tpu-inference 0.12.0.dev20251222__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +67 -0
- tests/core/test_dp_scheduler.py +724 -0
- tests/core/test_init.py +63 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +393 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +291 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +388 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +498 -0
- tests/kernels/quantized_matmul_kernel_test.py +159 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/layers/jax/test_qwix.py +969 -0
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +405 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +297 -0
- tests/layers/vllm/test_unquantized.py +621 -0
- tests/layers/vllm/utils.py +72 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +46 -0
- tests/lora/test_bgmv.py +57 -0
- tests/lora/test_layers.py +666 -0
- tests/lora/test_lora.py +147 -0
- tests/lora/test_lora_perf.py +67 -0
- tests/lora/utils.py +88 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +606 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +202 -0
- tests/runner/test_tpu_runner_dp.py +1033 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +215 -0
- tests/test_envs.py +280 -0
- tests/test_tpu_info.py +134 -0
- tests/test_utils.py +193 -0
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +67 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +49 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +814 -0
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +81 -0
- tpu_inference/distributed/tpu_connector.py +732 -0
- tpu_inference/distributed/utils.py +112 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +191 -0
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +399 -0
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +272 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +1340 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +403 -0
- tpu_inference/layers/common/attention_metadata.py +48 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +23 -0
- tpu_inference/layers/common/quantization.py +270 -0
- tpu_inference/layers/common/sharding.py +600 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +268 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
- tpu_inference/layers/jax/base.py +165 -0
- tpu_inference/layers/jax/constants.py +101 -0
- tpu_inference/layers/jax/layers.py +315 -0
- tpu_inference/layers/jax/misc.py +30 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
- tpu_inference/layers/jax/moe/moe.py +249 -0
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +294 -0
- tpu_inference/layers/jax/rope_interface.py +228 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
- tpu_inference/layers/jax/sample/sampling.py +110 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
- tpu_inference/layers/jax/transformer_block.py +121 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +502 -0
- tpu_inference/layers/vllm/linear_common.py +221 -0
- tpu_inference/layers/vllm/quantization/__init__.py +55 -0
- tpu_inference/layers/vllm/quantization/awq.py +221 -0
- tpu_inference/layers/vllm/quantization/common.py +124 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
- tpu_inference/layers/vllm/quantization/fp8.py +118 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
- tpu_inference/layers/vllm/sharding.py +244 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +98 -0
- tpu_inference/lora/torch_punica_tpu.py +310 -0
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +520 -0
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +978 -0
- tpu_inference/models/jax/gpt_oss.py +508 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
- tpu_inference/models/jax/llama3.py +436 -0
- tpu_inference/models/jax/llama4.py +643 -0
- tpu_inference/models/jax/llama_eagle3.py +350 -0
- tpu_inference/models/jax/llama_guard_4.py +375 -0
- tpu_inference/models/jax/qwen2.py +390 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
- tpu_inference/models/jax/qwen3.py +318 -0
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +110 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
- tpu_inference/models/jax/utils/weight_utils.py +621 -0
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
- tpu_inference/platforms/__init__.py +16 -0
- tpu_inference/platforms/tpu_platform.py +258 -0
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +890 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +166 -0
- tpu_inference/runner/kv_cache_manager.py +508 -0
- tpu_inference/runner/lora_utils.py +106 -0
- tpu_inference/runner/multimodal_manager.py +231 -0
- tpu_inference/runner/persistent_batch_manager.py +296 -0
- tpu_inference/runner/speculative_decoding_manager.py +262 -0
- tpu_inference/runner/structured_decoding_manager.py +101 -0
- tpu_inference/runner/tpu_runner.py +1768 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +430 -0
- tpu_inference/tpu_info.py +92 -0
- tpu_inference/utils.py +345 -0
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +468 -0
- tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
- tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
- tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
- tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,403 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import tempfile
|
|
16
|
+
from typing import Optional
|
|
17
|
+
|
|
18
|
+
import jax
|
|
19
|
+
import pytest
|
|
20
|
+
import torch
|
|
21
|
+
import torchax
|
|
22
|
+
from compressed_tensors.quantization import QuantizationStrategy
|
|
23
|
+
from jax.sharding import PartitionSpec
|
|
24
|
+
from torchax.interop import torch_view
|
|
25
|
+
from torchax.ops.mappings import j2t, t2j
|
|
26
|
+
from vllm.config import set_current_vllm_config
|
|
27
|
+
from vllm.distributed.parallel_state import (ensure_model_parallel_initialized,
|
|
28
|
+
init_distributed_environment)
|
|
29
|
+
from vllm.engine.arg_utils import EngineArgs
|
|
30
|
+
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
31
|
+
LinearBase,
|
|
32
|
+
MergedColumnParallelLinear,
|
|
33
|
+
QKVParallelLinear,
|
|
34
|
+
RowParallelLinear)
|
|
35
|
+
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import \
|
|
36
|
+
CompressedTensorsLinearMethod
|
|
37
|
+
from vllm.model_executor.model_loader import get_model as vllm_get_model
|
|
38
|
+
|
|
39
|
+
from tpu_inference.layers.vllm.quantization import get_tpu_quantization_config
|
|
40
|
+
from tpu_inference.layers.vllm.quantization.common import JaxCommonLinearConfig
|
|
41
|
+
from tpu_inference.layers.vllm.quantization.compressed_tensors.compressed_tensors import \
|
|
42
|
+
VllmCompressedTensorsConfig
|
|
43
|
+
from tpu_inference.layers.vllm.quantization.compressed_tensors.schemes.compressed_tensors_w8a8_fp8 import (
|
|
44
|
+
VllmCompressedTensorsW8A8Fp8, requantize_with_max_scale)
|
|
45
|
+
|
|
46
|
+
from . import utils as test_utils
|
|
47
|
+
|
|
48
|
+
P = PartitionSpec
|
|
49
|
+
MODELS = [
|
|
50
|
+
"RedHatAI/Llama-3.2-1B-Instruct-FP8-dynamic",
|
|
51
|
+
"RedHatAI/Llama-3.2-1B-Instruct-FP8"
|
|
52
|
+
]
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def ref_quantize_fp8(x: torch.Tensor,
|
|
56
|
+
dtype: torch.dtype,
|
|
57
|
+
per_tensor: bool = False):
|
|
58
|
+
dtype_info = torch.finfo(dtype)
|
|
59
|
+
dtype_max = float(dtype_info.max)
|
|
60
|
+
dtype_min = float(dtype_info.min)
|
|
61
|
+
|
|
62
|
+
dim = () if per_tensor else 1
|
|
63
|
+
x_abs_max = torch.amax(torch.abs(x), dim=dim, keepdim=True)
|
|
64
|
+
if per_tensor:
|
|
65
|
+
x_abs_max = torch.squeeze(x_abs_max, dim=-1)
|
|
66
|
+
x_s = x_abs_max / dtype_max
|
|
67
|
+
x_q = torch.clip(x / x_s, dtype_min, dtype_max).to(dtype)
|
|
68
|
+
return x_q, x_s.to(torch.float32)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def ref_w8a8_fp8_dynamic(x: torch.Tensor, w_q: torch.Tensor, w_s: torch.Tensor,
|
|
72
|
+
b: Optional[torch.Tensor]):
|
|
73
|
+
x_q, x_s = ref_quantize_fp8(x, w_q.dtype)
|
|
74
|
+
out = torch.einsum('bd,fd->bf', x_q.to(torch.float32),
|
|
75
|
+
w_q.to(torch.float32))
|
|
76
|
+
out = (out * x_s) * w_s.T
|
|
77
|
+
if b is not None:
|
|
78
|
+
out += b
|
|
79
|
+
return out.to(x.dtype)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def ref_w8a8_fp8_static(x: torch.Tensor, x_s: torch.Tensor, w_q: torch.Tensor,
|
|
83
|
+
w_s: torch.Tensor, b: Optional[torch.Tensor]):
|
|
84
|
+
dtype_info = torch.finfo(w_q.dtype)
|
|
85
|
+
dtype_max = float(dtype_info.max)
|
|
86
|
+
dtype_min = float(dtype_info.min)
|
|
87
|
+
|
|
88
|
+
x_q = torch.clamp(x / x_s, dtype_min, dtype_max).to(w_q.dtype)
|
|
89
|
+
out = torch.einsum('bd,fd->bf', x_q.to(torch.float32),
|
|
90
|
+
w_q.to(torch.float32))
|
|
91
|
+
out = (out * x_s) * w_s.T
|
|
92
|
+
if b is not None:
|
|
93
|
+
out += b
|
|
94
|
+
return out.to(x.dtype)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def return_ref_and_layer_output(layer: torch.nn.Module, batch_size: int = 16):
|
|
98
|
+
assert isinstance(layer, LinearBase)
|
|
99
|
+
scheme = layer.scheme
|
|
100
|
+
assert isinstance(scheme, VllmCompressedTensorsW8A8Fp8)
|
|
101
|
+
quant_config = scheme.jax_config
|
|
102
|
+
assert isinstance(quant_config, JaxCommonLinearConfig)
|
|
103
|
+
quant_method = layer.quant_method
|
|
104
|
+
assert isinstance(quant_method, CompressedTensorsLinearMethod)
|
|
105
|
+
per_tensor = scheme.strategy == QuantizationStrategy.TENSOR
|
|
106
|
+
is_static_input_scheme = scheme.is_static_input_scheme
|
|
107
|
+
|
|
108
|
+
input_tensor = torch.rand(
|
|
109
|
+
batch_size, layer.input_size, dtype=torch.bfloat16) / 10
|
|
110
|
+
input_tensor = input_tensor.to('cpu')
|
|
111
|
+
|
|
112
|
+
weight_scale, weight = layer.weight_scale, layer.weight
|
|
113
|
+
input_scale = getattr(layer, 'input_scale', None)
|
|
114
|
+
# For per_tensor with merged layers, vLLM requenzites them so all merged
|
|
115
|
+
# layers shared the same scale values.
|
|
116
|
+
if per_tensor:
|
|
117
|
+
weight_scale, weight = requantize_with_max_scale(
|
|
118
|
+
layer.weight, layer.weight_scale, quant_config.output_sizes)
|
|
119
|
+
if input_scale is not None:
|
|
120
|
+
input_scale = input_scale.max()
|
|
121
|
+
|
|
122
|
+
# Run reference implementation
|
|
123
|
+
if is_static_input_scheme:
|
|
124
|
+
ref_output = ref_w8a8_fp8_static(
|
|
125
|
+
input_tensor,
|
|
126
|
+
input_scale,
|
|
127
|
+
weight,
|
|
128
|
+
weight_scale,
|
|
129
|
+
layer.bias,
|
|
130
|
+
)
|
|
131
|
+
else:
|
|
132
|
+
ref_output = ref_w8a8_fp8_dynamic(
|
|
133
|
+
input_tensor,
|
|
134
|
+
weight,
|
|
135
|
+
weight_scale,
|
|
136
|
+
layer.bias,
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
# Run torchax/jax function
|
|
140
|
+
with torchax.default_env():
|
|
141
|
+
quant_method.process_weights_after_loading(layer)
|
|
142
|
+
|
|
143
|
+
jax_input_tensor = torch_view(t2j(input_tensor, use_dlpack=False))
|
|
144
|
+
layer_output = layer(jax_input_tensor)
|
|
145
|
+
layer_output = j2t(layer_output.to(torch.float32)).to(torch.bfloat16)
|
|
146
|
+
|
|
147
|
+
return ref_output, layer_output
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
def initialize_layer_weights(layer: torch.nn.Module):
|
|
151
|
+
assert isinstance(layer, LinearBase)
|
|
152
|
+
scheme = layer.scheme
|
|
153
|
+
assert isinstance(scheme, VllmCompressedTensorsW8A8Fp8)
|
|
154
|
+
quant_config = scheme.jax_config
|
|
155
|
+
assert isinstance(quant_config, JaxCommonLinearConfig)
|
|
156
|
+
per_tensor = scheme.strategy == QuantizationStrategy.TENSOR
|
|
157
|
+
|
|
158
|
+
weight_list = []
|
|
159
|
+
weight_scale_list = []
|
|
160
|
+
for output_size in quant_config.output_sizes:
|
|
161
|
+
weight = torch.rand(
|
|
162
|
+
(output_size, layer.input_size), dtype=torch.bfloat16) / 10
|
|
163
|
+
weight_, weight_scale_ = ref_quantize_fp8(weight, torch.float8_e4m3fn,
|
|
164
|
+
per_tensor)
|
|
165
|
+
weight_list.append(weight_)
|
|
166
|
+
weight_scale_list.append(weight_scale_)
|
|
167
|
+
|
|
168
|
+
weight = torch.concatenate(weight_list)
|
|
169
|
+
weight_scale = torch.concatenate(weight_scale_list)
|
|
170
|
+
|
|
171
|
+
assert layer.weight.data.shape == weight.shape
|
|
172
|
+
assert layer.weight_scale.data.shape == weight_scale.shape
|
|
173
|
+
|
|
174
|
+
layer.weight.data = weight
|
|
175
|
+
layer.weight_scale.data = weight_scale
|
|
176
|
+
|
|
177
|
+
if layer.bias is not None:
|
|
178
|
+
layer.bias.data = torch.rand_like(layer.bias.data)
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
@pytest.fixture(autouse=True)
|
|
182
|
+
def setup_environment():
|
|
183
|
+
# This is a fake config used for init dist env.
|
|
184
|
+
# RowParallelLinear needs dist env to be initialized.
|
|
185
|
+
engine_args = EngineArgs(
|
|
186
|
+
model=MODELS[0],
|
|
187
|
+
max_model_len=64,
|
|
188
|
+
max_num_batched_tokens=64,
|
|
189
|
+
max_num_seqs=4,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
vllm_config = engine_args.create_engine_config()
|
|
193
|
+
|
|
194
|
+
with set_current_vllm_config(vllm_config):
|
|
195
|
+
temp_file = tempfile.mkstemp()[1]
|
|
196
|
+
init_distributed_environment(
|
|
197
|
+
1,
|
|
198
|
+
0,
|
|
199
|
+
local_rank=0,
|
|
200
|
+
distributed_init_method=f"file://{temp_file}",
|
|
201
|
+
backend="gloo")
|
|
202
|
+
ensure_model_parallel_initialized(1, 1)
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
@pytest.mark.parametrize("model", MODELS)
|
|
206
|
+
@pytest.mark.parametrize("mesh", [
|
|
207
|
+
test_utils.get_spmd_mesh(1),
|
|
208
|
+
test_utils.get_spmd_mesh(jax.local_device_count())
|
|
209
|
+
])
|
|
210
|
+
def test_quant_override(model, mesh):
|
|
211
|
+
|
|
212
|
+
engine_args = EngineArgs(
|
|
213
|
+
model=model,
|
|
214
|
+
max_model_len=64,
|
|
215
|
+
max_num_batched_tokens=64,
|
|
216
|
+
max_num_seqs=4,
|
|
217
|
+
)
|
|
218
|
+
vllm_config = engine_args.create_engine_config()
|
|
219
|
+
vllm_config.model_config.dtype = torch.bfloat16
|
|
220
|
+
|
|
221
|
+
quant_config = get_tpu_quantization_config(vllm_config, mesh)
|
|
222
|
+
assert isinstance(quant_config, VllmCompressedTensorsConfig)
|
|
223
|
+
assert quant_config.vllm_config == vllm_config
|
|
224
|
+
assert quant_config.mesh == mesh
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
@pytest.mark.parametrize("model", MODELS)
|
|
228
|
+
@pytest.mark.parametrize("mesh", [
|
|
229
|
+
test_utils.get_spmd_mesh(1),
|
|
230
|
+
test_utils.get_spmd_mesh(jax.local_device_count())
|
|
231
|
+
])
|
|
232
|
+
def test_loading_model(model, mesh):
|
|
233
|
+
engine_args = EngineArgs(
|
|
234
|
+
model=model,
|
|
235
|
+
max_model_len=64,
|
|
236
|
+
max_num_batched_tokens=64,
|
|
237
|
+
max_num_seqs=4,
|
|
238
|
+
)
|
|
239
|
+
vllm_config = engine_args.create_engine_config()
|
|
240
|
+
vllm_config.model_config.dtype = torch.bfloat16
|
|
241
|
+
vllm_config.quant_config = get_tpu_quantization_config(vllm_config, mesh)
|
|
242
|
+
vllm_config.device_config.device = "cpu"
|
|
243
|
+
|
|
244
|
+
vllm_model = vllm_get_model(vllm_config=vllm_config)
|
|
245
|
+
layers = test_utils.find_all_layer_type(vllm_model, LinearBase)
|
|
246
|
+
for layer in layers:
|
|
247
|
+
assert isinstance(layer.quant_config, VllmCompressedTensorsConfig)
|
|
248
|
+
assert isinstance(layer.quant_method, CompressedTensorsLinearMethod)
|
|
249
|
+
assert isinstance(layer.scheme, VllmCompressedTensorsW8A8Fp8)
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
@pytest.mark.parametrize("model", MODELS)
|
|
253
|
+
@pytest.mark.parametrize("bias", [False, True])
|
|
254
|
+
@pytest.mark.parametrize("mesh", [
|
|
255
|
+
test_utils.get_spmd_mesh(1),
|
|
256
|
+
test_utils.get_spmd_mesh(jax.local_device_count())
|
|
257
|
+
])
|
|
258
|
+
@pytest.mark.parametrize("enable_sp", [False, True])
|
|
259
|
+
def test_row_parallel_linear(model, bias, mesh, enable_sp):
|
|
260
|
+
dtype = torch.bfloat16
|
|
261
|
+
|
|
262
|
+
engine_args = EngineArgs(
|
|
263
|
+
model=model,
|
|
264
|
+
max_model_len=64,
|
|
265
|
+
max_num_batched_tokens=64,
|
|
266
|
+
max_num_seqs=4,
|
|
267
|
+
)
|
|
268
|
+
vllm_config = engine_args.create_engine_config()
|
|
269
|
+
vllm_config.compilation_config.pass_config.enable_sp = enable_sp
|
|
270
|
+
|
|
271
|
+
vllm_config.model_config.dtype = dtype
|
|
272
|
+
quant_config = get_tpu_quantization_config(vllm_config, mesh)
|
|
273
|
+
with set_current_vllm_config(vllm_config):
|
|
274
|
+
linear_layer = RowParallelLinear(
|
|
275
|
+
input_size=4096,
|
|
276
|
+
output_size=8192,
|
|
277
|
+
bias=bias,
|
|
278
|
+
params_dtype=dtype,
|
|
279
|
+
return_bias=False,
|
|
280
|
+
quant_config=quant_config,
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
initialize_layer_weights(linear_layer)
|
|
284
|
+
ref_output, layer_output = return_ref_and_layer_output(linear_layer)
|
|
285
|
+
torch.testing.assert_close(ref_output, layer_output)
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
@pytest.mark.parametrize("model", MODELS)
|
|
289
|
+
@pytest.mark.parametrize("bias", [False, True])
|
|
290
|
+
@pytest.mark.parametrize("mesh", [
|
|
291
|
+
test_utils.get_spmd_mesh(1),
|
|
292
|
+
test_utils.get_spmd_mesh(jax.local_device_count())
|
|
293
|
+
])
|
|
294
|
+
@pytest.mark.parametrize("enable_sp", [False, True])
|
|
295
|
+
def test_column_parallel_linear(model, bias, mesh, enable_sp):
|
|
296
|
+
dtype = torch.bfloat16
|
|
297
|
+
|
|
298
|
+
engine_args = EngineArgs(
|
|
299
|
+
model=model,
|
|
300
|
+
max_model_len=64,
|
|
301
|
+
max_num_batched_tokens=64,
|
|
302
|
+
max_num_seqs=4,
|
|
303
|
+
)
|
|
304
|
+
vllm_config = engine_args.create_engine_config()
|
|
305
|
+
vllm_config.compilation_config.pass_config.enable_sp = enable_sp
|
|
306
|
+
|
|
307
|
+
# Call tpu_inference code
|
|
308
|
+
vllm_config.model_config.dtype = torch.bfloat16
|
|
309
|
+
quant_config = get_tpu_quantization_config(vllm_config, mesh)
|
|
310
|
+
with set_current_vllm_config(vllm_config):
|
|
311
|
+
linear_layer = ColumnParallelLinear(
|
|
312
|
+
input_size=4096,
|
|
313
|
+
output_size=8192,
|
|
314
|
+
bias=bias,
|
|
315
|
+
params_dtype=dtype,
|
|
316
|
+
return_bias=False,
|
|
317
|
+
quant_config=quant_config,
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
initialize_layer_weights(linear_layer)
|
|
321
|
+
ref_output, layer_output = return_ref_and_layer_output(linear_layer)
|
|
322
|
+
torch.testing.assert_close(ref_output, layer_output)
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
@pytest.mark.parametrize("model", MODELS)
|
|
326
|
+
@pytest.mark.parametrize("bias", [False, True])
|
|
327
|
+
@pytest.mark.parametrize("mesh", [
|
|
328
|
+
test_utils.get_spmd_mesh(1),
|
|
329
|
+
test_utils.get_spmd_mesh(jax.local_device_count())
|
|
330
|
+
])
|
|
331
|
+
@pytest.mark.parametrize("enable_sp", [False, True])
|
|
332
|
+
@pytest.mark.parametrize("fuse_matmuls", [False, True])
|
|
333
|
+
def test_qkv_parallel_linear(model, bias, mesh, enable_sp, fuse_matmuls):
|
|
334
|
+
dtype = torch.bfloat16
|
|
335
|
+
|
|
336
|
+
engine_args = EngineArgs(
|
|
337
|
+
model=model,
|
|
338
|
+
max_model_len=64,
|
|
339
|
+
max_num_batched_tokens=64,
|
|
340
|
+
max_num_seqs=4,
|
|
341
|
+
)
|
|
342
|
+
vllm_config = engine_args.create_engine_config()
|
|
343
|
+
vllm_config.compilation_config.pass_config.enable_sp = enable_sp
|
|
344
|
+
|
|
345
|
+
# Call tpu_inference code
|
|
346
|
+
vllm_config.model_config.dtype = torch.bfloat16
|
|
347
|
+
quant_config = get_tpu_quantization_config(vllm_config, mesh)
|
|
348
|
+
with set_current_vllm_config(vllm_config):
|
|
349
|
+
linear_layer = QKVParallelLinear(
|
|
350
|
+
hidden_size=4096,
|
|
351
|
+
head_size=128,
|
|
352
|
+
total_num_heads=32,
|
|
353
|
+
total_num_kv_heads=8,
|
|
354
|
+
bias=bias,
|
|
355
|
+
params_dtype=dtype,
|
|
356
|
+
return_bias=False,
|
|
357
|
+
quant_config=quant_config,
|
|
358
|
+
)
|
|
359
|
+
linear_layer.quant_method.fuse_matmuls = fuse_matmuls
|
|
360
|
+
|
|
361
|
+
initialize_layer_weights(linear_layer)
|
|
362
|
+
ref_output, layer_output = return_ref_and_layer_output(linear_layer)
|
|
363
|
+
torch.testing.assert_close(ref_output, layer_output)
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
@pytest.mark.parametrize("model", MODELS)
|
|
367
|
+
@pytest.mark.parametrize("bias", [False, True])
|
|
368
|
+
@pytest.mark.parametrize("mesh", [
|
|
369
|
+
test_utils.get_spmd_mesh(1),
|
|
370
|
+
test_utils.get_spmd_mesh(jax.local_device_count())
|
|
371
|
+
])
|
|
372
|
+
@pytest.mark.parametrize("fuse_matmuls", [False, True])
|
|
373
|
+
@pytest.mark.parametrize("enable_sp", [False, True])
|
|
374
|
+
def test_merged_column_parallel_linear(model, bias, mesh, fuse_matmuls,
|
|
375
|
+
enable_sp):
|
|
376
|
+
dtype = torch.bfloat16
|
|
377
|
+
|
|
378
|
+
engine_args = EngineArgs(
|
|
379
|
+
model=model,
|
|
380
|
+
max_model_len=64,
|
|
381
|
+
max_num_batched_tokens=64,
|
|
382
|
+
max_num_seqs=4,
|
|
383
|
+
)
|
|
384
|
+
vllm_config = engine_args.create_engine_config()
|
|
385
|
+
vllm_config.compilation_config.pass_config.enable_sp = enable_sp
|
|
386
|
+
|
|
387
|
+
# Call tpu_inference code
|
|
388
|
+
vllm_config.model_config.dtype = torch.bfloat16
|
|
389
|
+
quant_config = get_tpu_quantization_config(vllm_config, mesh)
|
|
390
|
+
with set_current_vllm_config(vllm_config):
|
|
391
|
+
linear_layer = MergedColumnParallelLinear(
|
|
392
|
+
input_size=4096,
|
|
393
|
+
output_sizes=[14336] * 2,
|
|
394
|
+
bias=bias,
|
|
395
|
+
params_dtype=dtype,
|
|
396
|
+
return_bias=False,
|
|
397
|
+
quant_config=quant_config,
|
|
398
|
+
)
|
|
399
|
+
linear_layer.quant_method.fuse_matmuls = fuse_matmuls
|
|
400
|
+
|
|
401
|
+
initialize_layer_weights(linear_layer)
|
|
402
|
+
ref_output, layer_output = return_ref_and_layer_output(linear_layer)
|
|
403
|
+
torch.testing.assert_close(ref_output, layer_output)
|