tpu-inference 0.12.0.dev20251222__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. tests/__init__.py +13 -0
  2. tests/core/__init__.py +13 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +67 -0
  6. tests/core/test_dp_scheduler.py +724 -0
  7. tests/core/test_init.py +63 -0
  8. tests/distributed/__init__.py +13 -0
  9. tests/distributed/test_distributed_utils.py +120 -0
  10. tests/distributed/test_tpu_connector.py +478 -0
  11. tests/e2e/__init__.py +13 -0
  12. tests/e2e/test_async_scheduler.py +211 -0
  13. tests/e2e/test_data_parallel.py +393 -0
  14. tests/e2e/test_local_disagg.py +257 -0
  15. tests/e2e/test_model_loader.py +268 -0
  16. tests/e2e/test_multi_modal_inference.py +111 -0
  17. tests/e2e/test_pipeline_parallel.py +265 -0
  18. tests/e2e/test_runai_model_streamer_loader.py +104 -0
  19. tests/e2e/test_sampling_params.py +269 -0
  20. tests/e2e/test_speculative_decoding.py +291 -0
  21. tests/e2e/test_structured_decoding.py +46 -0
  22. tests/executors/__init__.py +13 -0
  23. tests/executors/test_ray_distributed_executor.py +199 -0
  24. tests/experimental/__init__.py +13 -0
  25. tests/experimental/test_llama3_jax_stashed.py +208 -0
  26. tests/kernels/__init__.py +13 -0
  27. tests/kernels/collectives/__init__.py +13 -0
  28. tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
  29. tests/kernels/fused_moe_v1_test.py +388 -0
  30. tests/kernels/gmm_test.py +205 -0
  31. tests/kernels/mla_v1_test.py +498 -0
  32. tests/kernels/quantized_matmul_kernel_test.py +159 -0
  33. tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
  34. tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
  35. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
  36. tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
  37. tests/layers/__init__.py +13 -0
  38. tests/layers/common/__init__.py +13 -0
  39. tests/layers/common/test_attention_interface.py +156 -0
  40. tests/layers/common/test_quantization.py +149 -0
  41. tests/layers/jax/__init__.py +13 -0
  42. tests/layers/jax/attention/__init__.py +13 -0
  43. tests/layers/jax/attention/test_common_attention.py +103 -0
  44. tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
  45. tests/layers/jax/attention/test_llama4_attention.py +135 -0
  46. tests/layers/jax/moe/__init__.py +13 -0
  47. tests/layers/jax/moe/test_deepseek_moe.py +235 -0
  48. tests/layers/jax/sample/__init__.py +13 -0
  49. tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
  50. tests/layers/jax/sample/test_sampling.py +115 -0
  51. tests/layers/jax/sample/test_sampling_metadata.py +254 -0
  52. tests/layers/jax/test_layers.py +155 -0
  53. tests/layers/jax/test_qwix.py +969 -0
  54. tests/layers/jax/test_rope.py +93 -0
  55. tests/layers/jax/test_sharding.py +159 -0
  56. tests/layers/jax/test_transformer_block.py +152 -0
  57. tests/layers/vllm/__init__.py +13 -0
  58. tests/layers/vllm/test_attention.py +363 -0
  59. tests/layers/vllm/test_awq.py +405 -0
  60. tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
  61. tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
  62. tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
  63. tests/layers/vllm/test_fp8.py +17 -0
  64. tests/layers/vllm/test_mxfp4.py +297 -0
  65. tests/layers/vllm/test_unquantized.py +621 -0
  66. tests/layers/vllm/utils.py +72 -0
  67. tests/lora/__init__.py +13 -0
  68. tests/lora/conftest.py +46 -0
  69. tests/lora/test_bgmv.py +57 -0
  70. tests/lora/test_layers.py +666 -0
  71. tests/lora/test_lora.py +147 -0
  72. tests/lora/test_lora_perf.py +67 -0
  73. tests/lora/utils.py +88 -0
  74. tests/models/__init__.py +13 -0
  75. tests/models/common/__init__.py +13 -0
  76. tests/models/common/test_model_loader.py +455 -0
  77. tests/models/jax/__init__.py +13 -0
  78. tests/models/jax/test_deepseek_v3.py +401 -0
  79. tests/models/jax/test_llama3.py +184 -0
  80. tests/models/jax/test_llama4.py +298 -0
  81. tests/models/jax/test_llama_eagle3.py +197 -0
  82. tests/models/jax/test_llama_guard_4.py +242 -0
  83. tests/models/jax/test_qwen2.py +172 -0
  84. tests/models/jax/test_qwen2_5_vl.py +606 -0
  85. tests/models/jax/test_qwen3.py +169 -0
  86. tests/models/jax/test_weight_loading.py +180 -0
  87. tests/models/jax/utils/__init__.py +13 -0
  88. tests/models/jax/utils/test_multi_modal_utils.py +212 -0
  89. tests/platforms/__init__.py +13 -0
  90. tests/platforms/test_tpu_platform.py +54 -0
  91. tests/runner/__init__.py +13 -0
  92. tests/runner/test_block_table.py +395 -0
  93. tests/runner/test_input_batch.py +226 -0
  94. tests/runner/test_kv_cache.py +220 -0
  95. tests/runner/test_kv_cache_manager.py +498 -0
  96. tests/runner/test_multimodal_manager.py +429 -0
  97. tests/runner/test_persistent_batch_manager.py +84 -0
  98. tests/runner/test_speculative_decoding_manager.py +368 -0
  99. tests/runner/test_structured_decoding_manager.py +220 -0
  100. tests/runner/test_tpu_runner.py +202 -0
  101. tests/runner/test_tpu_runner_dp.py +1033 -0
  102. tests/runner/test_tpu_runner_mesh.py +200 -0
  103. tests/runner/test_utils.py +411 -0
  104. tests/spec_decode/__init__.py +13 -0
  105. tests/spec_decode/test_eagle3.py +311 -0
  106. tests/test_base.py +215 -0
  107. tests/test_envs.py +280 -0
  108. tests/test_tpu_info.py +134 -0
  109. tests/test_utils.py +193 -0
  110. tests/worker/__init__.py +13 -0
  111. tests/worker/tpu_worker_test.py +414 -0
  112. tpu_inference/__init__.py +67 -0
  113. tpu_inference/core/__init__.py +13 -0
  114. tpu_inference/core/core_tpu.py +786 -0
  115. tpu_inference/core/disagg_executor.py +118 -0
  116. tpu_inference/core/disagg_utils.py +49 -0
  117. tpu_inference/core/sched/__init__.py +13 -0
  118. tpu_inference/core/sched/dp_scheduler.py +814 -0
  119. tpu_inference/distributed/__init__.py +13 -0
  120. tpu_inference/distributed/jax_parallel_state.py +81 -0
  121. tpu_inference/distributed/tpu_connector.py +732 -0
  122. tpu_inference/distributed/utils.py +112 -0
  123. tpu_inference/env_override.py +9 -0
  124. tpu_inference/envs.py +191 -0
  125. tpu_inference/executors/__init__.py +13 -0
  126. tpu_inference/executors/ray_distributed_executor.py +399 -0
  127. tpu_inference/experimental/__init__.py +13 -0
  128. tpu_inference/experimental/llama3_jax_stashed.py +272 -0
  129. tpu_inference/kernels/__init__.py +13 -0
  130. tpu_inference/kernels/collectives/__init__.py +13 -0
  131. tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
  132. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
  133. tpu_inference/kernels/collectives/util.py +47 -0
  134. tpu_inference/kernels/flash_attention/__init__.py +13 -0
  135. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  136. tpu_inference/kernels/fused_moe/__init__.py +13 -0
  137. tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
  138. tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
  139. tpu_inference/kernels/megablox/__init__.py +13 -0
  140. tpu_inference/kernels/megablox/common.py +54 -0
  141. tpu_inference/kernels/megablox/gmm.py +646 -0
  142. tpu_inference/kernels/mla/__init__.py +13 -0
  143. tpu_inference/kernels/mla/v1/__init__.py +13 -0
  144. tpu_inference/kernels/mla/v1/kernel.py +1340 -0
  145. tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
  146. tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
  147. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  148. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  149. tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
  150. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
  151. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
  152. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
  153. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  154. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
  155. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
  156. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
  157. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
  158. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
  159. tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
  160. tpu_inference/layers/__init__.py +13 -0
  161. tpu_inference/layers/common/__init__.py +13 -0
  162. tpu_inference/layers/common/attention_interface.py +403 -0
  163. tpu_inference/layers/common/attention_metadata.py +48 -0
  164. tpu_inference/layers/common/binary_search.py +295 -0
  165. tpu_inference/layers/common/quant_methods.py +23 -0
  166. tpu_inference/layers/common/quantization.py +270 -0
  167. tpu_inference/layers/common/sharding.py +600 -0
  168. tpu_inference/layers/jax/__init__.py +13 -0
  169. tpu_inference/layers/jax/attention/__init__.py +13 -0
  170. tpu_inference/layers/jax/attention/attention.py +268 -0
  171. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
  172. tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
  173. tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
  174. tpu_inference/layers/jax/base.py +165 -0
  175. tpu_inference/layers/jax/constants.py +101 -0
  176. tpu_inference/layers/jax/layers.py +315 -0
  177. tpu_inference/layers/jax/misc.py +30 -0
  178. tpu_inference/layers/jax/moe/__init__.py +13 -0
  179. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
  180. tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
  181. tpu_inference/layers/jax/moe/moe.py +249 -0
  182. tpu_inference/layers/jax/pp_utils.py +53 -0
  183. tpu_inference/layers/jax/rope.py +294 -0
  184. tpu_inference/layers/jax/rope_interface.py +228 -0
  185. tpu_inference/layers/jax/sample/__init__.py +13 -0
  186. tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
  187. tpu_inference/layers/jax/sample/sampling.py +110 -0
  188. tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
  189. tpu_inference/layers/jax/transformer_block.py +121 -0
  190. tpu_inference/layers/vllm/__init__.py +13 -0
  191. tpu_inference/layers/vllm/attention.py +221 -0
  192. tpu_inference/layers/vllm/fused_moe.py +502 -0
  193. tpu_inference/layers/vllm/linear_common.py +221 -0
  194. tpu_inference/layers/vllm/quantization/__init__.py +55 -0
  195. tpu_inference/layers/vllm/quantization/awq.py +221 -0
  196. tpu_inference/layers/vllm/quantization/common.py +124 -0
  197. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
  198. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
  199. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
  200. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
  201. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
  202. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
  203. tpu_inference/layers/vllm/quantization/fp8.py +118 -0
  204. tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
  205. tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
  206. tpu_inference/layers/vllm/sharding.py +244 -0
  207. tpu_inference/logger.py +10 -0
  208. tpu_inference/lora/__init__.py +13 -0
  209. tpu_inference/lora/torch_lora_ops.py +98 -0
  210. tpu_inference/lora/torch_punica_tpu.py +310 -0
  211. tpu_inference/models/__init__.py +13 -0
  212. tpu_inference/models/common/__init__.py +13 -0
  213. tpu_inference/models/common/model_loader.py +520 -0
  214. tpu_inference/models/jax/__init__.py +13 -0
  215. tpu_inference/models/jax/deepseek_v3.py +978 -0
  216. tpu_inference/models/jax/gpt_oss.py +508 -0
  217. tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
  218. tpu_inference/models/jax/llama3.py +436 -0
  219. tpu_inference/models/jax/llama4.py +643 -0
  220. tpu_inference/models/jax/llama_eagle3.py +350 -0
  221. tpu_inference/models/jax/llama_guard_4.py +375 -0
  222. tpu_inference/models/jax/qwen2.py +390 -0
  223. tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
  224. tpu_inference/models/jax/qwen3.py +318 -0
  225. tpu_inference/models/jax/utils/__init__.py +13 -0
  226. tpu_inference/models/jax/utils/file_utils.py +110 -0
  227. tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
  228. tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
  229. tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
  230. tpu_inference/models/jax/utils/weight_utils.py +621 -0
  231. tpu_inference/models/vllm/__init__.py +13 -0
  232. tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
  233. tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
  234. tpu_inference/platforms/__init__.py +16 -0
  235. tpu_inference/platforms/tpu_platform.py +258 -0
  236. tpu_inference/runner/__init__.py +13 -0
  237. tpu_inference/runner/block_table.py +122 -0
  238. tpu_inference/runner/compilation_manager.py +890 -0
  239. tpu_inference/runner/input_batch.py +435 -0
  240. tpu_inference/runner/kv_cache.py +166 -0
  241. tpu_inference/runner/kv_cache_manager.py +508 -0
  242. tpu_inference/runner/lora_utils.py +106 -0
  243. tpu_inference/runner/multimodal_manager.py +231 -0
  244. tpu_inference/runner/persistent_batch_manager.py +296 -0
  245. tpu_inference/runner/speculative_decoding_manager.py +262 -0
  246. tpu_inference/runner/structured_decoding_manager.py +101 -0
  247. tpu_inference/runner/tpu_runner.py +1768 -0
  248. tpu_inference/runner/utils.py +426 -0
  249. tpu_inference/spec_decode/__init__.py +13 -0
  250. tpu_inference/spec_decode/jax/__init__.py +13 -0
  251. tpu_inference/spec_decode/jax/eagle3.py +430 -0
  252. tpu_inference/tpu_info.py +92 -0
  253. tpu_inference/utils.py +345 -0
  254. tpu_inference/worker/__init__.py +13 -0
  255. tpu_inference/worker/tpu_worker.py +468 -0
  256. tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
  257. tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
  258. tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
  259. tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
  260. tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
@@ -0,0 +1,375 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import re
16
+ from typing import Any, List, Optional, Tuple
17
+
18
+ import jax
19
+ import jax.numpy as jnp
20
+ import torch
21
+ from flax import nnx
22
+ from flax.typing import PRNGKey
23
+ from jax.sharding import Mesh
24
+ from jax.sharding import PartitionSpec as P
25
+ from vllm.config import VllmConfig
26
+
27
+ from tpu_inference.layers.jax.attention.attention import AttentionMetadata
28
+ from tpu_inference.layers.jax.attention.llama4_attention import Llama4Attention
29
+ from tpu_inference.layers.jax.constants import KVCacheType
30
+ from tpu_inference.layers.jax.layers import DenseFFW, Embedder, LMhead, RMSNorm
31
+ from tpu_inference.layers.jax.misc import shard_put
32
+ from tpu_inference.layers.jax.transformer_block import TransformerBlock
33
+ from tpu_inference.logger import init_logger
34
+ from tpu_inference.models.jax.utils.weight_utils import (
35
+ get_param, model_weights_generator, print_param_info, reshape_params,
36
+ transpose_params)
37
+
38
+ logger = init_logger(__name__)
39
+
40
+
41
+ class LlamaGuard4ForCausalLM(nnx.Module):
42
+
43
+ def __init__(self,
44
+ vllm_config: VllmConfig,
45
+ rng: PRNGKey,
46
+ mesh: Mesh,
47
+ force_random_weights: bool = False):
48
+ logger.warning(
49
+ "🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨\n"
50
+ "Llama Guard 4 (JAX) is WIP: Only the text modality is currently implemented. "
51
+ "Multimodal inputs will fail.\n"
52
+ "🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨")
53
+ assert mesh is not None
54
+
55
+ self.vllm_config = vllm_config
56
+ self.vllm_config.model_config.dtype = torch.bfloat16
57
+ model_config = vllm_config.model_config
58
+ text_config = model_config.hf_config.text_config
59
+
60
+ self.mesh = mesh
61
+ self.is_verbose = getattr(self.vllm_config.additional_config,
62
+ "is_verbose", False)
63
+
64
+ self.use_qk_norm = getattr(text_config, "use_qk_norm", True)
65
+
66
+ vocab_size = model_config.get_vocab_size()
67
+ self.hidden_size = model_config.get_hidden_size()
68
+
69
+ self.dtype: jnp.dtype = jnp.bfloat16
70
+
71
+ self.num_layers: int = getattr(text_config, "num_layers", 48)
72
+ hidden_act: str = getattr(text_config, "hidden_act", "silu")
73
+
74
+ rms_norm_eps = getattr(text_config, "rms_norm_eps", 1e-5)
75
+ self.num_attention_heads = getattr(text_config, "num_attention_heads",
76
+ 40)
77
+ self.num_key_value_heads = getattr(text_config, "num_key_value_heads",
78
+ 8)
79
+ self.head_dim = getattr(text_config, "head_dim", 128)
80
+
81
+ intermediate_size = getattr(text_config, "intermediate_size", 8192)
82
+
83
+ self.rope_theta_text = getattr(text_config, "rope_theta", 500000.0)
84
+ self.rope_scaling = getattr(text_config, "rope_scaling")
85
+
86
+ self.rng = nnx.Rngs(rng)
87
+
88
+ self.embedder = Embedder(
89
+ vocab_size=vocab_size,
90
+ hidden_size=self.hidden_size,
91
+ dtype=self.dtype,
92
+ vd_sharding=(('data', 'model'), None),
93
+ rngs=self.rng,
94
+ random_init=force_random_weights,
95
+ )
96
+
97
+ self.layers = []
98
+
99
+ for i in range(self.num_layers):
100
+ use_attention_rope = True
101
+
102
+ custom_module = DenseFFW(dtype=self.dtype,
103
+ hidden_act=hidden_act,
104
+ hidden_size=self.hidden_size,
105
+ intermediate_size=intermediate_size,
106
+ random_init=force_random_weights,
107
+ rngs=self.rng,
108
+ df_sharding=P(None, 'model'),
109
+ fd_sharding=P('model', None),
110
+ activation_ffw_td=P('data', None))
111
+
112
+ attn = Llama4Attention(
113
+ hidden_size=self.hidden_size,
114
+ dtype=self.dtype,
115
+ num_attention_heads=self.num_attention_heads,
116
+ num_key_value_heads=self.num_key_value_heads,
117
+ head_dim=self.head_dim,
118
+ rope_theta=self.rope_theta_text,
119
+ rope_scaling={
120
+ "scale_factor":
121
+ self.rope_scaling["factor"],
122
+ "low_freq_factor":
123
+ self.rope_scaling["low_freq_factor"],
124
+ "high_freq_factor":
125
+ self.rope_scaling["high_freq_factor"],
126
+ "original_max_position_embeddings":
127
+ self.rope_scaling["original_max_position_embeddings"]
128
+ },
129
+ rngs=self.rng,
130
+ rope_input_ordering="interleaved",
131
+ # TODO (jacobplatin): we should refactor this to pass a dtype (or config) directly
132
+ kv_cache_dtype=vllm_config.cache_config.cache_dtype,
133
+ temperature_tuning=True,
134
+ temperature_tuning_scale=0.1,
135
+ temperature_tuning_floor_scale=8192,
136
+ use_qk_norm=self.use_qk_norm,
137
+ attention_chunk_size=None if use_attention_rope else 8192,
138
+ mesh=self.mesh,
139
+ random_init=force_random_weights,
140
+ activation_attention_td=('data', 'model'),
141
+ activation_q_td=('data', 'model'),
142
+ query_tnh=P('data', 'model', None),
143
+ keyvalue_skh=P('data', 'model', None),
144
+ activation_attention_out_td=('data', 'model'),
145
+ attn_o_tnh=P('data', 'model', None),
146
+ dnh_sharding=(None, 'model', None),
147
+ dkh_sharding=(None, 'model', None),
148
+ nhd_sharding=('model', None, None),
149
+ )
150
+
151
+ pre_attention_norm = RMSNorm(
152
+ dims=self.hidden_size,
153
+ random_init=force_random_weights,
154
+ epsilon=rms_norm_eps,
155
+ rngs=self.rng,
156
+ activation_ffw_td=('data', None),
157
+ with_scale=True,
158
+ dtype=self.dtype,
159
+ )
160
+
161
+ pre_mlp_norm = RMSNorm(
162
+ dims=self.hidden_size,
163
+ activation_ffw_td=('data', None),
164
+ epsilon=rms_norm_eps,
165
+ rngs=self.rng,
166
+ with_scale=True,
167
+ dtype=self.dtype,
168
+ random_init=force_random_weights,
169
+ )
170
+
171
+ block = TransformerBlock(custom_module=custom_module,
172
+ attn=attn,
173
+ pre_attention_norm=pre_attention_norm,
174
+ pre_mlp_norm=pre_mlp_norm,
175
+ use_attention_rope=use_attention_rope)
176
+ self.layers.append(block)
177
+
178
+ self.final_norm = RMSNorm(
179
+ dims=self.hidden_size,
180
+ activation_ffw_td=P(),
181
+ epsilon=rms_norm_eps,
182
+ rngs=self.rng,
183
+ with_scale=True,
184
+ dtype=self.dtype,
185
+ random_init=force_random_weights,
186
+ )
187
+
188
+ self.lm_head = LMhead(vocab_size=vocab_size,
189
+ hidden_size=self.hidden_size,
190
+ dtype=self.dtype,
191
+ rngs=self.rng,
192
+ vd_sharding=(('data', 'model'), None),
193
+ dv_sharding=(None, ('data', 'model')),
194
+ random_init=force_random_weights)
195
+ if self.is_verbose:
196
+ self._print_model_architecture()
197
+
198
+ def _print_model_architecture(self):
199
+
200
+ logger.info("### Embedding ###")
201
+ nnx.display(self.embedder)
202
+
203
+ logger.info("\n### Layers ###")
204
+ for i, layer in enumerate(self.layers):
205
+ logger.info(f"\n--- Layer {i} ---")
206
+ nnx.display(layer)
207
+
208
+ logger.info("\n### LM Head ###")
209
+ nnx.display(self.lm_head)
210
+
211
+ def load_weights(self, rng: jax.Array, cache_dir: Optional[str] = None):
212
+ self.rng = nnx.Rngs(rng)
213
+
214
+ weight_loader = LlamaGuard4WeightLoader(
215
+ vllm_config=self.vllm_config,
216
+ hidden_size=self.hidden_size,
217
+ attn_heads=self.num_attention_heads,
218
+ num_key_value_heads=self.num_key_value_heads,
219
+ attn_head_dim=self.head_dim)
220
+ weight_loader.load_weights(self)
221
+
222
+ def __call__(
223
+ self,
224
+ kv_caches: List[jax.Array],
225
+ input_ids: jax.Array,
226
+ attention_metadata: AttentionMetadata,
227
+ inputs_embeds: Optional[jax.Array] = None,
228
+ layer_metadata_tuple: Optional[Tuple] = None,
229
+ lora_metadata: Optional[Any] = None,
230
+ *args,
231
+ ) -> Tuple[List[KVCacheType], jax.Array]:
232
+ is_prefill = False
233
+
234
+ if inputs_embeds is not None:
235
+ x_TD = inputs_embeds
236
+ elif input_ids is not None:
237
+ x_TD = self.embedder.encode(input_ids)
238
+ else:
239
+ raise ValueError(
240
+ "Cannot run forward pass: Both input_ids and inputs_embeds are None."
241
+ )
242
+
243
+ for (i, block) in enumerate(self.layers):
244
+ kv_cache = kv_caches[i]
245
+ new_kv_cache, x_TD = block(x_TD, is_prefill, kv_cache,
246
+ attention_metadata)
247
+ jax.block_until_ready(x_TD)
248
+ kv_caches[i] = new_kv_cache
249
+
250
+ final_activation_TD = self.final_norm(x_TD)
251
+
252
+ return kv_caches, final_activation_TD, []
253
+
254
+ def compute_logits(self, hidden_states: jax.Array) -> jax.Array:
255
+ logits_TV = jnp.dot(hidden_states,
256
+ self.lm_head.input_embedding_table_DV.value)
257
+ return logits_TV
258
+
259
+ def get_input_embeddings(
260
+ self,
261
+ input_ids: jax.Array,
262
+ multimodal_embeddings: Optional[List[jax.Array]] = None
263
+ ) -> jax.Array:
264
+ """
265
+ Computes the embeddings for text input (used for input to fusion).
266
+ """
267
+ return self.embedder.encode(input_ids)
268
+
269
+
270
+ class LlamaGuard4WeightLoader:
271
+
272
+ def __init__(self, vllm_config: VllmConfig, hidden_size, attn_heads,
273
+ num_key_value_heads, attn_head_dim):
274
+ self.names_and_weights_generator = model_weights_generator(
275
+ model_name_or_path=vllm_config.model_config.model,
276
+ framework="flax",
277
+ filter_regex="language_model",
278
+ download_dir=vllm_config.load_config.download_dir)
279
+ self.is_verbose = getattr(vllm_config.additional_config, "is_verbose",
280
+ False)
281
+ self._transpose_map = {
282
+ "q_proj": (2, 0, 1),
283
+ "k_proj": (2, 0, 1),
284
+ "v_proj": (2, 0, 1),
285
+ "o_proj": (1, 2, 0),
286
+ "lm_head": (1, 0),
287
+ "feed_forward.down_proj": (1, 0),
288
+ "feed_forward.gate_proj": (1, 0),
289
+ "feed_forward.up_proj": (1, 0),
290
+ "mlp.down_proj": (1, 0),
291
+ "mlp.gate_proj": (1, 0),
292
+ "mlp.up_proj": (1, 0),
293
+ }
294
+ self._weight_shape_map = {
295
+ "q_proj": (attn_heads, attn_head_dim, hidden_size),
296
+ "k_proj": (num_key_value_heads, attn_head_dim, hidden_size),
297
+ "v_proj": (num_key_value_heads, attn_head_dim, hidden_size),
298
+ "o_proj": (hidden_size, attn_heads, attn_head_dim),
299
+ }
300
+
301
+ self._loaded_to_standardized_keys = {
302
+ "language_model.model.embed_tokens.weight":
303
+ "embedder.input_embedding_table_VD",
304
+ "language_model.lm_head.weight":
305
+ "lm_head.input_embedding_table_DV",
306
+ "language_model.model.norm.weight":
307
+ "final_norm.scale",
308
+ "language_model.model.layers.*.input_layernorm.weight":
309
+ "layers.*.pre_attention_norm.scale",
310
+ "language_model.model.layers.*.post_attention_layernorm.weight":
311
+ "layers.*.pre_mlp_norm.scale",
312
+ "language_model.model.layers.*.self_attn.q_proj.weight":
313
+ "layers.*.attn.kernel_q_proj_DNH",
314
+ "language_model.model.layers.*.self_attn.k_proj.weight":
315
+ "layers.*.attn.kernel_k_proj_DKH",
316
+ "language_model.model.layers.*.self_attn.v_proj.weight":
317
+ "layers.*.attn.kernel_v_proj_DKH",
318
+ "language_model.model.layers.*.self_attn.o_proj.weight":
319
+ "layers.*.attn.kernel_o_proj_NHD",
320
+ "language_model.model.layers.*.feed_forward.gate_proj.weight":
321
+ "layers.*.custom_module.kernel_gating_DF",
322
+ "language_model.model.layers.*.feed_forward.up_proj.weight":
323
+ "layers.*.custom_module.kernel_up_proj_DF",
324
+ "language_model.model.layers.*.feed_forward.down_proj.weight":
325
+ "layers.*.custom_module.kernel_down_proj_FD",
326
+ }
327
+
328
+ def map_loaded_to_standardized_name(self, loaded_key: str) -> str:
329
+ if "layer" in loaded_key:
330
+ layer_num = re.search(r"layers\.(\d+)", loaded_key).group(1)
331
+ layer_key = re.sub(r"layers\.\d+", "layers.*", loaded_key)
332
+ mapped_key = self._loaded_to_standardized_keys.get(
333
+ layer_key, loaded_key)
334
+ mapped_key = re.sub(r"layers\.\*", f"layers.{layer_num}",
335
+ mapped_key)
336
+ else:
337
+ mapped_key = self._loaded_to_standardized_keys.get(
338
+ loaded_key, loaded_key)
339
+ return mapped_key
340
+
341
+ def load_weights(self, model_for_loading: nnx.Module):
342
+ model_params = nnx.state(model_for_loading)
343
+ with jax.default_device(jax.devices("cpu")[0]):
344
+ for loaded_name, loaded_weight in self.names_and_weights_generator:
345
+ if loaded_name.endswith(".bias"):
346
+ continue
347
+ if "vision_model" in loaded_name or "multi_modal_projector" in loaded_name:
348
+ continue
349
+
350
+ mapped_name = self.map_loaded_to_standardized_name(loaded_name)
351
+ model_weight = get_param(model_params, mapped_name)
352
+
353
+ if not loaded_name.endswith(".bias"):
354
+ # For other layers, continue to use the transpose_params helper.
355
+ loaded_weight = reshape_params(loaded_name, loaded_weight,
356
+ self._weight_shape_map)
357
+ loaded_weight = transpose_params(loaded_name,
358
+ loaded_weight,
359
+ self._transpose_map)
360
+ if model_weight.value.shape != loaded_weight.shape:
361
+ raise ValueError(
362
+ f"Loaded shape for {loaded_name}: {loaded_weight.shape} "
363
+ f"does not match model shape for {mapped_name}: {model_weight.value.shape}!"
364
+ )
365
+ logger.debug(
366
+ f"Transformed parameter {loaded_name} to {mapped_name}: {loaded_weight.shape} --> {model_weight.value.shape}"
367
+ )
368
+
369
+ model_weight.value = shard_put(loaded_weight,
370
+ model_weight.sharding,
371
+ mesh=model_for_loading.mesh)
372
+ if self.is_verbose:
373
+ print_param_info(model_weight, loaded_name)
374
+
375
+ nnx.update(model_for_loading, model_params)