesh) -> None:
245
+ model_config = vllm_config.model_config
246
+ hf_config = model_config.hf_config
247
+ vocab_size = model_config.get_vocab_size()
248
+ dtype = model_config.dtype
249
+ rms_norm_eps = hf_config.rms_norm_eps
250
+ hidden_size = hf_config.hidden_size
251
+
252
+ self.embed = nnx.Embed(
253
+ num_embeddings=vocab_size,
254
+ features=hidden_size,
255
+ param_dtype=dtype,
256
+ embedding_init=nnx.with_partitioning(init_fn, ("model", None)),
257
+ rngs=rng,
258
+ )
259
+ self.layers = [
260
+ Qwen2DecoderLayer(
261
+ config=hf_config,
262
+ dtype=dtype,
263
+ rng=rng,
264
+ mesh=mesh,
265
+ # TODO (jacobplatin): we should refactor this to pass a dtype (or config) directly
266
+ kv_cache_dtype=vllm_config.cache_config.cache_dtype)
267
+ for _ in range(hf_config.num_hidden_layers)
268
+ ]
269
+ self.norm = nnx.RMSNorm(
270
+ hidden_size,
271
+ epsilon=rms_norm_eps,
272
+ param_dtype=dtype,
273
+ scale_init=nnx.with_partitioning(init_fn, (None, )),
274
+ rngs=rng,
275
+ )
276
+ if model_config.hf_config.tie_word_embeddings:
277
+ self.lm_head = self.embed.embedding
278
+ else:
279
+ self.lm_head = nnx.Param(
280
+ init_fn(rng.params(), (hidden_size, vocab_size), dtype),
281
+ sharding=(None, "model"),
282
+ )
283
+
284
+ def __call__(
285
+ self,
286
+ kv_caches: List[jax.Array],
287
+ input_ids: Optional[jax.Array],
288
+ attention_metadata: AttentionMetadata,
289
+ inputs_embeds: Optional[jax.Array] = None,
290
+ ) -> Tuple[List[jax.Array], jax.Array]:
291
+ if inputs_embeds is not None:
292
+ x = inputs_embeds
293
+ else:
294
+ x = self.embed(input_ids)
295
+ for i, layer in enumerate(self.layers):
296
+ kv_cache = kv_caches[i]
297
+ kv_cache, x = layer(
298
+ kv_cache,
299
+ x,
300
+ attention_metadata,
301
+ )
302
+ kv_caches[i] = kv_cache
303
+ x = self.norm(x)
304
+ return kv_caches, x
305
+
306
+
307
+ class Qwen2ForCausalLM(nnx.Module):
308
+
309
+ def __init__(self, vllm_config: VllmConfig, rng_key: jax.Array,
310
+ mesh: Mesh) -> None:
311
+ self.vllm_config = vllm_config
312
+ self.rng = nnx.Rngs(rng_key)
313
+ self.mesh = mesh
314
+
315
+ self.model = Qwen2Model(
316
+ vllm_config=vllm_config,
317
+ rng=self.rng,
318
+ mesh=mesh,
319
+ )
320
+
321
+ def __call__(
322
+ self,
323
+ kv_caches: List[jax.Array],
324
+ input_ids: Optional[jax.Array],
325
+ attention_metadata: AttentionMetadata,
326
+ inputs_embeds: Optional[jax.Array] = None,
327
+ *args,
328
+ ) -> Tuple[List[jax.Array], jax.Array, List[jax.Array]]:
329
+ kv_caches, x = self.model(
330
+ kv_caches,
331
+ input_ids,
332
+ attention_metadata,
333
+ inputs_embeds,
334
+ )
335
+ return kv_caches, x, []
336
+
337
+ def compute_logits(self, hidden_states: jax.Array) -> jax.Array:
338
+ if self.vllm_config.model_config.hf_config.tie_word_embeddings:
339
+ logits = jnp.dot(hidden_states, self.model.lm_head.value.T)
340
+ else:
341
+ logits = jnp.dot(hidden_states, self.model.lm_head.value)
342
+ return logits
343
+
344
+ def load_weights(self, rng_key: jax.Array):
345
+ # NOTE: Since we are using nnx.eval_shape to init the model,
346
+ # we have to pass dynamic arrays here for __call__'s usage.
347
+ self.rng = nnx.Rngs(rng_key)
348
+
349
+ # Key: path to a HF layer weight
350
+ # Value: path to a nnx layer weight
351
+ mappings = {
352
+ "model.embed_tokens": "model.embed.embedding",
353
+ "model.layers.*.input_layernorm":
354
+ "model.layers.*.input_layernorm.scale",
355
+ "model.layers.*.mlp.down_proj":
356
+ "model.layers.*.mlp.down_proj.kernel",
357
+ "model.layers.*.mlp.gate_proj":
358
+ "model.layers.*.mlp.gate_proj.kernel",
359
+ "model.layers.*.mlp.up_proj": "model.layers.*.mlp.up_proj.kernel",
360
+ "model.layers.*.post_attention_layernorm":
361
+ "model.layers.*.post_attention_layernorm.scale",
362
+ "model.layers.*.self_attn.k_proj":
363
+ "model.layers.*.self_attn.k_proj.kernel",
364
+ "model.layers.*.self_attn.o_proj":
365
+ "model.layers.*.self_attn.o_proj.kernel",
366
+ "model.layers.*.self_attn.q_proj":
367
+ "model.layers.*.self_attn.q_proj.kernel",
368
+ "model.layers.*.self_attn.v_proj":
369
+ "model.layers.*.self_attn.v_proj.kernel",
370
+ "model.layers.*.self_attn.q_proj.bias":
371
+ "model.layers.*.self_attn.q_proj.bias",
372
+ "model.layers.*.self_attn.k_proj.bias":
373
+ "model.layers.*.self_attn.k_proj.bias",
374
+ "model.layers.*.self_attn.v_proj.bias":
375
+ "model.layers.*.self_attn.v_proj.bias",
376
+ "model.norm": "model.norm.scale",
377
+ }
378
+
379
+ # Add lm_head mapping only if it's not tied to embeddings
380
+ if not self.vllm_config.model_config.hf_config.tie_word_embeddings:
381
+ mappings.update({
382
+ "lm_head": "model.lm_head",
383
+ })
384
+
385
+ metadata_map = get_default_maps(self.vllm_config.model_config,
386
+ self.mesh, mappings)
387
+ load_hf_weights(vllm_config=self.vllm_config,
388
+ model=self,
389
+ metadata_map=metadata_map,
390
+ mesh=self.mesh)