tpu-inference 0.12.0.dev20251222__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +67 -0
- tests/core/test_dp_scheduler.py +724 -0
- tests/core/test_init.py +63 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +393 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +291 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +388 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +498 -0
- tests/kernels/quantized_matmul_kernel_test.py +159 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/layers/jax/test_qwix.py +969 -0
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +405 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +297 -0
- tests/layers/vllm/test_unquantized.py +621 -0
- tests/layers/vllm/utils.py +72 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +46 -0
- tests/lora/test_bgmv.py +57 -0
- tests/lora/test_layers.py +666 -0
- tests/lora/test_lora.py +147 -0
- tests/lora/test_lora_perf.py +67 -0
- tests/lora/utils.py +88 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +606 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +202 -0
- tests/runner/test_tpu_runner_dp.py +1033 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +215 -0
- tests/test_envs.py +280 -0
- tests/test_tpu_info.py +134 -0
- tests/test_utils.py +193 -0
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +67 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +49 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +814 -0
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +81 -0
- tpu_inference/distributed/tpu_connector.py +732 -0
- tpu_inference/distributed/utils.py +112 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +191 -0
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +399 -0
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +272 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +1340 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +403 -0
- tpu_inference/layers/common/attention_metadata.py +48 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +23 -0
- tpu_inference/layers/common/quantization.py +270 -0
- tpu_inference/layers/common/sharding.py +600 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +268 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
- tpu_inference/layers/jax/base.py +165 -0
- tpu_inference/layers/jax/constants.py +101 -0
- tpu_inference/layers/jax/layers.py +315 -0
- tpu_inference/layers/jax/misc.py +30 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
- tpu_inference/layers/jax/moe/moe.py +249 -0
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +294 -0
- tpu_inference/layers/jax/rope_interface.py +228 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
- tpu_inference/layers/jax/sample/sampling.py +110 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
- tpu_inference/layers/jax/transformer_block.py +121 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +502 -0
- tpu_inference/layers/vllm/linear_common.py +221 -0
- tpu_inference/layers/vllm/quantization/__init__.py +55 -0
- tpu_inference/layers/vllm/quantization/awq.py +221 -0
- tpu_inference/layers/vllm/quantization/common.py +124 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
- tpu_inference/layers/vllm/quantization/fp8.py +118 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
- tpu_inference/layers/vllm/sharding.py +244 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +98 -0
- tpu_inference/lora/torch_punica_tpu.py +310 -0
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +520 -0
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +978 -0
- tpu_inference/models/jax/gpt_oss.py +508 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
- tpu_inference/models/jax/llama3.py +436 -0
- tpu_inference/models/jax/llama4.py +643 -0
- tpu_inference/models/jax/llama_eagle3.py +350 -0
- tpu_inference/models/jax/llama_guard_4.py +375 -0
- tpu_inference/models/jax/qwen2.py +390 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
- tpu_inference/models/jax/qwen3.py +318 -0
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +110 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
- tpu_inference/models/jax/utils/weight_utils.py +621 -0
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
- tpu_inference/platforms/__init__.py +16 -0
- tpu_inference/platforms/tpu_platform.py +258 -0
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +890 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +166 -0
- tpu_inference/runner/kv_cache_manager.py +508 -0
- tpu_inference/runner/lora_utils.py +106 -0
- tpu_inference/runner/multimodal_manager.py +231 -0
- tpu_inference/runner/persistent_batch_manager.py +296 -0
- tpu_inference/runner/speculative_decoding_manager.py +262 -0
- tpu_inference/runner/structured_decoding_manager.py +101 -0
- tpu_inference/runner/tpu_runner.py +1768 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +430 -0
- tpu_inference/tpu_info.py +92 -0
- tpu_inference/utils.py +345 -0
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +468 -0
- tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
- tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
- tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
- tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,350 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import List, Tuple
|
|
16
|
+
|
|
17
|
+
import jax
|
|
18
|
+
import jax.numpy as jnp
|
|
19
|
+
from flax import nnx
|
|
20
|
+
from jax.sharding import Mesh
|
|
21
|
+
from transformers import LlamaConfig
|
|
22
|
+
from vllm.config import VllmConfig
|
|
23
|
+
|
|
24
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
25
|
+
from tpu_inference.logger import init_logger
|
|
26
|
+
from tpu_inference.models.jax.llama3 import LlamaDecoderLayer
|
|
27
|
+
from tpu_inference.models.jax.utils.weight_utils import (MetadataMap,
|
|
28
|
+
get_default_maps,
|
|
29
|
+
load_hf_weights)
|
|
30
|
+
|
|
31
|
+
logger = init_logger(__name__)
|
|
32
|
+
|
|
33
|
+
init_fn = nnx.initializers.uniform()
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class Eagle3LlamaDecoderLayer(LlamaDecoderLayer):
|
|
37
|
+
|
|
38
|
+
def __init__(self, config: LlamaConfig, dtype: jnp.dtype, rng: nnx.Rngs,
|
|
39
|
+
mesh: Mesh, kv_cache_dtype: str):
|
|
40
|
+
super().__init__(config,
|
|
41
|
+
dtype=dtype,
|
|
42
|
+
rng=rng,
|
|
43
|
+
mesh=mesh,
|
|
44
|
+
kv_cache_dtype=kv_cache_dtype)
|
|
45
|
+
self.config = config
|
|
46
|
+
# Override qkv
|
|
47
|
+
hidden_size = 2 * self.self_attn.hidden_size
|
|
48
|
+
self.self_attn.q_proj = nnx.Einsum(
|
|
49
|
+
"TD,DNH->TNH",
|
|
50
|
+
(hidden_size, self.self_attn.num_heads, self.self_attn.head_dim),
|
|
51
|
+
param_dtype=dtype,
|
|
52
|
+
dtype=dtype,
|
|
53
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
54
|
+
rngs=rng,
|
|
55
|
+
)
|
|
56
|
+
self.self_attn.k_proj = nnx.Einsum(
|
|
57
|
+
"TD,DKH->TKH",
|
|
58
|
+
(hidden_size, self.self_attn.num_kv_heads,
|
|
59
|
+
self.self_attn.head_dim),
|
|
60
|
+
param_dtype=dtype,
|
|
61
|
+
dtype=dtype,
|
|
62
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
63
|
+
rngs=rng,
|
|
64
|
+
)
|
|
65
|
+
self.self_attn.v_proj = nnx.Einsum(
|
|
66
|
+
"TD,DKH->TKH",
|
|
67
|
+
(hidden_size, self.self_attn.num_kv_heads,
|
|
68
|
+
self.self_attn.head_dim),
|
|
69
|
+
param_dtype=dtype,
|
|
70
|
+
dtype=dtype,
|
|
71
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
72
|
+
rngs=rng,
|
|
73
|
+
)
|
|
74
|
+
# Override input layernorm and specify dtype to avoid unexpected upcasting.
|
|
75
|
+
self.input_layernorm = nnx.RMSNorm(
|
|
76
|
+
config.hidden_size,
|
|
77
|
+
epsilon=config.rms_norm_eps,
|
|
78
|
+
param_dtype=dtype,
|
|
79
|
+
dtype=dtype,
|
|
80
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
81
|
+
rngs=rng,
|
|
82
|
+
)
|
|
83
|
+
self.hidden_norm = nnx.RMSNorm(
|
|
84
|
+
config.hidden_size,
|
|
85
|
+
epsilon=config.rms_norm_eps,
|
|
86
|
+
param_dtype=dtype,
|
|
87
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
88
|
+
rngs=rng,
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
def _norm_before_residual(
|
|
92
|
+
self, hidden_states: jax.Array) -> tuple[jax.Array, jax.Array]:
|
|
93
|
+
hidden_states = self.hidden_norm(hidden_states)
|
|
94
|
+
residual = hidden_states
|
|
95
|
+
return hidden_states, residual
|
|
96
|
+
|
|
97
|
+
def _norm_after_residual(
|
|
98
|
+
self, hidden_states: jax.Array) -> tuple[jax.Array, jax.Array]:
|
|
99
|
+
residual = hidden_states
|
|
100
|
+
hidden_states = self.hidden_norm(hidden_states)
|
|
101
|
+
return hidden_states, residual
|
|
102
|
+
|
|
103
|
+
def __call__(
|
|
104
|
+
self,
|
|
105
|
+
kv_cache: jax.Array,
|
|
106
|
+
embeds: jax.Array,
|
|
107
|
+
hidden_states: jax.Array,
|
|
108
|
+
attention_metadata: AttentionMetadata,
|
|
109
|
+
) -> Tuple[jax.Array, jax.Array, jax.Array]:
|
|
110
|
+
embeds = self.input_layernorm(embeds)
|
|
111
|
+
if getattr(self.config, "norm_before_residual", False):
|
|
112
|
+
hidden_states, residual = self._norm_before_residual(
|
|
113
|
+
hidden_states=hidden_states)
|
|
114
|
+
else:
|
|
115
|
+
hidden_states, residual = self._norm_after_residual(
|
|
116
|
+
hidden_states=hidden_states)
|
|
117
|
+
hidden_states = jnp.concatenate([embeds, hidden_states], axis=-1)
|
|
118
|
+
|
|
119
|
+
kv_cache, attn_output = self.self_attn(
|
|
120
|
+
kv_cache,
|
|
121
|
+
hidden_states,
|
|
122
|
+
attention_metadata,
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
# TODO(ranlihao): Check if this residual connection is correct.
|
|
126
|
+
hidden_states = attn_output + residual
|
|
127
|
+
residual = hidden_states
|
|
128
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
129
|
+
mlp_output = self.mlp(hidden_states)
|
|
130
|
+
|
|
131
|
+
return kv_cache, mlp_output, residual
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
class Eagle3LlamaModel(nnx.Module):
|
|
135
|
+
|
|
136
|
+
def __init__(self, vllm_config: VllmConfig, rng: nnx.Rngs, mesh: Mesh):
|
|
137
|
+
super().__init__()
|
|
138
|
+
hf_config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
139
|
+
dtype: jnp.dtype = jnp.bfloat16
|
|
140
|
+
|
|
141
|
+
self.embed_tokens = nnx.Embed(
|
|
142
|
+
num_embeddings=hf_config.vocab_size,
|
|
143
|
+
features=hf_config.hidden_size,
|
|
144
|
+
param_dtype=dtype,
|
|
145
|
+
embedding_init=nnx.with_partitioning(init_fn, ("model", None)),
|
|
146
|
+
rngs=rng,
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
self.layers = [
|
|
150
|
+
Eagle3LlamaDecoderLayer(
|
|
151
|
+
config=hf_config,
|
|
152
|
+
dtype=dtype,
|
|
153
|
+
rng=rng,
|
|
154
|
+
mesh=mesh,
|
|
155
|
+
# TODO (jacobplatin): we should refactor this to pass a dtype (or config) directly
|
|
156
|
+
kv_cache_dtype=vllm_config.cache_config.cache_dtype)
|
|
157
|
+
]
|
|
158
|
+
|
|
159
|
+
if hasattr(hf_config, "target_hidden_size"):
|
|
160
|
+
input_size = hf_config.target_hidden_size * 3
|
|
161
|
+
else:
|
|
162
|
+
input_size = hf_config.hidden_size * 3
|
|
163
|
+
|
|
164
|
+
self.fc = nnx.Linear(
|
|
165
|
+
in_features=input_size,
|
|
166
|
+
out_features=hf_config.hidden_size,
|
|
167
|
+
use_bias=False,
|
|
168
|
+
param_dtype=dtype,
|
|
169
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model")),
|
|
170
|
+
rngs=rng,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
self.norm = nnx.RMSNorm(
|
|
174
|
+
hf_config.hidden_size,
|
|
175
|
+
epsilon=hf_config.rms_norm_eps,
|
|
176
|
+
param_dtype=dtype,
|
|
177
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
178
|
+
rngs=rng,
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
def __call__(
|
|
182
|
+
self,
|
|
183
|
+
kv_caches: List[jax.Array],
|
|
184
|
+
input_ids: jax.Array,
|
|
185
|
+
hidden_states: jax.Array,
|
|
186
|
+
attention_metadata: AttentionMetadata,
|
|
187
|
+
) -> Tuple[List[jax.Array], jax.Array, List[jax.Array]]:
|
|
188
|
+
embeds = self.embed_tokens(input_ids)
|
|
189
|
+
assert hidden_states.shape[-1] == embeds.shape[-1]
|
|
190
|
+
|
|
191
|
+
assert len(self.layers) == 1
|
|
192
|
+
# The first N - 1 KV caches are for the target model, and the last one is for the draft model.
|
|
193
|
+
# N is the number of layers in the target model.
|
|
194
|
+
# The draft model has only 1 layer.
|
|
195
|
+
kv_caches[-1], hidden_states, residual = self.layers[0](
|
|
196
|
+
kv_caches[-1],
|
|
197
|
+
embeds,
|
|
198
|
+
hidden_states,
|
|
199
|
+
attention_metadata,
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
# TODO(ranlihao): Check if this residual connection is correct.
|
|
203
|
+
hidden_states = hidden_states + residual
|
|
204
|
+
residual = hidden_states
|
|
205
|
+
hidden_states = self.norm(hidden_states)
|
|
206
|
+
return kv_caches, hidden_states, [residual]
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
def update_reshape_map_for_eagle3(vllm_config: VllmConfig,
|
|
210
|
+
metadata_map: MetadataMap):
|
|
211
|
+
model_config = vllm_config.speculative_config.draft_model_config
|
|
212
|
+
hf_config = model_config.hf_config
|
|
213
|
+
|
|
214
|
+
num_heads = hf_config.num_attention_heads
|
|
215
|
+
num_kv_heads = hf_config.num_key_value_heads
|
|
216
|
+
hidden_size = hf_config.hidden_size
|
|
217
|
+
head_dim_original = model_config.get_head_size()
|
|
218
|
+
|
|
219
|
+
metadata_map.reshape_map.update({
|
|
220
|
+
"q_proj": (num_heads, head_dim_original, 2 * hidden_size),
|
|
221
|
+
"k_proj": (num_kv_heads, head_dim_original, 2 * hidden_size),
|
|
222
|
+
"v_proj": (num_kv_heads, head_dim_original, 2 * hidden_size),\
|
|
223
|
+
})
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
class EagleLlama3ForCausalLM(nnx.Module):
|
|
227
|
+
|
|
228
|
+
def __init__(self, vllm_config: VllmConfig, rng_key: jax.Array,
|
|
229
|
+
mesh: Mesh):
|
|
230
|
+
nnx.Module.__init__(self)
|
|
231
|
+
self.vllm_config = vllm_config
|
|
232
|
+
self.rng = nnx.Rngs(rng_key)
|
|
233
|
+
self.mesh = mesh
|
|
234
|
+
dtype: jnp.dtype = jnp.bfloat16
|
|
235
|
+
|
|
236
|
+
spec_config = vllm_config.speculative_config
|
|
237
|
+
assert spec_config is not None
|
|
238
|
+
model_config = spec_config.draft_model_config
|
|
239
|
+
assert model_config is not None
|
|
240
|
+
hf_config = model_config.hf_config
|
|
241
|
+
|
|
242
|
+
self.model = Eagle3LlamaModel(
|
|
243
|
+
vllm_config=vllm_config,
|
|
244
|
+
rng=self.rng,
|
|
245
|
+
mesh=mesh,
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
self.lm_head = nnx.Linear(
|
|
249
|
+
hf_config.hidden_size,
|
|
250
|
+
hf_config.draft_vocab_size,
|
|
251
|
+
use_bias=False,
|
|
252
|
+
param_dtype=dtype,
|
|
253
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model")),
|
|
254
|
+
rngs=self.rng,
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
self.draft_id_to_target_id = nnx.Param(jnp.zeros(
|
|
258
|
+
hf_config.draft_vocab_size, dtype=jnp.int32),
|
|
259
|
+
sharding=(None, ))
|
|
260
|
+
|
|
261
|
+
def __call__(
|
|
262
|
+
self,
|
|
263
|
+
kv_caches: List[jax.Array],
|
|
264
|
+
input_ids: jax.Array,
|
|
265
|
+
hidden_states: jax.Array,
|
|
266
|
+
attention_metadata: AttentionMetadata,
|
|
267
|
+
) -> Tuple[List[jax.Array], jax.Array, List[jax.Array]]:
|
|
268
|
+
return self.model(
|
|
269
|
+
kv_caches,
|
|
270
|
+
input_ids,
|
|
271
|
+
hidden_states,
|
|
272
|
+
attention_metadata,
|
|
273
|
+
)
|
|
274
|
+
|
|
275
|
+
def compute_logits(self, hidden_states: jax.Array) -> jax.Array:
|
|
276
|
+
logits = self.lm_head(hidden_states)
|
|
277
|
+
|
|
278
|
+
target_vocab_size = self.vllm_config.model_config.get_vocab_size()
|
|
279
|
+
draft_vocab_size = self.vllm_config.speculative_config.draft_model_config.hf_config.draft_vocab_size
|
|
280
|
+
|
|
281
|
+
base = jnp.arange(draft_vocab_size, dtype=jnp.int32)
|
|
282
|
+
targets = base + self.draft_id_to_target_id.value
|
|
283
|
+
|
|
284
|
+
logits_new = jnp.full((logits.shape[0], target_vocab_size),
|
|
285
|
+
-jnp.inf,
|
|
286
|
+
dtype=logits.dtype)
|
|
287
|
+
|
|
288
|
+
logits_new = logits_new.at[:, targets].set(logits)
|
|
289
|
+
|
|
290
|
+
return logits_new
|
|
291
|
+
|
|
292
|
+
def combine_hidden_states(self, hidden_states: jax.Array) -> jax.Array:
|
|
293
|
+
return self.model.fc(hidden_states)
|
|
294
|
+
|
|
295
|
+
def load_weights(self, rng_key: jax.Array):
|
|
296
|
+
# Create a new Rngs object for the draft model to avoid sharing RNG state
|
|
297
|
+
self.rng = jax.random.key(self.vllm_config.model_config.seed)
|
|
298
|
+
spec_config = self.vllm_config.speculative_config
|
|
299
|
+
assert spec_config is not None
|
|
300
|
+
|
|
301
|
+
mappings = {
|
|
302
|
+
"midlayer.input_layernorm": "model.layers.0.input_layernorm.scale",
|
|
303
|
+
"midlayer.hidden_norm": "model.layers.0.hidden_norm.scale",
|
|
304
|
+
"midlayer.mlp.down_proj": "model.layers.0.mlp.down_proj.kernel",
|
|
305
|
+
"midlayer.mlp.gate_proj": "model.layers.0.mlp.gate_proj.kernel",
|
|
306
|
+
"midlayer.mlp.up_proj": "model.layers.0.mlp.up_proj.kernel",
|
|
307
|
+
"midlayer.post_attention_layernorm":
|
|
308
|
+
"model.layers.0.post_attention_layernorm.scale",
|
|
309
|
+
"midlayer.self_attn.k_proj":
|
|
310
|
+
"model.layers.0.self_attn.k_proj.kernel",
|
|
311
|
+
"midlayer.self_attn.o_proj":
|
|
312
|
+
"model.layers.0.self_attn.o_proj.kernel",
|
|
313
|
+
"midlayer.self_attn.q_proj":
|
|
314
|
+
"model.layers.0.self_attn.q_proj.kernel",
|
|
315
|
+
"midlayer.self_attn.v_proj":
|
|
316
|
+
"model.layers.0.self_attn.v_proj.kernel",
|
|
317
|
+
"norm": "model.norm.scale",
|
|
318
|
+
"fc": "model.fc.kernel",
|
|
319
|
+
"lm_head": "lm_head.kernel",
|
|
320
|
+
"d2t": "draft_id_to_target_id",
|
|
321
|
+
"embed_tokens":
|
|
322
|
+
"model.embed_tokens.embedding", # Some checkpoints need this
|
|
323
|
+
}
|
|
324
|
+
|
|
325
|
+
# Define keys to keep in original dtype (e.g., float32 for stability)
|
|
326
|
+
keep_original_dtype_keys_regex = [
|
|
327
|
+
r".*d2t.*",
|
|
328
|
+
]
|
|
329
|
+
|
|
330
|
+
metadata_map = get_default_maps(
|
|
331
|
+
self.vllm_config.speculative_config.draft_model_config, self.mesh,
|
|
332
|
+
mappings)
|
|
333
|
+
|
|
334
|
+
update_reshape_map_for_eagle3(self.vllm_config, metadata_map)
|
|
335
|
+
|
|
336
|
+
load_hf_weights(
|
|
337
|
+
vllm_config=self.vllm_config,
|
|
338
|
+
model=self,
|
|
339
|
+
metadata_map=metadata_map,
|
|
340
|
+
mesh=self.mesh,
|
|
341
|
+
is_draft_model=True,
|
|
342
|
+
keep_original_dtype_keys_regex=keep_original_dtype_keys_regex)
|
|
343
|
+
|
|
344
|
+
# If the embedding is not initialized, initialize it with a dummy array here to pass jit compilation. The real weights will be shared from the target model in eagle3 class.
|
|
345
|
+
if isinstance(self.model.embed_tokens.embedding.value,
|
|
346
|
+
jax.ShapeDtypeStruct):
|
|
347
|
+
self.model.embed_tokens.embedding.value = jnp.zeros(
|
|
348
|
+
self.model.embed_tokens.embedding.shape,
|
|
349
|
+
dtype=self.model.embed_tokens.embedding.dtype,
|
|
350
|
+
)
|