tpu-inference 0.12.0.dev20251222__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +67 -0
- tests/core/test_dp_scheduler.py +724 -0
- tests/core/test_init.py +63 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +393 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +291 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +388 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +498 -0
- tests/kernels/quantized_matmul_kernel_test.py +159 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/layers/jax/test_qwix.py +969 -0
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +405 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +297 -0
- tests/layers/vllm/test_unquantized.py +621 -0
- tests/layers/vllm/utils.py +72 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +46 -0
- tests/lora/test_bgmv.py +57 -0
- tests/lora/test_layers.py +666 -0
- tests/lora/test_lora.py +147 -0
- tests/lora/test_lora_perf.py +67 -0
- tests/lora/utils.py +88 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +606 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +202 -0
- tests/runner/test_tpu_runner_dp.py +1033 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +215 -0
- tests/test_envs.py +280 -0
- tests/test_tpu_info.py +134 -0
- tests/test_utils.py +193 -0
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +67 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +49 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +814 -0
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +81 -0
- tpu_inference/distributed/tpu_connector.py +732 -0
- tpu_inference/distributed/utils.py +112 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +191 -0
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +399 -0
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +272 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +1340 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +403 -0
- tpu_inference/layers/common/attention_metadata.py +48 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +23 -0
- tpu_inference/layers/common/quantization.py +270 -0
- tpu_inference/layers/common/sharding.py +600 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +268 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
- tpu_inference/layers/jax/base.py +165 -0
- tpu_inference/layers/jax/constants.py +101 -0
- tpu_inference/layers/jax/layers.py +315 -0
- tpu_inference/layers/jax/misc.py +30 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
- tpu_inference/layers/jax/moe/moe.py +249 -0
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +294 -0
- tpu_inference/layers/jax/rope_interface.py +228 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
- tpu_inference/layers/jax/sample/sampling.py +110 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
- tpu_inference/layers/jax/transformer_block.py +121 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +502 -0
- tpu_inference/layers/vllm/linear_common.py +221 -0
- tpu_inference/layers/vllm/quantization/__init__.py +55 -0
- tpu_inference/layers/vllm/quantization/awq.py +221 -0
- tpu_inference/layers/vllm/quantization/common.py +124 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
- tpu_inference/layers/vllm/quantization/fp8.py +118 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
- tpu_inference/layers/vllm/sharding.py +244 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +98 -0
- tpu_inference/lora/torch_punica_tpu.py +310 -0
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +520 -0
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +978 -0
- tpu_inference/models/jax/gpt_oss.py +508 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
- tpu_inference/models/jax/llama3.py +436 -0
- tpu_inference/models/jax/llama4.py +643 -0
- tpu_inference/models/jax/llama_eagle3.py +350 -0
- tpu_inference/models/jax/llama_guard_4.py +375 -0
- tpu_inference/models/jax/qwen2.py +390 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
- tpu_inference/models/jax/qwen3.py +318 -0
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +110 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
- tpu_inference/models/jax/utils/weight_utils.py +621 -0
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
- tpu_inference/platforms/__init__.py +16 -0
- tpu_inference/platforms/tpu_platform.py +258 -0
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +890 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +166 -0
- tpu_inference/runner/kv_cache_manager.py +508 -0
- tpu_inference/runner/lora_utils.py +106 -0
- tpu_inference/runner/multimodal_manager.py +231 -0
- tpu_inference/runner/persistent_batch_manager.py +296 -0
- tpu_inference/runner/speculative_decoding_manager.py +262 -0
- tpu_inference/runner/structured_decoding_manager.py +101 -0
- tpu_inference/runner/tpu_runner.py +1768 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +430 -0
- tpu_inference/tpu_info.py +92 -0
- tpu_inference/utils.py +345 -0
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +468 -0
- tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
- tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
- tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
- tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,268 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from dataclasses import InitVar, dataclass
|
|
16
|
+
from typing import Any, Tuple
|
|
17
|
+
|
|
18
|
+
import jax
|
|
19
|
+
import jax.numpy as jnp
|
|
20
|
+
from flax import nnx
|
|
21
|
+
from flax.typing import Sharding
|
|
22
|
+
from jax.sharding import Mesh
|
|
23
|
+
from jax.sharding import PartitionSpec as P
|
|
24
|
+
|
|
25
|
+
from tpu_inference import utils
|
|
26
|
+
from tpu_inference.kernels.ragged_paged_attention.v3.kernel import \
|
|
27
|
+
ragged_paged_attention
|
|
28
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
29
|
+
from tpu_inference.layers.common.quantization import quantize_kv
|
|
30
|
+
from tpu_inference.layers.common.sharding import ShardingAxisName
|
|
31
|
+
from tpu_inference.layers.jax.base import create_param
|
|
32
|
+
from tpu_inference.layers.jax.rope_interface import apply_rope
|
|
33
|
+
|
|
34
|
+
KVCache = Tuple[jax.Array, jax.Array]
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
@dataclass(kw_only=True)
|
|
38
|
+
class Attention(nnx.Module):
|
|
39
|
+
"""An implementation of attention.
|
|
40
|
+
|
|
41
|
+
This module performs the attention mechanism for a transformer model,
|
|
42
|
+
including query, key, and value projections, application of Rotary
|
|
43
|
+
Position Embeddings (RoPE), and management of a KV cache for efficient
|
|
44
|
+
autoregressive generation. It supports both prefill and generation
|
|
45
|
+
(decode) modes and handles tensor sharding for distributed computation.
|
|
46
|
+
|
|
47
|
+
Attributes:
|
|
48
|
+
mesh: The JAX device mesh for distributed computation.
|
|
49
|
+
"""
|
|
50
|
+
hidden_size: int
|
|
51
|
+
num_attention_heads: int
|
|
52
|
+
num_key_value_heads: int
|
|
53
|
+
head_dim: int
|
|
54
|
+
rope_theta: float
|
|
55
|
+
rope_scaling: dict[str, Any]
|
|
56
|
+
dtype: jnp.dtype
|
|
57
|
+
mesh: Mesh
|
|
58
|
+
kv_cache_dtype: str
|
|
59
|
+
|
|
60
|
+
dnh_sharding: Sharding = ()
|
|
61
|
+
dkh_sharding: Sharding = ()
|
|
62
|
+
nhd_sharding: Sharding = ()
|
|
63
|
+
|
|
64
|
+
activation_q_td: Sharding = (ShardingAxisName.ATTN_DATA)
|
|
65
|
+
query_tnh: P = P(ShardingAxisName.ATTN_DATA)
|
|
66
|
+
keyvalue_skh: P = P(ShardingAxisName.ATTN_DATA)
|
|
67
|
+
|
|
68
|
+
attn_o_tnh: P = P(ShardingAxisName.ATTN_DATA)
|
|
69
|
+
rngs: InitVar[nnx.Rngs]
|
|
70
|
+
|
|
71
|
+
random_init: bool = False
|
|
72
|
+
attention_chunk_size: int | None = None
|
|
73
|
+
rope_input_ordering: str = "split"
|
|
74
|
+
|
|
75
|
+
_q_scale: float = 1.0
|
|
76
|
+
_k_scale: float = 1.0
|
|
77
|
+
_v_scale: float = 1.0
|
|
78
|
+
|
|
79
|
+
kv_cache_quantized_dtype = None
|
|
80
|
+
|
|
81
|
+
def __post_init__(self, rngs: nnx.Rngs):
|
|
82
|
+
"""Initializes the weight kernels for Q, K, V, and O projections."""
|
|
83
|
+
N = self.num_attention_heads
|
|
84
|
+
K = self.num_key_value_heads
|
|
85
|
+
D = self.hidden_size
|
|
86
|
+
H = self.head_dim
|
|
87
|
+
|
|
88
|
+
self.kernel_q_proj_DNH = create_param(rngs, (D, N, H),
|
|
89
|
+
self.dnh_sharding,
|
|
90
|
+
self.dtype,
|
|
91
|
+
random_init=self.random_init)
|
|
92
|
+
self.kernel_k_proj_DKH = create_param(rngs, (D, K, H),
|
|
93
|
+
self.dkh_sharding,
|
|
94
|
+
self.dtype,
|
|
95
|
+
random_init=self.random_init)
|
|
96
|
+
self.kernel_v_proj_DKH = create_param(rngs, (D, K, H),
|
|
97
|
+
self.dkh_sharding,
|
|
98
|
+
self.dtype,
|
|
99
|
+
random_init=self.random_init)
|
|
100
|
+
self.kernel_o_proj_NHD = create_param(rngs, (N, H, D),
|
|
101
|
+
self.nhd_sharding,
|
|
102
|
+
self.dtype,
|
|
103
|
+
random_init=self.random_init)
|
|
104
|
+
|
|
105
|
+
if self.kv_cache_dtype != "auto":
|
|
106
|
+
self.kv_cache_quantized_dtype = utils.get_jax_dtype_from_str_dtype(
|
|
107
|
+
self.kv_cache_dtype)
|
|
108
|
+
|
|
109
|
+
def __call__(self,
|
|
110
|
+
x,
|
|
111
|
+
is_prefill,
|
|
112
|
+
kv_cache: KVCache,
|
|
113
|
+
attention_metadata: AttentionMetadata,
|
|
114
|
+
use_attention_rope: bool = True):
|
|
115
|
+
"""Performs the forward pass of the attention module.
|
|
116
|
+
|
|
117
|
+
This method computes the attention output by projecting the input `x`
|
|
118
|
+
to queries, keys, and values, applying RoPE, performing scaled
|
|
119
|
+
dot-product attention, and projecting the result back to the model
|
|
120
|
+
dimension. It updates and utilizes a KV cache.
|
|
121
|
+
|
|
122
|
+
Args:
|
|
123
|
+
x: The input tensor of shape `(seq_len, d_model)`.
|
|
124
|
+
is_prefill: Whether the operation mode is prefill (otherwise it is generate).
|
|
125
|
+
kv_cache: The key-value cache for storing past attention states.
|
|
126
|
+
attention_metadata: Metadata for attention, such as input positions.
|
|
127
|
+
use_attention_rope: Whether to use RoPE.
|
|
128
|
+
|
|
129
|
+
Returns:
|
|
130
|
+
A tuple containing:
|
|
131
|
+
- The updated KV cache.
|
|
132
|
+
- The attention output tensor of shape
|
|
133
|
+
`(batch_size, seq_len, d_model)`.
|
|
134
|
+
"""
|
|
135
|
+
md = attention_metadata
|
|
136
|
+
x_SD = jnp.asarray(x, self.dtype)
|
|
137
|
+
x_q_TD = nnx.with_sharding_constraint(x, self.activation_q_td)
|
|
138
|
+
H = self.head_dim
|
|
139
|
+
with jax.named_scope("q_proj"):
|
|
140
|
+
q_TNH = jnp.einsum('TD,DNH -> TNH', x_q_TD,
|
|
141
|
+
self.kernel_q_proj_DNH.value)
|
|
142
|
+
if use_attention_rope:
|
|
143
|
+
q_TNH = apply_rope(q_TNH, md.input_positions, H,
|
|
144
|
+
self.rope_theta, self.rope_scaling,
|
|
145
|
+
self.rope_input_ordering)
|
|
146
|
+
q_TNH = nnx.with_sharding_constraint(q_TNH, self.query_tnh)
|
|
147
|
+
with jax.named_scope("k_proj"):
|
|
148
|
+
k_SKH = jnp.einsum('SD,DKH -> SKH', x_SD,
|
|
149
|
+
self.kernel_k_proj_DKH.value)
|
|
150
|
+
if use_attention_rope:
|
|
151
|
+
k_SKH = apply_rope(k_SKH, md.input_positions, H,
|
|
152
|
+
self.rope_theta, self.rope_scaling,
|
|
153
|
+
self.rope_input_ordering)
|
|
154
|
+
k_SKH = nnx.with_sharding_constraint(k_SKH, self.keyvalue_skh)
|
|
155
|
+
|
|
156
|
+
with jax.named_scope("v_proj"):
|
|
157
|
+
v_SKH = jnp.einsum('SD,DKH -> SKH', x_SD,
|
|
158
|
+
self.kernel_v_proj_DKH.value)
|
|
159
|
+
|
|
160
|
+
q_scale = k_scale = v_scale = None
|
|
161
|
+
if self.kv_cache_quantized_dtype:
|
|
162
|
+
# TODO(kyuyeunk/jacobplatin): Enable w8a8 when VREG spill issue is resolved.
|
|
163
|
+
# q_scale = self._q_scale
|
|
164
|
+
k_scale = self._k_scale
|
|
165
|
+
v_scale = self._v_scale
|
|
166
|
+
k_SKH, v_SKH = quantize_kv(self.kv_cache_quantized_dtype, k_SKH,
|
|
167
|
+
v_SKH, k_scale, v_scale)
|
|
168
|
+
|
|
169
|
+
with jax.named_scope("attn_op"):
|
|
170
|
+
new_kv_cache, outputs_TNH = self.attention(
|
|
171
|
+
is_prefill,
|
|
172
|
+
kv_cache,
|
|
173
|
+
q_TNH,
|
|
174
|
+
k_SKH,
|
|
175
|
+
v_SKH,
|
|
176
|
+
attention_metadata,
|
|
177
|
+
self.mesh,
|
|
178
|
+
q_scale=q_scale,
|
|
179
|
+
k_scale=k_scale,
|
|
180
|
+
v_scale=v_scale,
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
with jax.named_scope("o_proj"):
|
|
184
|
+
o_TD = jnp.einsum('TNH,NHD -> TD', outputs_TNH,
|
|
185
|
+
self.kernel_o_proj_NHD.value)
|
|
186
|
+
return new_kv_cache, o_TD
|
|
187
|
+
|
|
188
|
+
def attention(
|
|
189
|
+
self,
|
|
190
|
+
is_prefill: bool,
|
|
191
|
+
kv_cache: KVCache,
|
|
192
|
+
q_TNH: jax.Array,
|
|
193
|
+
k_SKH: jax.Array,
|
|
194
|
+
v_SKH: jax.Array,
|
|
195
|
+
attention_metadata: AttentionMetadata,
|
|
196
|
+
mesh: Mesh,
|
|
197
|
+
q_scale: float | None = None,
|
|
198
|
+
k_scale: float | None = None,
|
|
199
|
+
v_scale: float | None = None,
|
|
200
|
+
) -> Tuple[KVCache, jax.Array]:
|
|
201
|
+
"""Performs scaled dot-product attention and updates the KV cache.
|
|
202
|
+
|
|
203
|
+
This function handles the core attention logic, which varies between
|
|
204
|
+
prefill and generation modes. In prefill, it computes self-attention
|
|
205
|
+
over the input sequence with a causal mask. In generation, it attends
|
|
206
|
+
to the full history of keys and values stored in the cache.
|
|
207
|
+
|
|
208
|
+
Args:
|
|
209
|
+
is_prefill: A boolean indicating if the mode is 'prefill'.
|
|
210
|
+
kv_cache: The key-value cache to be updated and used.
|
|
211
|
+
q_TNH: Query tensor of shape `(query_seq, num_attention_heads, head_dim)`.
|
|
212
|
+
k_SKH: Key tensor of shape `(kv_seq, num_key_value_heads, head_dim)`.
|
|
213
|
+
v_SKH: Value tensor of shape `(kv_seq, num_key_value_heads, head_dim)`.
|
|
214
|
+
attention_metadata: Metadata containing sequence lengths.
|
|
215
|
+
mesh: The JAX device mesh (unused in this specific function but
|
|
216
|
+
kept for potential future use or API consistency).
|
|
217
|
+
q_scale: Quantization scale for q.
|
|
218
|
+
k_scale: Quantization scale for k.
|
|
219
|
+
v_scale: Quantization scale for v.
|
|
220
|
+
|
|
221
|
+
Returns:
|
|
222
|
+
A tuple containing:
|
|
223
|
+
- The updated KV cache.
|
|
224
|
+
- The attention output tensor of shape
|
|
225
|
+
`(seq, num_q_heads, head_dim)`.
|
|
226
|
+
"""
|
|
227
|
+
md = attention_metadata
|
|
228
|
+
kv_cache_spec = P(ShardingAxisName.ATTN_DATA, None, "model")
|
|
229
|
+
in_specs = (
|
|
230
|
+
self.query_tnh, # q
|
|
231
|
+
self.keyvalue_skh, # k
|
|
232
|
+
self.keyvalue_skh, # v
|
|
233
|
+
kv_cache_spec, # kv_cache
|
|
234
|
+
P(ShardingAxisName.ATTN_DATA), # md.seq_lens
|
|
235
|
+
P(ShardingAxisName.ATTN_DATA), # page_indices_flat
|
|
236
|
+
P(ShardingAxisName.ATTN_DATA), # query_start_loc
|
|
237
|
+
P(ShardingAxisName.ATTN_DATA), # distribution
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
out_specs = (self.attn_o_tnh, kv_cache_spec)
|
|
241
|
+
|
|
242
|
+
def _ragged_paged_attention(*args):
|
|
243
|
+
return ragged_paged_attention(
|
|
244
|
+
*args,
|
|
245
|
+
sm_scale=q_TNH.shape[-1]**-0.5,
|
|
246
|
+
q_scale=q_scale,
|
|
247
|
+
k_scale=k_scale,
|
|
248
|
+
v_scale=v_scale,
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
output_TNH, kv_cache = jax.jit(
|
|
252
|
+
jax.shard_map(
|
|
253
|
+
_ragged_paged_attention,
|
|
254
|
+
mesh=mesh,
|
|
255
|
+
in_specs=in_specs,
|
|
256
|
+
out_specs=out_specs,
|
|
257
|
+
check_vma=False,
|
|
258
|
+
))(
|
|
259
|
+
q_TNH,
|
|
260
|
+
k_SKH,
|
|
261
|
+
v_SKH,
|
|
262
|
+
kv_cache,
|
|
263
|
+
md.seq_lens,
|
|
264
|
+
md.block_tables,
|
|
265
|
+
md.query_start_loc,
|
|
266
|
+
md.request_distribution,
|
|
267
|
+
)
|
|
268
|
+
return kv_cache, output_TNH
|