tpu-inference 0.12.0.dev20251222__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +67 -0
- tests/core/test_dp_scheduler.py +724 -0
- tests/core/test_init.py +63 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +393 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +291 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +388 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +498 -0
- tests/kernels/quantized_matmul_kernel_test.py +159 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/layers/jax/test_qwix.py +969 -0
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +405 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +297 -0
- tests/layers/vllm/test_unquantized.py +621 -0
- tests/layers/vllm/utils.py +72 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +46 -0
- tests/lora/test_bgmv.py +57 -0
- tests/lora/test_layers.py +666 -0
- tests/lora/test_lora.py +147 -0
- tests/lora/test_lora_perf.py +67 -0
- tests/lora/utils.py +88 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +606 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +202 -0
- tests/runner/test_tpu_runner_dp.py +1033 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +215 -0
- tests/test_envs.py +280 -0
- tests/test_tpu_info.py +134 -0
- tests/test_utils.py +193 -0
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +67 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +49 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +814 -0
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +81 -0
- tpu_inference/distributed/tpu_connector.py +732 -0
- tpu_inference/distributed/utils.py +112 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +191 -0
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +399 -0
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +272 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +1340 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +403 -0
- tpu_inference/layers/common/attention_metadata.py +48 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +23 -0
- tpu_inference/layers/common/quantization.py +270 -0
- tpu_inference/layers/common/sharding.py +600 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +268 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
- tpu_inference/layers/jax/base.py +165 -0
- tpu_inference/layers/jax/constants.py +101 -0
- tpu_inference/layers/jax/layers.py +315 -0
- tpu_inference/layers/jax/misc.py +30 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
- tpu_inference/layers/jax/moe/moe.py +249 -0
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +294 -0
- tpu_inference/layers/jax/rope_interface.py +228 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
- tpu_inference/layers/jax/sample/sampling.py +110 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
- tpu_inference/layers/jax/transformer_block.py +121 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +502 -0
- tpu_inference/layers/vllm/linear_common.py +221 -0
- tpu_inference/layers/vllm/quantization/__init__.py +55 -0
- tpu_inference/layers/vllm/quantization/awq.py +221 -0
- tpu_inference/layers/vllm/quantization/common.py +124 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
- tpu_inference/layers/vllm/quantization/fp8.py +118 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
- tpu_inference/layers/vllm/sharding.py +244 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +98 -0
- tpu_inference/lora/torch_punica_tpu.py +310 -0
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +520 -0
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +978 -0
- tpu_inference/models/jax/gpt_oss.py +508 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
- tpu_inference/models/jax/llama3.py +436 -0
- tpu_inference/models/jax/llama4.py +643 -0
- tpu_inference/models/jax/llama_eagle3.py +350 -0
- tpu_inference/models/jax/llama_guard_4.py +375 -0
- tpu_inference/models/jax/qwen2.py +390 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
- tpu_inference/models/jax/qwen3.py +318 -0
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +110 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
- tpu_inference/models/jax/utils/weight_utils.py +621 -0
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
- tpu_inference/platforms/__init__.py +16 -0
- tpu_inference/platforms/tpu_platform.py +258 -0
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +890 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +166 -0
- tpu_inference/runner/kv_cache_manager.py +508 -0
- tpu_inference/runner/lora_utils.py +106 -0
- tpu_inference/runner/multimodal_manager.py +231 -0
- tpu_inference/runner/persistent_batch_manager.py +296 -0
- tpu_inference/runner/speculative_decoding_manager.py +262 -0
- tpu_inference/runner/structured_decoding_manager.py +101 -0
- tpu_inference/runner/tpu_runner.py +1768 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +430 -0
- tpu_inference/tpu_info.py +92 -0
- tpu_inference/utils.py +345 -0
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +468 -0
- tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
- tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
- tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
- tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,205 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import jax
|
|
16
|
+
import jax.numpy as jnp
|
|
17
|
+
from absl.testing import absltest, parameterized
|
|
18
|
+
from jax._src import test_util as jtu
|
|
19
|
+
|
|
20
|
+
from tpu_inference.kernels.megablox.gmm import gmm
|
|
21
|
+
|
|
22
|
+
jax.config.parse_flags_with_absl()
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def quantize_tensor(x: jax.Array,
|
|
26
|
+
dtype: jnp.dtype,
|
|
27
|
+
axis: int = -1,
|
|
28
|
+
block_size: int = 256):
|
|
29
|
+
if jnp.issubdtype(dtype, jnp.integer):
|
|
30
|
+
dtype_info = jnp.iinfo(dtype)
|
|
31
|
+
max_val = int(dtype_info.max)
|
|
32
|
+
min_val = int(dtype_info.min)
|
|
33
|
+
else:
|
|
34
|
+
dtype_info = jnp.finfo(dtype)
|
|
35
|
+
max_val = float(dtype_info.max)
|
|
36
|
+
min_val = float(dtype_info.min)
|
|
37
|
+
|
|
38
|
+
orig_shape = x.shape
|
|
39
|
+
blocked_shape = orig_shape[:axis] + (-1,
|
|
40
|
+
block_size) + orig_shape[axis + 1:]
|
|
41
|
+
x_blocked = x.reshape(blocked_shape)
|
|
42
|
+
|
|
43
|
+
x_blocked_abs_max = jnp.max(jnp.abs(x_blocked),
|
|
44
|
+
axis=axis + 1,
|
|
45
|
+
keepdims=True)
|
|
46
|
+
scale = x_blocked_abs_max / max_val
|
|
47
|
+
x_blocked_q = jnp.clip(x_blocked / scale, min_val, max_val).astype(dtype)
|
|
48
|
+
|
|
49
|
+
x_q = x_blocked_q.reshape(orig_shape)
|
|
50
|
+
scale = scale.squeeze(axis=axis + 1).astype(jnp.float32)
|
|
51
|
+
return x_q, scale
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def reference_gmm(
|
|
55
|
+
lhs: jax.Array,
|
|
56
|
+
rhs: jax.Array,
|
|
57
|
+
group_sizes: jax.Array,
|
|
58
|
+
rhs_scale: jax.Array | None = None,
|
|
59
|
+
rhs_bias: jax.Array | None = None,
|
|
60
|
+
group_offset: jax.Array | None = None,
|
|
61
|
+
):
|
|
62
|
+
num_groups, out_size, in_size = rhs.shape
|
|
63
|
+
assert lhs.shape[1] == in_size
|
|
64
|
+
|
|
65
|
+
if group_offset is None:
|
|
66
|
+
group_offset = jnp.array(0, dtype=jnp.int32)
|
|
67
|
+
start = group_sizes[:group_offset].sum()
|
|
68
|
+
group_sizes = group_sizes[group_offset:]
|
|
69
|
+
assert len(group_sizes) == num_groups
|
|
70
|
+
|
|
71
|
+
if rhs_scale is not None:
|
|
72
|
+
num_blocks = rhs_scale.shape[1]
|
|
73
|
+
else:
|
|
74
|
+
num_blocks = 1
|
|
75
|
+
block_size = in_size // num_blocks
|
|
76
|
+
|
|
77
|
+
gmm_out = [jnp.zeros((start, out_size), lhs.dtype)]
|
|
78
|
+
for group in range(num_groups):
|
|
79
|
+
end = start + group_sizes[group]
|
|
80
|
+
|
|
81
|
+
lhs_slice = lhs[start:end]
|
|
82
|
+
rhs_slice = rhs[group]
|
|
83
|
+
|
|
84
|
+
out = 0
|
|
85
|
+
for block in range(num_blocks):
|
|
86
|
+
block_start = block * block_size
|
|
87
|
+
block_end = block_start + block_size
|
|
88
|
+
lhs_block = lhs_slice[:, block_start:block_end].astype(jnp.float32)
|
|
89
|
+
rhs_block = rhs_slice[:, block_start:block_end].astype(jnp.float32)
|
|
90
|
+
|
|
91
|
+
acc = jnp.einsum("bd,hd->bh", lhs_block, rhs_block)
|
|
92
|
+
if rhs_scale is not None:
|
|
93
|
+
acc *= rhs_scale[group][block]
|
|
94
|
+
out += acc
|
|
95
|
+
if rhs_bias is not None:
|
|
96
|
+
out = out + rhs_bias[group]
|
|
97
|
+
|
|
98
|
+
gmm_out.append(out.astype(lhs.dtype))
|
|
99
|
+
start = end
|
|
100
|
+
|
|
101
|
+
return jnp.concat(gmm_out, axis=0)
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
105
|
+
class GmmTest(jtu.JaxTestCase):
|
|
106
|
+
|
|
107
|
+
@parameterized.product(
|
|
108
|
+
batch_size=[128],
|
|
109
|
+
in_size=[1024],
|
|
110
|
+
out_size=[1024],
|
|
111
|
+
num_groups=[16, 32],
|
|
112
|
+
has_bias=[True, False],
|
|
113
|
+
)
|
|
114
|
+
def test_gmm(self, batch_size, in_size, out_size, num_groups, has_bias):
|
|
115
|
+
key = jax.random.key(0)
|
|
116
|
+
|
|
117
|
+
lhs = jax.random.normal(key, (batch_size, in_size), dtype=jnp.bfloat16)
|
|
118
|
+
rhs = jax.random.normal(key, (num_groups, out_size, in_size),
|
|
119
|
+
dtype=jnp.bfloat16)
|
|
120
|
+
rhs_bias = None
|
|
121
|
+
if has_bias:
|
|
122
|
+
rhs_bias = jax.random.normal(key, (num_groups, 1, out_size),
|
|
123
|
+
dtype=jnp.bfloat16)
|
|
124
|
+
|
|
125
|
+
group_sizes = jax.random.randint(key, (num_groups, ),
|
|
126
|
+
0,
|
|
127
|
+
batch_size,
|
|
128
|
+
dtype=jnp.int32)
|
|
129
|
+
|
|
130
|
+
expected = reference_gmm(lhs, rhs, group_sizes, rhs_bias=rhs_bias)
|
|
131
|
+
actual = gmm(
|
|
132
|
+
lhs,
|
|
133
|
+
rhs,
|
|
134
|
+
group_sizes,
|
|
135
|
+
rhs_bias=rhs_bias,
|
|
136
|
+
transpose_rhs=True,
|
|
137
|
+
preferred_element_type=jnp.bfloat16,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
self.assertArraysAllClose(actual, expected)
|
|
141
|
+
|
|
142
|
+
@parameterized.product(
|
|
143
|
+
batch_size=[128],
|
|
144
|
+
in_size=[1024],
|
|
145
|
+
out_size=[1024],
|
|
146
|
+
num_groups=[16, 32],
|
|
147
|
+
has_bias=[True, False],
|
|
148
|
+
weight_dtype=[jnp.int8, jnp.float8_e5m2, jnp.float4_e2m1fn],
|
|
149
|
+
block_size=[256, 512],
|
|
150
|
+
)
|
|
151
|
+
def test_gmm_weight_quantized(
|
|
152
|
+
self,
|
|
153
|
+
batch_size,
|
|
154
|
+
in_size,
|
|
155
|
+
out_size,
|
|
156
|
+
num_groups,
|
|
157
|
+
has_bias,
|
|
158
|
+
weight_dtype,
|
|
159
|
+
block_size,
|
|
160
|
+
):
|
|
161
|
+
if weight_dtype == jnp.float4_e2m1fn and not jtu.is_device_tpu_at_least(
|
|
162
|
+
version=7):
|
|
163
|
+
self.skipTest("Expect TPUv7+")
|
|
164
|
+
key = jax.random.key(0)
|
|
165
|
+
|
|
166
|
+
lhs = jax.random.normal(key, (batch_size, in_size), dtype=jnp.bfloat16)
|
|
167
|
+
rhs = jax.random.normal(key, (num_groups, out_size, in_size),
|
|
168
|
+
dtype=jnp.bfloat16)
|
|
169
|
+
rhs_q, rhs_scale = quantize_tensor(rhs,
|
|
170
|
+
weight_dtype,
|
|
171
|
+
axis=2,
|
|
172
|
+
block_size=block_size)
|
|
173
|
+
rhs_scale = jnp.swapaxes(rhs_scale, 1, 2)
|
|
174
|
+
rhs_scale = jnp.expand_dims(rhs_scale, axis=2)
|
|
175
|
+
|
|
176
|
+
rhs_bias = None
|
|
177
|
+
if has_bias:
|
|
178
|
+
rhs_bias = jax.random.normal(key, (num_groups, 1, out_size),
|
|
179
|
+
dtype=jnp.bfloat16)
|
|
180
|
+
|
|
181
|
+
group_sizes = jax.random.randint(key, (num_groups, ),
|
|
182
|
+
0,
|
|
183
|
+
batch_size,
|
|
184
|
+
dtype=jnp.int32)
|
|
185
|
+
|
|
186
|
+
expected = reference_gmm(lhs,
|
|
187
|
+
rhs_q,
|
|
188
|
+
group_sizes,
|
|
189
|
+
rhs_scale=rhs_scale,
|
|
190
|
+
rhs_bias=rhs_bias)
|
|
191
|
+
actual = gmm(
|
|
192
|
+
lhs,
|
|
193
|
+
rhs_q,
|
|
194
|
+
group_sizes,
|
|
195
|
+
rhs_scale=rhs_scale,
|
|
196
|
+
rhs_bias=rhs_bias,
|
|
197
|
+
transpose_rhs=True,
|
|
198
|
+
preferred_element_type=jnp.bfloat16,
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
self.assertArraysAllClose(actual, expected, atol=3e-1, rtol=3e-1)
|
|
202
|
+
|
|
203
|
+
|
|
204
|
+
if __name__ == "__main__":
|
|
205
|
+
absltest.main(testLoader=jtu.JaxTestLoader())
|
|
@@ -0,0 +1,498 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import jax
|
|
16
|
+
import jax.numpy as jnp
|
|
17
|
+
import numpy as np
|
|
18
|
+
from absl.testing import absltest, parameterized
|
|
19
|
+
from jax._src import test_util as jtu
|
|
20
|
+
|
|
21
|
+
import tpu_inference.kernels.mla.v1.kernel as mla
|
|
22
|
+
from tpu_inference.kernels.ragged_paged_attention.v3.util import (
|
|
23
|
+
align_to, cdiv, get_dtype_packing)
|
|
24
|
+
|
|
25
|
+
jax.config.parse_flags_with_absl()
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
29
|
+
class MlaRaggedPagedAttentionKernelTest(jtu.JaxTestCase):
|
|
30
|
+
|
|
31
|
+
def _test_mla_ragged_paged_attention(
|
|
32
|
+
self,
|
|
33
|
+
seq_lens, # List[(q_len, kv_len)]
|
|
34
|
+
num_heads,
|
|
35
|
+
lkv_dim,
|
|
36
|
+
r_dim,
|
|
37
|
+
page_size,
|
|
38
|
+
q_dtype,
|
|
39
|
+
kv_dtype,
|
|
40
|
+
num_pages,
|
|
41
|
+
*,
|
|
42
|
+
num_kv_pages_per_block=8,
|
|
43
|
+
num_queries_per_block=8,
|
|
44
|
+
vmem_limit_bytes=100 * 1024 * 1024,
|
|
45
|
+
sm_scale=1.0,
|
|
46
|
+
sliding_window: int | None = None,
|
|
47
|
+
soft_cap: float | None = None,
|
|
48
|
+
):
|
|
49
|
+
if not jtu.is_device_tpu_at_least(version=4):
|
|
50
|
+
self.skipTest("Expect TPUv4+")
|
|
51
|
+
rng = np.random.default_rng(1234)
|
|
52
|
+
|
|
53
|
+
def gen_random(shape, dtype):
|
|
54
|
+
return jnp.array(rng.random(size=shape,
|
|
55
|
+
dtype=np.float32)).astype(dtype)
|
|
56
|
+
|
|
57
|
+
padded_r_dim = align_to(r_dim, 128)
|
|
58
|
+
padded_lkv_dim = align_to(lkv_dim, 128)
|
|
59
|
+
padded_kv_dim = padded_lkv_dim + padded_r_dim
|
|
60
|
+
packing = get_dtype_packing(kv_dtype)
|
|
61
|
+
q_lens = [s[0] for s in seq_lens]
|
|
62
|
+
kv_lens_list = [s[1] for s in seq_lens]
|
|
63
|
+
total_q_len = sum(q_lens)
|
|
64
|
+
cu_q_lens_list = [0]
|
|
65
|
+
for q_len in q_lens:
|
|
66
|
+
cu_q_lens_list.append(cu_q_lens_list[-1] + q_len)
|
|
67
|
+
|
|
68
|
+
max_kv_len = max(kv_lens_list) if kv_lens_list else 0
|
|
69
|
+
pages_per_seq = cdiv(max_kv_len, page_size)
|
|
70
|
+
|
|
71
|
+
page_indices_list = []
|
|
72
|
+
page_count = 0
|
|
73
|
+
for kv_len in kv_lens_list:
|
|
74
|
+
num_seq_pages = cdiv(kv_len, page_size)
|
|
75
|
+
indices = list(range(page_count, page_count + num_seq_pages))
|
|
76
|
+
page_indices_list.extend(indices + [-1] *
|
|
77
|
+
(pages_per_seq - num_seq_pages))
|
|
78
|
+
page_count += num_seq_pages
|
|
79
|
+
|
|
80
|
+
total_num_pages = max(num_pages, page_count)
|
|
81
|
+
|
|
82
|
+
ql_nope = gen_random((total_q_len, num_heads, lkv_dim), q_dtype)
|
|
83
|
+
q_pe = gen_random((total_q_len, num_heads, r_dim), q_dtype)
|
|
84
|
+
new_kv_c = gen_random((total_q_len, lkv_dim), kv_dtype)
|
|
85
|
+
new_k_pe = gen_random((total_q_len, r_dim), kv_dtype)
|
|
86
|
+
|
|
87
|
+
cache_kv = gen_random(
|
|
88
|
+
(total_num_pages, page_size // packing, packing, padded_kv_dim),
|
|
89
|
+
kv_dtype,
|
|
90
|
+
)
|
|
91
|
+
kv_lens = jnp.array(kv_lens_list, dtype=jnp.int32)
|
|
92
|
+
page_indices = jnp.array(page_indices_list, dtype=jnp.int32)
|
|
93
|
+
cu_q_lens = jnp.array(cu_q_lens_list, dtype=jnp.int32)
|
|
94
|
+
distribution = jnp.array([0, 0, len(seq_lens)], dtype=jnp.int32)
|
|
95
|
+
|
|
96
|
+
ql_nope_for_kernel = ql_nope.copy()
|
|
97
|
+
q_pe_for_kernel = q_pe.copy()
|
|
98
|
+
|
|
99
|
+
expected_out, expected_updated_kv = (
|
|
100
|
+
mla.ref_mla_ragged_paged_attention(
|
|
101
|
+
ql_nope,
|
|
102
|
+
q_pe,
|
|
103
|
+
new_kv_c,
|
|
104
|
+
new_k_pe,
|
|
105
|
+
cache_kv.copy(),
|
|
106
|
+
kv_lens,
|
|
107
|
+
page_indices,
|
|
108
|
+
cu_q_lens,
|
|
109
|
+
distribution,
|
|
110
|
+
sm_scale=sm_scale,
|
|
111
|
+
sliding_window=sliding_window,
|
|
112
|
+
soft_cap=soft_cap,
|
|
113
|
+
))
|
|
114
|
+
|
|
115
|
+
kernel_out, kernel_updated_kv = (mla.mla_ragged_paged_attention(
|
|
116
|
+
ql_nope_for_kernel,
|
|
117
|
+
q_pe_for_kernel,
|
|
118
|
+
new_kv_c,
|
|
119
|
+
new_k_pe,
|
|
120
|
+
cache_kv.copy(),
|
|
121
|
+
kv_lens,
|
|
122
|
+
page_indices,
|
|
123
|
+
cu_q_lens,
|
|
124
|
+
distribution,
|
|
125
|
+
sm_scale=sm_scale,
|
|
126
|
+
sliding_window=sliding_window,
|
|
127
|
+
soft_cap=soft_cap,
|
|
128
|
+
num_kv_pages_per_block=num_kv_pages_per_block,
|
|
129
|
+
num_queries_per_block=num_queries_per_block,
|
|
130
|
+
vmem_limit_bytes=vmem_limit_bytes,
|
|
131
|
+
))
|
|
132
|
+
|
|
133
|
+
self.assertEqual(expected_out.shape,
|
|
134
|
+
(total_q_len, num_heads, padded_lkv_dim))
|
|
135
|
+
self.assertEqual(
|
|
136
|
+
expected_updated_kv.shape,
|
|
137
|
+
(total_num_pages, page_size // packing, packing, padded_kv_dim),
|
|
138
|
+
)
|
|
139
|
+
self.assertEqual(expected_out.dtype, kv_dtype)
|
|
140
|
+
self.assertEqual(expected_updated_kv.dtype, kv_dtype)
|
|
141
|
+
|
|
142
|
+
self.assertAllClose(expected_out, kernel_out, atol=0.2, rtol=0.2)
|
|
143
|
+
self.assertAllClose(expected_updated_kv,
|
|
144
|
+
kernel_updated_kv,
|
|
145
|
+
atol=0.2,
|
|
146
|
+
rtol=0.2)
|
|
147
|
+
|
|
148
|
+
def test_update_kv_cache(self):
|
|
149
|
+
lkv_dim = 4
|
|
150
|
+
r_dim = 4
|
|
151
|
+
padded_lkv_dim = align_to(lkv_dim, 128)
|
|
152
|
+
padded_r_dim = align_to(r_dim, 128)
|
|
153
|
+
kv_dtype = jnp.bfloat16
|
|
154
|
+
new_kv_c = jnp.arange(16, dtype=kv_dtype).reshape((4, lkv_dim))
|
|
155
|
+
new_k_pe = (jnp.arange(16, dtype=kv_dtype).reshape((4, r_dim)) + 100)
|
|
156
|
+
total_num_pages = 2
|
|
157
|
+
page_size = 4
|
|
158
|
+
cache_kv_shape = mla.get_kv_cache_shape(
|
|
159
|
+
total_num_pages,
|
|
160
|
+
page_size,
|
|
161
|
+
padded_lkv_dim + padded_r_dim,
|
|
162
|
+
kv_dtype,
|
|
163
|
+
)
|
|
164
|
+
cache_kv = jnp.zeros(cache_kv_shape, dtype=kv_dtype)
|
|
165
|
+
|
|
166
|
+
# two sequences, first with 3 tokens, second with 1 token
|
|
167
|
+
kv_lens = jnp.array([3, 1], dtype=jnp.int32)
|
|
168
|
+
# first seq uses page 0, second uses page 1
|
|
169
|
+
page_indices = jnp.array([0, -1, 1, -1], dtype=jnp.int32)
|
|
170
|
+
# three tokens for first seq, one for second
|
|
171
|
+
cu_q_lens = jnp.array([0, 3, 4], dtype=jnp.int32)
|
|
172
|
+
distribution = jnp.array([0, 0, 2], dtype=jnp.int32)
|
|
173
|
+
|
|
174
|
+
# manually compute the expected cache
|
|
175
|
+
padded_new_kv_c = jnp.pad(new_kv_c,
|
|
176
|
+
((0, 0), (0, padded_lkv_dim - lkv_dim)),
|
|
177
|
+
constant_values=0)
|
|
178
|
+
padded_new_k_pe = jnp.pad(new_k_pe,
|
|
179
|
+
((0, 0), (0, padded_r_dim - r_dim)),
|
|
180
|
+
constant_values=0)
|
|
181
|
+
|
|
182
|
+
expected_cache = cache_kv
|
|
183
|
+
# First sequence
|
|
184
|
+
# token 0
|
|
185
|
+
page_idx, row, col = 0, 0, 0
|
|
186
|
+
expected_cache = expected_cache.at[page_idx, row,
|
|
187
|
+
col, :padded_lkv_dim].set(
|
|
188
|
+
padded_new_kv_c[0])
|
|
189
|
+
expected_cache = expected_cache.at[page_idx, row, col,
|
|
190
|
+
padded_lkv_dim:padded_lkv_dim +
|
|
191
|
+
padded_r_dim].set(
|
|
192
|
+
padded_new_k_pe[0])
|
|
193
|
+
# token 1
|
|
194
|
+
page_idx, row, col = 0, 0, 1
|
|
195
|
+
expected_cache = expected_cache.at[page_idx, row,
|
|
196
|
+
col, :padded_lkv_dim].set(
|
|
197
|
+
padded_new_kv_c[1])
|
|
198
|
+
expected_cache = expected_cache.at[page_idx, row, col,
|
|
199
|
+
padded_lkv_dim:padded_lkv_dim +
|
|
200
|
+
padded_r_dim].set(
|
|
201
|
+
padded_new_k_pe[1])
|
|
202
|
+
# token 2
|
|
203
|
+
page_idx, row, col = 0, 1, 0
|
|
204
|
+
expected_cache = expected_cache.at[page_idx, row,
|
|
205
|
+
col, :padded_lkv_dim].set(
|
|
206
|
+
padded_new_kv_c[2])
|
|
207
|
+
expected_cache = expected_cache.at[page_idx, row, col,
|
|
208
|
+
padded_lkv_dim:padded_lkv_dim +
|
|
209
|
+
padded_r_dim].set(
|
|
210
|
+
padded_new_k_pe[2])
|
|
211
|
+
|
|
212
|
+
# Second sequence
|
|
213
|
+
# token 0
|
|
214
|
+
page_idx, row, col = 1, 0, 0
|
|
215
|
+
expected_cache = expected_cache.at[page_idx, row,
|
|
216
|
+
col, :padded_lkv_dim].set(
|
|
217
|
+
padded_new_kv_c[3])
|
|
218
|
+
expected_cache = expected_cache.at[page_idx, row, col,
|
|
219
|
+
padded_lkv_dim:padded_lkv_dim +
|
|
220
|
+
padded_r_dim].set(
|
|
221
|
+
padded_new_k_pe[3])
|
|
222
|
+
|
|
223
|
+
updated_cache = mla.update_kv_cache(
|
|
224
|
+
new_kv_c,
|
|
225
|
+
new_k_pe,
|
|
226
|
+
cache_kv,
|
|
227
|
+
kv_lens,
|
|
228
|
+
page_indices,
|
|
229
|
+
cu_q_lens,
|
|
230
|
+
distribution,
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
self.assertAllClose(updated_cache, expected_cache)
|
|
234
|
+
|
|
235
|
+
def test_get_kv_cache_shape(self):
|
|
236
|
+
total_num_pages = 10
|
|
237
|
+
page_size = 16
|
|
238
|
+
lkv_dim = 128
|
|
239
|
+
kv_dtype = jnp.bfloat16
|
|
240
|
+
# The calculation for the expected shape is as follows:
|
|
241
|
+
# kv_packing is determined by the dtype, which is 2 for bfloat16.
|
|
242
|
+
# The second dimension is page_size / kv_packing = 16 / 2 = 8
|
|
243
|
+
# The third dimension is kv_packing = 2
|
|
244
|
+
# The fourth dimension is lkv_dim aligned to 128, which is 128
|
|
245
|
+
expected_shape = (10, 8, 2, 128)
|
|
246
|
+
self.assertEqual(
|
|
247
|
+
mla.get_kv_cache_shape(total_num_pages, page_size, lkv_dim,
|
|
248
|
+
kv_dtype), expected_shape)
|
|
249
|
+
|
|
250
|
+
def test_ragged_paged_attention_basic(self):
|
|
251
|
+
dtype = jnp.bfloat16
|
|
252
|
+
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
253
|
+
num_heads = 128
|
|
254
|
+
lkv_dim = 512
|
|
255
|
+
r_dim = 64
|
|
256
|
+
page_size = 16
|
|
257
|
+
num_pages = 1000
|
|
258
|
+
|
|
259
|
+
self._test_mla_ragged_paged_attention(
|
|
260
|
+
seq_lens,
|
|
261
|
+
num_heads,
|
|
262
|
+
lkv_dim,
|
|
263
|
+
r_dim,
|
|
264
|
+
page_size,
|
|
265
|
+
dtype,
|
|
266
|
+
dtype,
|
|
267
|
+
num_pages,
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
@parameterized.product(dtype=[jnp.bfloat16], )
|
|
271
|
+
def test_ragged_paged_attention_decode_only(self, dtype):
|
|
272
|
+
seq_lens = [
|
|
273
|
+
(1, 18),
|
|
274
|
+
(1, 129),
|
|
275
|
+
(1, 597),
|
|
276
|
+
(1, 122),
|
|
277
|
+
(1, 64),
|
|
278
|
+
(1, 322),
|
|
279
|
+
(1, 463),
|
|
280
|
+
(1, 181),
|
|
281
|
+
(1, 1107),
|
|
282
|
+
(1, 123),
|
|
283
|
+
(1, 31),
|
|
284
|
+
(1, 18),
|
|
285
|
+
(1, 1229),
|
|
286
|
+
(1, 229),
|
|
287
|
+
(1, 87),
|
|
288
|
+
(1, 1328),
|
|
289
|
+
]
|
|
290
|
+
num_heads = 128
|
|
291
|
+
lkv_dim = 512
|
|
292
|
+
r_dim = 64
|
|
293
|
+
page_size = 16
|
|
294
|
+
num_pages = 1000
|
|
295
|
+
|
|
296
|
+
self._test_mla_ragged_paged_attention(
|
|
297
|
+
seq_lens,
|
|
298
|
+
num_heads,
|
|
299
|
+
lkv_dim,
|
|
300
|
+
r_dim,
|
|
301
|
+
page_size,
|
|
302
|
+
dtype,
|
|
303
|
+
dtype,
|
|
304
|
+
num_pages,
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
@parameterized.product(dtype=[jnp.bfloat16], )
|
|
308
|
+
def test_ragged_paged_attention_prefill_only(self, dtype):
|
|
309
|
+
seq_lens = [
|
|
310
|
+
(5, 18),
|
|
311
|
+
(15, 129),
|
|
312
|
+
(120, 597),
|
|
313
|
+
(100, 122),
|
|
314
|
+
(21, 64),
|
|
315
|
+
(32, 322),
|
|
316
|
+
(251, 463),
|
|
317
|
+
(40, 181),
|
|
318
|
+
(64, 1107),
|
|
319
|
+
(99, 123),
|
|
320
|
+
(10, 31),
|
|
321
|
+
(5, 18),
|
|
322
|
+
(3, 1229),
|
|
323
|
+
(120, 229),
|
|
324
|
+
(9, 87),
|
|
325
|
+
(2, 1328),
|
|
326
|
+
]
|
|
327
|
+
num_heads = 128
|
|
328
|
+
lkv_dim = 512
|
|
329
|
+
r_dim = 64
|
|
330
|
+
page_size = 16
|
|
331
|
+
num_pages = 1000
|
|
332
|
+
|
|
333
|
+
self._test_mla_ragged_paged_attention(
|
|
334
|
+
seq_lens,
|
|
335
|
+
num_heads,
|
|
336
|
+
lkv_dim,
|
|
337
|
+
r_dim,
|
|
338
|
+
page_size,
|
|
339
|
+
dtype,
|
|
340
|
+
dtype,
|
|
341
|
+
num_pages,
|
|
342
|
+
)
|
|
343
|
+
|
|
344
|
+
@parameterized.product(dtype=[jnp.bfloat16], )
|
|
345
|
+
def test_ragged_paged_attention_mixed(self, dtype):
|
|
346
|
+
seq_lens = [
|
|
347
|
+
(5, 18),
|
|
348
|
+
(1, 129),
|
|
349
|
+
(120, 597),
|
|
350
|
+
(1, 122),
|
|
351
|
+
(1, 64),
|
|
352
|
+
(32, 322),
|
|
353
|
+
(251, 463),
|
|
354
|
+
(1, 181),
|
|
355
|
+
(1, 1107),
|
|
356
|
+
(99, 123),
|
|
357
|
+
(1, 31),
|
|
358
|
+
(5, 18),
|
|
359
|
+
(3, 1229),
|
|
360
|
+
(117, 229),
|
|
361
|
+
(1, 87),
|
|
362
|
+
(1, 1328),
|
|
363
|
+
]
|
|
364
|
+
num_heads = 128
|
|
365
|
+
lkv_dim = 512
|
|
366
|
+
r_dim = 64
|
|
367
|
+
page_size = 16
|
|
368
|
+
num_pages = 1000
|
|
369
|
+
|
|
370
|
+
self._test_mla_ragged_paged_attention(
|
|
371
|
+
seq_lens,
|
|
372
|
+
num_heads,
|
|
373
|
+
lkv_dim,
|
|
374
|
+
r_dim,
|
|
375
|
+
page_size,
|
|
376
|
+
dtype,
|
|
377
|
+
dtype,
|
|
378
|
+
num_pages,
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
@parameterized.product(sliding_window=[None, 5, 128], )
|
|
382
|
+
def test_ragged_paged_attention_sliding_window(
|
|
383
|
+
self,
|
|
384
|
+
sliding_window: int | None,
|
|
385
|
+
):
|
|
386
|
+
num_seqs = 5
|
|
387
|
+
num_heads = 128
|
|
388
|
+
lkv_dim = 512
|
|
389
|
+
r_dim = 64
|
|
390
|
+
dtype = jnp.float32
|
|
391
|
+
rng = np.random.default_rng(1234)
|
|
392
|
+
q_lens = rng.integers(1, 100, num_seqs)
|
|
393
|
+
kv_lens = q_lens + rng.integers(0, 50, num_seqs)
|
|
394
|
+
seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
|
|
395
|
+
page_size = 16
|
|
396
|
+
num_pages = 1000
|
|
397
|
+
|
|
398
|
+
self._test_mla_ragged_paged_attention(
|
|
399
|
+
seq_lens,
|
|
400
|
+
num_heads,
|
|
401
|
+
lkv_dim,
|
|
402
|
+
r_dim,
|
|
403
|
+
page_size,
|
|
404
|
+
dtype,
|
|
405
|
+
dtype,
|
|
406
|
+
num_pages,
|
|
407
|
+
sliding_window=sliding_window,
|
|
408
|
+
)
|
|
409
|
+
|
|
410
|
+
@parameterized.product(soft_cap=[None, 50.0], )
|
|
411
|
+
def test_ragged_paged_attention_logit_soft_capping(
|
|
412
|
+
self,
|
|
413
|
+
soft_cap: float | None,
|
|
414
|
+
):
|
|
415
|
+
num_heads = 128
|
|
416
|
+
num_seqs = 2
|
|
417
|
+
dtype = jnp.float32
|
|
418
|
+
rng = np.random.default_rng(1234)
|
|
419
|
+
q_lens = rng.integers(1, 100, num_seqs)
|
|
420
|
+
kv_lens = q_lens + rng.integers(0, 50, num_seqs)
|
|
421
|
+
seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
|
|
422
|
+
lkv_dim = 512
|
|
423
|
+
r_dim = 64
|
|
424
|
+
page_size = 16
|
|
425
|
+
num_pages = 1000
|
|
426
|
+
|
|
427
|
+
self._test_mla_ragged_paged_attention(
|
|
428
|
+
seq_lens,
|
|
429
|
+
num_heads,
|
|
430
|
+
lkv_dim,
|
|
431
|
+
r_dim,
|
|
432
|
+
page_size,
|
|
433
|
+
dtype,
|
|
434
|
+
dtype,
|
|
435
|
+
num_pages,
|
|
436
|
+
soft_cap=soft_cap,
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
def test_ragged_paged_attention_sliding_window_should_be_positive(self):
|
|
440
|
+
dtype = jnp.float32
|
|
441
|
+
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
442
|
+
num_heads = 128
|
|
443
|
+
lkv_dim = 512
|
|
444
|
+
r_dim = 64
|
|
445
|
+
page_size = 16
|
|
446
|
+
num_pages = 1000
|
|
447
|
+
|
|
448
|
+
with self.assertRaisesRegex(ValueError, "must be positive"):
|
|
449
|
+
self._test_mla_ragged_paged_attention(
|
|
450
|
+
seq_lens,
|
|
451
|
+
num_heads,
|
|
452
|
+
lkv_dim,
|
|
453
|
+
r_dim,
|
|
454
|
+
page_size,
|
|
455
|
+
dtype,
|
|
456
|
+
dtype,
|
|
457
|
+
num_pages,
|
|
458
|
+
sliding_window=0,
|
|
459
|
+
)
|
|
460
|
+
|
|
461
|
+
with self.assertRaisesRegex(ValueError, "must be positive"):
|
|
462
|
+
self._test_mla_ragged_paged_attention(
|
|
463
|
+
seq_lens,
|
|
464
|
+
num_heads,
|
|
465
|
+
lkv_dim,
|
|
466
|
+
r_dim,
|
|
467
|
+
page_size,
|
|
468
|
+
dtype,
|
|
469
|
+
dtype,
|
|
470
|
+
num_pages,
|
|
471
|
+
sliding_window=-1,
|
|
472
|
+
)
|
|
473
|
+
|
|
474
|
+
def test_ragged_paged_attention_soft_cap_cannot_be_zero(self):
|
|
475
|
+
dtype = jnp.float32
|
|
476
|
+
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
477
|
+
num_heads = 128
|
|
478
|
+
lkv_dim = 512
|
|
479
|
+
r_dim = 64
|
|
480
|
+
page_size = 16
|
|
481
|
+
num_pages = 1000
|
|
482
|
+
|
|
483
|
+
with self.assertRaisesRegex(ValueError, "must not be 0.0"):
|
|
484
|
+
self._test_mla_ragged_paged_attention(
|
|
485
|
+
seq_lens,
|
|
486
|
+
num_heads,
|
|
487
|
+
lkv_dim,
|
|
488
|
+
r_dim,
|
|
489
|
+
page_size,
|
|
490
|
+
dtype,
|
|
491
|
+
dtype,
|
|
492
|
+
num_pages,
|
|
493
|
+
soft_cap=0.0,
|
|
494
|
+
)
|
|
495
|
+
|
|
496
|
+
|
|
497
|
+
if __name__ == "__main__":
|
|
498
|
+
absltest.main(testLoader=jtu.JaxTestLoader())
|