tpu-inference 0.12.0.dev20251222__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. tests/__init__.py +13 -0
  2. tests/core/__init__.py +13 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +67 -0
  6. tests/core/test_dp_scheduler.py +724 -0
  7. tests/core/test_init.py +63 -0
  8. tests/distributed/__init__.py +13 -0
  9. tests/distributed/test_distributed_utils.py +120 -0
  10. tests/distributed/test_tpu_connector.py +478 -0
  11. tests/e2e/__init__.py +13 -0
  12. tests/e2e/test_async_scheduler.py +211 -0
  13. tests/e2e/test_data_parallel.py +393 -0
  14. tests/e2e/test_local_disagg.py +257 -0
  15. tests/e2e/test_model_loader.py +268 -0
  16. tests/e2e/test_multi_modal_inference.py +111 -0
  17. tests/e2e/test_pipeline_parallel.py +265 -0
  18. tests/e2e/test_runai_model_streamer_loader.py +104 -0
  19. tests/e2e/test_sampling_params.py +269 -0
  20. tests/e2e/test_speculative_decoding.py +291 -0
  21. tests/e2e/test_structured_decoding.py +46 -0
  22. tests/executors/__init__.py +13 -0
  23. tests/executors/test_ray_distributed_executor.py +199 -0
  24. tests/experimental/__init__.py +13 -0
  25. tests/experimental/test_llama3_jax_stashed.py +208 -0
  26. tests/kernels/__init__.py +13 -0
  27. tests/kernels/collectives/__init__.py +13 -0
  28. tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
  29. tests/kernels/fused_moe_v1_test.py +388 -0
  30. tests/kernels/gmm_test.py +205 -0
  31. tests/kernels/mla_v1_test.py +498 -0
  32. tests/kernels/quantized_matmul_kernel_test.py +159 -0
  33. tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
  34. tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
  35. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
  36. tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
  37. tests/layers/__init__.py +13 -0
  38. tests/layers/common/__init__.py +13 -0
  39. tests/layers/common/test_attention_interface.py +156 -0
  40. tests/layers/common/test_quantization.py +149 -0
  41. tests/layers/jax/__init__.py +13 -0
  42. tests/layers/jax/attention/__init__.py +13 -0
  43. tests/layers/jax/attention/test_common_attention.py +103 -0
  44. tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
  45. tests/layers/jax/attention/test_llama4_attention.py +135 -0
  46. tests/layers/jax/moe/__init__.py +13 -0
  47. tests/layers/jax/moe/test_deepseek_moe.py +235 -0
  48. tests/layers/jax/sample/__init__.py +13 -0
  49. tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
  50. tests/layers/jax/sample/test_sampling.py +115 -0
  51. tests/layers/jax/sample/test_sampling_metadata.py +254 -0
  52. tests/layers/jax/test_layers.py +155 -0
  53. tests/layers/jax/test_qwix.py +969 -0
  54. tests/layers/jax/test_rope.py +93 -0
  55. tests/layers/jax/test_sharding.py +159 -0
  56. tests/layers/jax/test_transformer_block.py +152 -0
  57. tests/layers/vllm/__init__.py +13 -0
  58. tests/layers/vllm/test_attention.py +363 -0
  59. tests/layers/vllm/test_awq.py +405 -0
  60. tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
  61. tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
  62. tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
  63. tests/layers/vllm/test_fp8.py +17 -0
  64. tests/layers/vllm/test_mxfp4.py +297 -0
  65. tests/layers/vllm/test_unquantized.py +621 -0
  66. tests/layers/vllm/utils.py +72 -0
  67. tests/lora/__init__.py +13 -0
  68. tests/lora/conftest.py +46 -0
  69. tests/lora/test_bgmv.py +57 -0
  70. tests/lora/test_layers.py +666 -0
  71. tests/lora/test_lora.py +147 -0
  72. tests/lora/test_lora_perf.py +67 -0
  73. tests/lora/utils.py +88 -0
  74. tests/models/__init__.py +13 -0
  75. tests/models/common/__init__.py +13 -0
  76. tests/models/common/test_model_loader.py +455 -0
  77. tests/models/jax/__init__.py +13 -0
  78. tests/models/jax/test_deepseek_v3.py +401 -0
  79. tests/models/jax/test_llama3.py +184 -0
  80. tests/models/jax/test_llama4.py +298 -0
  81. tests/models/jax/test_llama_eagle3.py +197 -0
  82. tests/models/jax/test_llama_guard_4.py +242 -0
  83. tests/models/jax/test_qwen2.py +172 -0
  84. tests/models/jax/test_qwen2_5_vl.py +606 -0
  85. tests/models/jax/test_qwen3.py +169 -0
  86. tests/models/jax/test_weight_loading.py +180 -0
  87. tests/models/jax/utils/__init__.py +13 -0
  88. tests/models/jax/utils/test_multi_modal_utils.py +212 -0
  89. tests/platforms/__init__.py +13 -0
  90. tests/platforms/test_tpu_platform.py +54 -0
  91. tests/runner/__init__.py +13 -0
  92. tests/runner/test_block_table.py +395 -0
  93. tests/runner/test_input_batch.py +226 -0
  94. tests/runner/test_kv_cache.py +220 -0
  95. tests/runner/test_kv_cache_manager.py +498 -0
  96. tests/runner/test_multimodal_manager.py +429 -0
  97. tests/runner/test_persistent_batch_manager.py +84 -0
  98. tests/runner/test_speculative_decoding_manager.py +368 -0
  99. tests/runner/test_structured_decoding_manager.py +220 -0
  100. tests/runner/test_tpu_runner.py +202 -0
  101. tests/runner/test_tpu_runner_dp.py +1033 -0
  102. tests/runner/test_tpu_runner_mesh.py +200 -0
  103. tests/runner/test_utils.py +411 -0
  104. tests/spec_decode/__init__.py +13 -0
  105. tests/spec_decode/test_eagle3.py +311 -0
  106. tests/test_base.py +215 -0
  107. tests/test_envs.py +280 -0
  108. tests/test_tpu_info.py +134 -0
  109. tests/test_utils.py +193 -0
  110. tests/worker/__init__.py +13 -0
  111. tests/worker/tpu_worker_test.py +414 -0
  112. tpu_inference/__init__.py +67 -0
  113. tpu_inference/core/__init__.py +13 -0
  114. tpu_inference/core/core_tpu.py +786 -0
  115. tpu_inference/core/disagg_executor.py +118 -0
  116. tpu_inference/core/disagg_utils.py +49 -0
  117. tpu_inference/core/sched/__init__.py +13 -0
  118. tpu_inference/core/sched/dp_scheduler.py +814 -0
  119. tpu_inference/distributed/__init__.py +13 -0
  120. tpu_inference/distributed/jax_parallel_state.py +81 -0
  121. tpu_inference/distributed/tpu_connector.py +732 -0
  122. tpu_inference/distributed/utils.py +112 -0
  123. tpu_inference/env_override.py +9 -0
  124. tpu_inference/envs.py +191 -0
  125. tpu_inference/executors/__init__.py +13 -0
  126. tpu_inference/executors/ray_distributed_executor.py +399 -0
  127. tpu_inference/experimental/__init__.py +13 -0
  128. tpu_inference/experimental/llama3_jax_stashed.py +272 -0
  129. tpu_inference/kernels/__init__.py +13 -0
  130. tpu_inference/kernels/collectives/__init__.py +13 -0
  131. tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
  132. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
  133. tpu_inference/kernels/collectives/util.py +47 -0
  134. tpu_inference/kernels/flash_attention/__init__.py +13 -0
  135. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  136. tpu_inference/kernels/fused_moe/__init__.py +13 -0
  137. tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
  138. tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
  139. tpu_inference/kernels/megablox/__init__.py +13 -0
  140. tpu_inference/kernels/megablox/common.py +54 -0
  141. tpu_inference/kernels/megablox/gmm.py +646 -0
  142. tpu_inference/kernels/mla/__init__.py +13 -0
  143. tpu_inference/kernels/mla/v1/__init__.py +13 -0
  144. tpu_inference/kernels/mla/v1/kernel.py +1340 -0
  145. tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
  146. tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
  147. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  148. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  149. tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
  150. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
  151. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
  152. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
  153. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  154. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
  155. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
  156. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
  157. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
  158. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
  159. tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
  160. tpu_inference/layers/__init__.py +13 -0
  161. tpu_inference/layers/common/__init__.py +13 -0
  162. tpu_inference/layers/common/attention_interface.py +403 -0
  163. tpu_inference/layers/common/attention_metadata.py +48 -0
  164. tpu_inference/layers/common/binary_search.py +295 -0
  165. tpu_inference/layers/common/quant_methods.py +23 -0
  166. tpu_inference/layers/common/quantization.py +270 -0
  167. tpu_inference/layers/common/sharding.py +600 -0
  168. tpu_inference/layers/jax/__init__.py +13 -0
  169. tpu_inference/layers/jax/attention/__init__.py +13 -0
  170. tpu_inference/layers/jax/attention/attention.py +268 -0
  171. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
  172. tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
  173. tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
  174. tpu_inference/layers/jax/base.py +165 -0
  175. tpu_inference/layers/jax/constants.py +101 -0
  176. tpu_inference/layers/jax/layers.py +315 -0
  177. tpu_inference/layers/jax/misc.py +30 -0
  178. tpu_inference/layers/jax/moe/__init__.py +13 -0
  179. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
  180. tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
  181. tpu_inference/layers/jax/moe/moe.py +249 -0
  182. tpu_inference/layers/jax/pp_utils.py +53 -0
  183. tpu_inference/layers/jax/rope.py +294 -0
  184. tpu_inference/layers/jax/rope_interface.py +228 -0
  185. tpu_inference/layers/jax/sample/__init__.py +13 -0
  186. tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
  187. tpu_inference/layers/jax/sample/sampling.py +110 -0
  188. tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
  189. tpu_inference/layers/jax/transformer_block.py +121 -0
  190. tpu_inference/layers/vllm/__init__.py +13 -0
  191. tpu_inference/layers/vllm/attention.py +221 -0
  192. tpu_inference/layers/vllm/fused_moe.py +502 -0
  193. tpu_inference/layers/vllm/linear_common.py +221 -0
  194. tpu_inference/layers/vllm/quantization/__init__.py +55 -0
  195. tpu_inference/layers/vllm/quantization/awq.py +221 -0
  196. tpu_inference/layers/vllm/quantization/common.py +124 -0
  197. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
  198. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
  199. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
  200. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
  201. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
  202. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
  203. tpu_inference/layers/vllm/quantization/fp8.py +118 -0
  204. tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
  205. tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
  206. tpu_inference/layers/vllm/sharding.py +244 -0
  207. tpu_inference/logger.py +10 -0
  208. tpu_inference/lora/__init__.py +13 -0
  209. tpu_inference/lora/torch_lora_ops.py +98 -0
  210. tpu_inference/lora/torch_punica_tpu.py +310 -0
  211. tpu_inference/models/__init__.py +13 -0
  212. tpu_inference/models/common/__init__.py +13 -0
  213. tpu_inference/models/common/model_loader.py +520 -0
  214. tpu_inference/models/jax/__init__.py +13 -0
  215. tpu_inference/models/jax/deepseek_v3.py +978 -0
  216. tpu_inference/models/jax/gpt_oss.py +508 -0
  217. tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
  218. tpu_inference/models/jax/llama3.py +436 -0
  219. tpu_inference/models/jax/llama4.py +643 -0
  220. tpu_inference/models/jax/llama_eagle3.py +350 -0
  221. tpu_inference/models/jax/llama_guard_4.py +375 -0
  222. tpu_inference/models/jax/qwen2.py +390 -0
  223. tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
  224. tpu_inference/models/jax/qwen3.py +318 -0
  225. tpu_inference/models/jax/utils/__init__.py +13 -0
  226. tpu_inference/models/jax/utils/file_utils.py +110 -0
  227. tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
  228. tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
  229. tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
  230. tpu_inference/models/jax/utils/weight_utils.py +621 -0
  231. tpu_inference/models/vllm/__init__.py +13 -0
  232. tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
  233. tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
  234. tpu_inference/platforms/__init__.py +16 -0
  235. tpu_inference/platforms/tpu_platform.py +258 -0
  236. tpu_inference/runner/__init__.py +13 -0
  237. tpu_inference/runner/block_table.py +122 -0
  238. tpu_inference/runner/compilation_manager.py +890 -0
  239. tpu_inference/runner/input_batch.py +435 -0
  240. tpu_inference/runner/kv_cache.py +166 -0
  241. tpu_inference/runner/kv_cache_manager.py +508 -0
  242. tpu_inference/runner/lora_utils.py +106 -0
  243. tpu_inference/runner/multimodal_manager.py +231 -0
  244. tpu_inference/runner/persistent_batch_manager.py +296 -0
  245. tpu_inference/runner/speculative_decoding_manager.py +262 -0
  246. tpu_inference/runner/structured_decoding_manager.py +101 -0
  247. tpu_inference/runner/tpu_runner.py +1768 -0
  248. tpu_inference/runner/utils.py +426 -0
  249. tpu_inference/spec_decode/__init__.py +13 -0
  250. tpu_inference/spec_decode/jax/__init__.py +13 -0
  251. tpu_inference/spec_decode/jax/eagle3.py +430 -0
  252. tpu_inference/tpu_info.py +92 -0
  253. tpu_inference/utils.py +345 -0
  254. tpu_inference/worker/__init__.py +13 -0
  255. tpu_inference/worker/tpu_worker.py +468 -0
  256. tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
  257. tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
  258. tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
  259. tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
  260. tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
@@ -0,0 +1,1586 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ A variant of TPU-Friendly Ragged Paged Attention kernel optimized for
16
+ head_dim = 64.
17
+ """
18
+
19
+ import functools
20
+
21
+ import jax
22
+ import jax.numpy as jnp
23
+ from jax import lax
24
+ from jax.experimental import pallas as pl
25
+ from jax.experimental.pallas import tpu as pltpu
26
+
27
+ from tpu_inference.kernels.ragged_paged_attention.v3.tuned_block_sizes_hd64 import \
28
+ get_tuned_block_sizes
29
+ from tpu_inference.kernels.ragged_paged_attention.v3.util import (
30
+ align_to, cdiv, get_dtype_packing)
31
+
32
+ DEFAULT_MASK_VALUE = -0.7 * float(jnp.finfo(jnp.dtype("float32")).max)
33
+
34
+ DEFAULT_VMEM_LIMIT_BYTES = 100 * 1024 * 1024
35
+
36
+
37
+ # TODO(chengjiyao): refactor this hd64 variant and the original kernel to make
38
+ # sure most of the code is shared.
39
+ def ref_ragged_paged_attention_hd64(
40
+ queries: jax.
41
+ Array, # [max_num_tokens, actual_num_q_heads, actual_head_dim]
42
+ keys: jax.Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim]
43
+ values: jax.
44
+ Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim]
45
+ kv_cache: jax.
46
+ Array, # [total_num_pages, page_size, num_kv_heads, kv_packing, actual_head_dim_x2]
47
+ kv_lens: jax.Array, # i32[max_num_seqs]
48
+ page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
49
+ cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
50
+ distribution: jax.Array, # i32[3]
51
+ attention_sink: jax.Array | None = None, # f32[actual_num_q_heads]
52
+ *,
53
+ sm_scale: float = 1.0,
54
+ sliding_window: int | None = None,
55
+ soft_cap: float | None = None,
56
+ mask_value: float | None = DEFAULT_MASK_VALUE,
57
+ q_scale: float | None = None,
58
+ k_scale: float | None = None,
59
+ v_scale: float | None = None,
60
+ ):
61
+ if mask_value is None:
62
+ mask_value = DEFAULT_MASK_VALUE
63
+ dynamic_validate_inputs(
64
+ queries,
65
+ keys,
66
+ values,
67
+ kv_cache,
68
+ kv_lens,
69
+ page_indices,
70
+ cu_q_lens,
71
+ distribution,
72
+ attention_sink,
73
+ sm_scale=sm_scale,
74
+ sliding_window=sliding_window,
75
+ soft_cap=soft_cap,
76
+ mask_value=mask_value,
77
+ q_scale=q_scale,
78
+ k_scale=k_scale,
79
+ v_scale=v_scale,
80
+ )
81
+ actual_head_dim = queries.shape[2]
82
+ actual_num_q_heads = queries.shape[1]
83
+ actual_num_kv_heads = keys.shape[1]
84
+ assert actual_head_dim == 64
85
+ (
86
+ _,
87
+ page_size,
88
+ _,
89
+ kv_packing,
90
+ actual_head_dim_x2,
91
+ ) = kv_cache.shape
92
+
93
+ assert actual_num_q_heads % actual_num_kv_heads == 0
94
+ assert actual_head_dim_x2 == 128
95
+ assert get_dtype_packing(kv_cache.dtype) == kv_packing
96
+ actual_num_q_heads_per_kv_head = actual_num_q_heads // actual_num_kv_heads
97
+ padded_actual_num_kv_heads = align_to(actual_num_kv_heads, kv_packing)
98
+ max_num_seqs = kv_lens.shape[0]
99
+ num_page_indices = page_indices.shape[0]
100
+ assert num_page_indices % max_num_seqs == 0
101
+ pages_per_seq = num_page_indices // max_num_seqs
102
+
103
+ # prepare kv and queries
104
+ merged_kv = merge_kv(keys, values)
105
+ queries = jnp.pad(queries, ((0, 0), (0, 0), (0, 64)), constant_values=0.0)
106
+ outputs = []
107
+
108
+ for i in range(distribution[-1]):
109
+ q_start = cu_q_lens[i]
110
+ q_end = cu_q_lens[i + 1]
111
+ q_len = q_end - q_start
112
+
113
+ kv_len = kv_lens[i]
114
+ indices_start = i * pages_per_seq
115
+ indices_end = indices_start + cdiv(kv_len, page_size)
116
+ indices = page_indices[indices_start:indices_end]
117
+ q = queries[q_start:q_end, :, :]
118
+
119
+ # Update the kv cache.
120
+ assert kv_len - q_len >= 0
121
+ gathered_kv = kv_cache[indices]
122
+ gathered_shape = gathered_kv.shape
123
+ gathered_kv = gathered_kv.reshape(-1, *gathered_shape[-3:])
124
+ gathered_kv = gathered_kv.at[kv_len - q_len:kv_len].set(
125
+ merged_kv[q_start:q_end])
126
+ kv_cache = kv_cache.at[indices].set(
127
+ gathered_kv.reshape(gathered_shape))
128
+
129
+ kv = gathered_kv.reshape(
130
+ -1, padded_actual_num_kv_heads,
131
+ actual_head_dim_x2)[:, :actual_num_kv_heads, :]
132
+ kv = kv[:kv_len, :, :]
133
+ kv = jnp.repeat(kv, actual_num_q_heads_per_kv_head, axis=1)
134
+ if q_scale is not None:
135
+ q = q / q_scale
136
+ if jnp.issubdtype(kv.dtype, jnp.floating):
137
+ dtype_info = jnp.finfo(kv.dtype)
138
+ minval = float(dtype_info.min)
139
+ maxval = float(dtype_info.max)
140
+ q = jnp.clip(q, min=minval, max=maxval)
141
+ q = q.astype(kv.dtype)
142
+ attn = jnp.einsum("qhd,khd->hqk",
143
+ q,
144
+ kv,
145
+ preferred_element_type=jnp.float32)
146
+ attn *= sm_scale
147
+ if k_scale is not None:
148
+ attn *= k_scale
149
+ if q_scale is not None:
150
+ attn *= q_scale
151
+
152
+ q_span = (kv_len - q_len) + jax.lax.broadcasted_iota(
153
+ jnp.int32, attn.shape, 1)
154
+ kv_span = jax.lax.broadcasted_iota(jnp.int32, attn.shape, 2)
155
+ mask = q_span < kv_span
156
+ if sliding_window is not None:
157
+ mask = jnp.logical_or(mask, q_span - sliding_window >= kv_span)
158
+ if soft_cap is not None:
159
+ attn = soft_cap * jnp.tanh(attn / soft_cap)
160
+ attn = jnp.where(mask, mask_value, attn)
161
+
162
+ if attention_sink is not None:
163
+ reshaped_attention_sink = attention_sink.reshape(
164
+ actual_num_q_heads, 1, 1)
165
+ reshaped_attention_sink = jnp.repeat(reshaped_attention_sink,
166
+ q_len,
167
+ axis=1)
168
+ attn = jnp.concat([reshaped_attention_sink, attn], axis=2)
169
+ attn = jax.nn.softmax(attn, axis=-1).astype(kv.dtype)
170
+ attn = attn[..., 1:]
171
+ else:
172
+ attn = jax.nn.softmax(attn, axis=-1).astype(kv.dtype)
173
+
174
+ out = jnp.einsum("hqk,khd->qhd", attn, kv).astype(queries.dtype)
175
+ if v_scale is not None:
176
+ out *= v_scale
177
+
178
+ outputs.append(out)
179
+
180
+ result = jnp.concatenate(outputs, axis=0)
181
+ result = result[:, :, actual_head_dim:]
182
+ return result, kv_cache
183
+
184
+
185
+ def get_smem_estimate_bytes(max_num_seqs, pages_per_seq):
186
+ total_bits = (
187
+ # kv_lens_ref: i32[max_num_seqs]
188
+ align_to(max_num_seqs, 128) * 32 +
189
+ # page_indices_ref: i32[max_num_seqs * pages_per_seq]
190
+ align_to(max_num_seqs * pages_per_seq, 128) * 32 +
191
+ # cu_q_lens_ref: i32[max_num_seqs + 1]
192
+ align_to(max_num_seqs + 1, 128) * 32 +
193
+ # distribution_ref: i32[3]
194
+ 128 * 32 +
195
+ # sem_ids_ref: i32[3]
196
+ 128 * 32 +
197
+ # bo_ids_ref: i32[4]
198
+ 128 * 32 +
199
+ # bkv_update_ids_ref: i32[6]
200
+ 128 * 32)
201
+ return cdiv(total_bits, 8)
202
+
203
+
204
+ def get_vmem_estimate_bytes(
205
+ actual_num_kv_heads,
206
+ actual_num_q_heads_per_kv_head,
207
+ actual_head_dim,
208
+ bq_sz,
209
+ bkv_sz,
210
+ q_dtype,
211
+ kv_dtype,
212
+ ):
213
+ assert actual_head_dim == 64
214
+ q_packing = get_dtype_packing(q_dtype)
215
+ kv_packing = get_dtype_packing(kv_dtype)
216
+ num_q_heads_per_kv_head = align_to(actual_num_q_heads_per_kv_head,
217
+ q_packing)
218
+ num_kv_heads = align_to(actual_num_kv_heads, kv_packing)
219
+ head_dim = actual_head_dim * 2
220
+
221
+ total_bits = (
222
+ # bkv_x2_ref
223
+ (2 * bkv_sz * num_kv_heads * head_dim) * (32 // kv_packing) +
224
+ # bq_x2_ref + bo_x2_ref
225
+ 2 * (2 * actual_num_kv_heads * bq_sz * num_q_heads_per_kv_head *
226
+ head_dim) * (32 // q_packing) +
227
+ # l_ref + m_ref
228
+ 2 *
229
+ (actual_num_kv_heads * bq_sz * num_q_heads_per_kv_head * 128) * 32 +
230
+ # acc_ref
231
+ (actual_num_kv_heads * bq_sz * num_q_heads_per_kv_head * head_dim) *
232
+ 32)
233
+ return cdiv(total_bits, 8)
234
+
235
+
236
+ def get_kv_cache_shape(
237
+ total_num_pages,
238
+ page_size,
239
+ actual_num_kv_heads,
240
+ actual_head_dim,
241
+ kv_dtype,
242
+ ):
243
+ assert actual_head_dim == 64
244
+ kv_packing = get_dtype_packing(kv_dtype)
245
+ return (
246
+ total_num_pages,
247
+ page_size,
248
+ align_to(actual_num_kv_heads, kv_packing) // kv_packing,
249
+ kv_packing,
250
+ 128,
251
+ )
252
+
253
+
254
+ def _ragged_paged_attention_kernel(
255
+ # Prefetch
256
+ kv_lens_ref, # [max_num_seqs]
257
+ page_indices_ref, # [max_num_seqs * pages_per_seq]
258
+ cu_q_lens_ref, # [max_num_seqs + 1]
259
+ # TODO(jevinjiang): merge these into one so we can save SMEM.
260
+ distribution_ref, # [3] (decode_end, prefill_end, mixed_end)
261
+ sem_ids_ref, # [3] (bq_sem_idx, bkv_sem_idx, bo_sem_idx)
262
+ bo_ids_ref, # [4] (bo_sem_0_seq_idx, bo_sem_1_seq_idx, bo_sem_0_bo_idx, bo_sem_1_bo_idx)
263
+ bkv_update_ids_ref, # [6] (bkv_sem_0_seq_idx, bkv_sem_1_seq_idx, bkv_sem_0_offset, bkv_sem_1_offset, bkv_sem_0_sz, bkv_sem_1_sz)
264
+ # Input
265
+ q_hbm_ref, # [actual_num_kv_heads, max_num_tokens, num_q_heads_per_kv_head // q_packing, q_packing, head_dim]
266
+ kv_hbm_ref, # [max_num_tokens, num_kv_heads // kv_packing, kv_packing, actual_head_dim_x2]
267
+ kv_cache_hbm_ref, # [total_num_pages, page_size, num_kv_heads // kv_packing, kv_packing, actual_head_dim_x2]
268
+ attention_sink_ref, # [actual_num_kv_heads, num_q_heads_per_kv_head, 128]
269
+ # Output
270
+ o_hbm_ref, # [actual_num_kv_heads, max_num_tokens, num_q_heads_per_kv_head // q_packing, q_packing, actual_head_dim_x2]
271
+ updated_kv_cache_hbm_ref, # [total_num_pages, page_size, num_kv_heads // kv_packing, kv_packing, actual_head_dim_x2]
272
+ # Scratch
273
+ bkv_x2_ref, # [2, bkv_sz, num_kv_heads // kv_packing, kv_packing, actual_head_dim_x2]
274
+ bq_x2_ref, # [2, actual_num_kv_heads, bq_sz, num_q_heads_per_kv_head // q_packing, q_packing, actual_head_dim_x2]
275
+ bo_x2_ref, # [2, actual_num_kv_heads, bq_sz, num_q_heads_per_kv_head // q_packing, q_packing, actual_head_dim_x2]
276
+ sems, # [4, 2]
277
+ l_ref, # [actual_num_kv_heads, bq_sz * num_q_heads_per_kv_head, 128],
278
+ m_ref, # [actual_num_kv_heads, bq_sz * num_q_heads_per_kv_head, 128],
279
+ acc_ref, # [actual_num_kv_heads, bq_sz * num_q_heads_per_kv_head, actual_head_dim_x2],
280
+ *,
281
+ sm_scale: float,
282
+ sliding_window: int | None = None,
283
+ soft_cap: float | None = None,
284
+ mask_value: float = DEFAULT_MASK_VALUE,
285
+ q_scale: float | None = None,
286
+ k_scale: float | None = None,
287
+ v_scale: float | None = None,
288
+ chunk_prefill_size: int | None = None,
289
+ bkv_p,
290
+ bq_sz,
291
+ debug_mode: bool = False,
292
+ ):
293
+ assert q_hbm_ref.shape == o_hbm_ref.shape
294
+ assert q_hbm_ref.shape[-1] == kv_cache_hbm_ref.shape[-1]
295
+ (
296
+ actual_num_kv_heads,
297
+ max_num_tokens,
298
+ num_q_heads_per_kv_head_per_packing,
299
+ q_packing,
300
+ actual_head_dim_x2,
301
+ ) = q_hbm_ref.shape
302
+ (
303
+ total_num_pages,
304
+ page_size,
305
+ num_kv_heads_per_kv_packing,
306
+ kv_packing,
307
+ _,
308
+ ) = kv_cache_hbm_ref.shape
309
+ max_num_seqs = kv_lens_ref.shape[0]
310
+ num_page_indices = page_indices_ref.shape[0]
311
+ assert num_page_indices % max_num_seqs == 0
312
+ pages_per_seq = num_page_indices // max_num_seqs
313
+ num_kv_heads = num_kv_heads_per_kv_packing * kv_packing
314
+ num_q_heads_per_kv_head = num_q_heads_per_kv_head_per_packing * q_packing
315
+ q_dtype = q_hbm_ref.dtype
316
+ kv_dtype = kv_cache_hbm_ref.dtype
317
+ assert o_hbm_ref.dtype == q_dtype
318
+ assert get_dtype_packing(q_dtype) == q_packing
319
+ assert get_dtype_packing(kv_dtype) == kv_packing
320
+ assert actual_head_dim_x2 == 128
321
+ bkv_sz = bkv_p * page_size
322
+ seq_idx = pl.program_id(0)
323
+ num_seqs = pl.num_programs(0)
324
+ decode_end = distribution_ref[0]
325
+ prefill_end = distribution_ref[1]
326
+ mixed_end = distribution_ref[2]
327
+
328
+ q_start = cu_q_lens_ref[seq_idx]
329
+ q_end = cu_q_lens_ref[seq_idx + 1]
330
+ q_len = q_end - q_start
331
+ kv_len = kv_lens_ref[seq_idx]
332
+
333
+ if sliding_window is None:
334
+ bkv_idx_start = next_seq_bkv_idx_start = 0
335
+ else:
336
+ bkv_idx_start = jnp.maximum(kv_len - q_len - sliding_window,
337
+ 0) // bkv_sz
338
+
339
+ # If seq_idx + 1 == num_seqs, kv_lens_ref[seq_idx + 1] will trigger a
340
+ # out-of-bound error. To avoid this, we set upperbound of next_seq_idx
341
+ # to be num_seqs - 1.
342
+ next_seq_idx = jnp.minimum(seq_idx + 1, num_seqs - 1)
343
+ next_kv_len = kv_lens_ref[next_seq_idx]
344
+ next_q_len = cu_q_lens_ref[next_seq_idx + 1] - q_end
345
+ next_seq_bkv_idx_start = (
346
+ jnp.maximum(next_kv_len - next_q_len - sliding_window, 0) //
347
+ bkv_sz)
348
+
349
+ def debug_print(msg, *args):
350
+ if debug_mode:
351
+ pl.debug_print(msg, *args)
352
+
353
+ debug_print("[RPA debug] ======= In loop seq_idx={}", seq_idx)
354
+ debug_print("[RPA debug] num_seqs={}", num_seqs)
355
+ debug_print("[RPA debug] decode_end={}", decode_end)
356
+ debug_print("[RPA debug] prefill_end={}", prefill_end)
357
+ debug_print("[RPA debug] mixed_end={}", mixed_end)
358
+ debug_print("[RPA debug] bkv_p={}", bkv_p)
359
+ debug_print("[RPA debug] page_size={}", page_size)
360
+ debug_print("[RPA debug] pages_per_seq={}", pages_per_seq)
361
+ debug_print("[RPA debug] bkv_sz={}", bkv_sz)
362
+ debug_print("[RPA debug] bq_sz={}", bq_sz)
363
+ debug_print("[RPA debug] q_start={}", q_start)
364
+ debug_print("[RPA debug] q_end={}", q_end)
365
+ debug_print("[RPA debug] q_len={}", q_len)
366
+ debug_print("[RPA debug] kv_len={}", kv_len)
367
+
368
+ def flash_attention_step1_qk_softmax(
369
+ q, # [actual_bq_sz * num_q_heads_per_kv_head, actual_head_dim_x2]
370
+ kv, # [bkv_sz, actual_head_dim_x2]
371
+ *,
372
+ bq_idx,
373
+ bkv_idx,
374
+ kv_head_idx,
375
+ ):
376
+ assert len(q.shape) == 2
377
+ assert q.shape[0] % num_q_heads_per_kv_head == 0
378
+ assert q.shape[1] == actual_head_dim_x2
379
+ assert kv.shape == (bkv_sz, actual_head_dim_x2)
380
+ head_l_ref = l_ref.at[kv_head_idx, :q.shape[0]]
381
+ head_m_ref = m_ref.at[kv_head_idx, :q.shape[0]]
382
+
383
+ def load_with_init(ref, init_val):
384
+ return jnp.where(bkv_idx == bkv_idx_start,
385
+ jnp.full_like(ref, init_val), ref[...])
386
+
387
+ # Follow FlashAttention-2 forward pass.
388
+ if q_scale is not None:
389
+ q = q / q_scale
390
+ if jnp.issubdtype(kv.dtype, jnp.floating):
391
+ dtype_info = jnp.finfo(kv.dtype)
392
+ minval = float(dtype_info.min)
393
+ maxval = float(dtype_info.max)
394
+ q = jnp.clip(q, min=minval, max=maxval)
395
+ q = q.astype(kv.dtype)
396
+
397
+ s = jnp.einsum("nd,md->nm", q, kv, preferred_element_type=jnp.float32)
398
+ s *= sm_scale
399
+ if k_scale is not None:
400
+ s *= k_scale
401
+ if q_scale is not None:
402
+ s *= q_scale
403
+ if soft_cap is not None:
404
+ s = soft_cap * jnp.tanh(s / soft_cap)
405
+
406
+ q_span = (kv_len - q_len + bq_idx * bq_sz +
407
+ lax.broadcasted_iota(jnp.int32, s.shape, 0) //
408
+ num_q_heads_per_kv_head)
409
+ k_span = bkv_idx * bkv_sz + lax.broadcasted_iota(jnp.int32, s.shape, 1)
410
+ mask = k_span <= q_span
411
+
412
+ if sliding_window is not None:
413
+ mask = jnp.logical_and(mask, q_span - sliding_window < k_span)
414
+
415
+ s = jnp.where(mask, s, mask_value)
416
+ s_rowmax = jnp.max(s, axis=1, keepdims=True)
417
+
418
+ if attention_sink_ref is not None:
419
+ sinks = attention_sink_ref[kv_head_idx]
420
+ actual_bq_sz = q.shape[0] // num_q_heads_per_kv_head
421
+ m_prev_init = jnp.concat([sinks] * actual_bq_sz, axis=0)
422
+ m_prev = jnp.where(bkv_idx == bkv_idx_start, m_prev_init,
423
+ head_m_ref[...])
424
+ else:
425
+ m_prev = load_with_init(head_m_ref, -jnp.inf)
426
+
427
+ m_curr = jnp.maximum(m_prev, s_rowmax)
428
+ head_m_ref[...] = m_curr
429
+ p = jnp.exp(s - broadcast_minor(m_curr, s.shape))
430
+
431
+ p_rowsum = jnp.sum(p, axis=1, keepdims=True)
432
+ exp_m_diff = jnp.exp(m_prev - m_curr)
433
+ l_prev = load_with_init(head_l_ref, 1.0)
434
+ l_curr = exp_m_diff * l_prev + p_rowsum
435
+ head_l_ref[...] = l_curr
436
+
437
+ return p, exp_m_diff
438
+
439
+ def flash_attention_step2_pv(
440
+ q_shape_0,
441
+ kv, # [bkv_sz, actual_head_dim_x2]
442
+ p, # from step1
443
+ exp_m_diff, # from step1
444
+ *,
445
+ bkv_idx,
446
+ kv_head_idx,
447
+ ):
448
+ head_acc_ref = acc_ref.at[kv_head_idx, :q_shape_0]
449
+
450
+ def load_with_init(ref, init_val):
451
+ return jnp.where(bkv_idx == bkv_idx_start,
452
+ jnp.full_like(ref, init_val), ref[...])
453
+
454
+ pv = jnp.einsum("nm,md->nd", p, kv, preferred_element_type=jnp.float32)
455
+ if v_scale is not None:
456
+ pv *= v_scale
457
+
458
+ o_prev = load_with_init(head_acc_ref, 0.0)
459
+ o_curr = broadcast_minor(exp_m_diff, o_prev.shape) * o_prev + pv
460
+ head_acc_ref[...] = o_curr
461
+
462
+ def _async_copy(src, dst, sem, wait):
463
+ if debug_mode:
464
+ # Skip DMA if debug mode is enabled.
465
+ return
466
+ cp = pltpu.make_async_copy(src, dst, sem)
467
+ if wait:
468
+ cp.wait()
469
+ else:
470
+ cp.start()
471
+
472
+ def _fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx, *, wait=False):
473
+ sem = sems.at[0, bkv_sem_idx]
474
+ vmem_ref = bkv_x2_ref.at[bkv_sem_idx]
475
+
476
+ cache_hbm_shape = kv_cache_hbm_ref.shape
477
+ cache_hbm_ref = kv_cache_hbm_ref.reshape(
478
+ cache_hbm_shape[0] * cache_hbm_shape[1], *cache_hbm_shape[2:])
479
+ kv_len = kv_lens_ref[seq_idx]
480
+ kv_len_start = bkv_idx * bkv_sz
481
+ kv_p_start = bkv_idx * bkv_p
482
+ q_start = cu_q_lens_ref[seq_idx]
483
+ q_end = cu_q_lens_ref[seq_idx + 1]
484
+ q_len = q_end - q_start
485
+
486
+ kv_left = kv_len - kv_len_start
487
+ kv_left_frm_cache = jnp.maximum(kv_left - q_len, 0)
488
+ kv_left_frm_new = kv_left - kv_left_frm_cache
489
+ bkv_p_frm_cache = jnp.minimum(cdiv(kv_left_frm_cache, page_size),
490
+ bkv_p)
491
+ bkv_sz_frm_new = jnp.minimum(
492
+ jnp.maximum(bkv_sz - kv_left_frm_cache, 0), kv_left_frm_new)
493
+ page_indices_offset = seq_idx * pages_per_seq + kv_p_start
494
+
495
+ # Make sure the current bkv buffer is safe to overwrite.
496
+ wait_update_kv_cache(bkv_sem_idx)
497
+
498
+ debug_print(
499
+ "[RPA debug]"
500
+ f" -----------{'wait' if wait else 'start'}_fetch_bkv-----------")
501
+ debug_print("[RPA debug] seq_idx={}", seq_idx)
502
+ debug_print("[RPA debug] bkv_idx={}", bkv_idx)
503
+ debug_print("[RPA debug] bkv_sem_idx={}", bkv_sem_idx)
504
+ debug_print("[RPA debug] kv_len_start={}", kv_len_start)
505
+ debug_print("[RPA debug] kv_p_start={}", kv_p_start)
506
+ debug_print("[RPA debug] kv_left={}", kv_left)
507
+ debug_print("[RPA debug] kv_left_frm_cache={}", kv_left_frm_cache)
508
+ debug_print("[RPA debug] kv_left_frm_new={}", kv_left_frm_new)
509
+ debug_print("[RPA debug] bkv_p_frm_cache={}", bkv_p_frm_cache)
510
+ debug_print("[RPA debug] bkv_sz_frm_new={}", bkv_sz_frm_new)
511
+ debug_print("[RPA debug] page_indices_offset={}", page_indices_offset)
512
+
513
+ if not wait:
514
+ # Fetch effective kv from kv cache.
515
+ def loop_body(i, offset):
516
+ sz = jnp.minimum(page_size, kv_left_frm_cache - i * page_size)
517
+ _async_copy(
518
+ cache_hbm_ref.at[pl.ds(
519
+ page_indices_ref[page_indices_offset + i] * page_size,
520
+ sz)],
521
+ vmem_ref.at[pl.ds(i * page_size, sz)],
522
+ sem,
523
+ wait=False,
524
+ )
525
+ debug_print("[RPA debug] loop_body i={}, sz={}", i, sz)
526
+ return offset + sz
527
+
528
+ offset = lax.fori_loop(
529
+ 0,
530
+ bkv_p_frm_cache,
531
+ loop_body,
532
+ 0, # offset
533
+ unroll=False,
534
+ )
535
+
536
+ size = lax.select(bkv_sz_frm_new > 0, bkv_sz_frm_new, 0)
537
+ new_kv_len_start = q_end - kv_left_frm_new
538
+ debug_print("[RPA debug] new_kv_len_start={}", new_kv_len_start)
539
+ debug_print("[RPA debug] offset_in_bkv={}", offset)
540
+ _async_copy(
541
+ kv_hbm_ref.at[pl.ds(new_kv_len_start, size)],
542
+ vmem_ref.at[pl.ds(offset, size)],
543
+ sem,
544
+ wait,
545
+ )
546
+
547
+ return kv_len_start + offset, bkv_sz_frm_new
548
+ else:
549
+ offset = jnp.minimum(kv_left_frm_cache, page_size * bkv_p)
550
+ dst = vmem_ref.at[pl.ds(0, offset + bkv_sz_frm_new)]
551
+ _async_copy(
552
+ src=dst,
553
+ dst=dst,
554
+ sem=sem,
555
+ wait=True,
556
+ )
557
+ return kv_len_start + offset, bkv_sz_frm_new
558
+
559
+ def _update_kv_cache(seq_idx,
560
+ bkv_sem_idx,
561
+ offset,
562
+ update_sz,
563
+ *,
564
+ wait=False):
565
+ sem = sems.at[3, bkv_sem_idx]
566
+ vmem_ref = bkv_x2_ref.at[bkv_sem_idx]
567
+ bkv_id = offset // bkv_sz
568
+ kv_p_start = offset // page_size
569
+ kv_p_end = cdiv(offset + update_sz, page_size)
570
+ ignore = offset % page_size
571
+ p_ignore = kv_p_start - bkv_id * bkv_p
572
+ page_indices_offset = seq_idx * pages_per_seq + kv_p_start
573
+
574
+ cache_hbm_shape = updated_kv_cache_hbm_ref.shape
575
+ cache_hbm_ref = updated_kv_cache_hbm_ref.reshape(
576
+ cache_hbm_shape[0] * cache_hbm_shape[1], *cache_hbm_shape[2:])
577
+
578
+ debug_print(
579
+ "[RPA debug]"
580
+ f" -----------{'wait' if wait else 'start'}_update_kv_cache-----------"
581
+ )
582
+ debug_print("[RPA debug] seq_idx={}", seq_idx)
583
+ debug_print("[RPA debug] bkv_sem_idx={}", bkv_sem_idx)
584
+ debug_print("[RPA debug] offset={}", offset)
585
+ debug_print("[RPA debug] update_sz={}", update_sz)
586
+ debug_print("[RPA debug] bkv_id={}", bkv_id)
587
+ debug_print("[RPA debug] kv_p_start={}", kv_p_start)
588
+ debug_print("[RPA debug] kv_p_end={}", kv_p_end)
589
+ debug_print("[RPA debug] ignore={}", ignore)
590
+ debug_print("[RPA debug] p_ignore={}", p_ignore)
591
+ debug_print("[RPA debug] page_indices_offset={}", page_indices_offset)
592
+
593
+ if not wait:
594
+
595
+ def loop_body(i, states):
596
+ update_sz, ignore = states
597
+ sz = jnp.minimum(page_size - ignore, update_sz)
598
+
599
+ _async_copy(
600
+ vmem_ref.at[pl.ds((p_ignore + i) * page_size + ignore,
601
+ sz)],
602
+ cache_hbm_ref.at[pl.ds(
603
+ page_indices_ref[page_indices_offset + i] * page_size +
604
+ ignore,
605
+ sz,
606
+ )],
607
+ sem,
608
+ wait=False,
609
+ )
610
+ debug_print("[RPA debug] loop_body i={}, sz={}", i, sz)
611
+ return update_sz - sz, 0
612
+
613
+ lax.fori_loop(
614
+ 0,
615
+ kv_p_end - kv_p_start,
616
+ loop_body,
617
+ (update_sz, ignore), # total transfer size
618
+ unroll=False,
619
+ )
620
+ else:
621
+ dst = cache_hbm_ref.at[pl.ds(0, update_sz)]
622
+ _async_copy(
623
+ src=dst,
624
+ dst=dst,
625
+ sem=sem,
626
+ wait=True,
627
+ )
628
+
629
+ def _fetch_bq(seq_idx, bq_idx, bq_sem_idx, *, wait=False):
630
+ sem = sems.at[1, bq_sem_idx]
631
+ vmem_ref = bq_x2_ref.at[bq_sem_idx]
632
+ q_len_start = cu_q_lens_ref[seq_idx] + bq_idx * bq_sz
633
+ q_end = cu_q_lens_ref[seq_idx + 1]
634
+ sz = jnp.minimum(bq_sz, q_end - q_len_start)
635
+
636
+ debug_print(
637
+ "[RPA debug]"
638
+ f" -----------{'wait' if wait else 'start'}_fetch_bq-----------")
639
+ debug_print("[RPA debug] seq_idx={}", seq_idx)
640
+ debug_print("[RPA debug] bq_idx={}", bq_idx)
641
+ debug_print("[RPA debug] bq_sem_idx={}", bq_sem_idx)
642
+ debug_print("[RPA debug] q_len_start={}", q_len_start)
643
+ debug_print("[RPA debug] q_end={}", q_end)
644
+ debug_print("[RPA debug] sz={}", sz)
645
+
646
+ _async_copy(
647
+ q_hbm_ref.at[:, pl.ds(q_len_start, sz)],
648
+ vmem_ref.at[:, pl.ds(0, sz)],
649
+ sem,
650
+ wait,
651
+ )
652
+
653
+ def _send_bo(seq_idx, bo_idx, bo_sem_idx, *, wait=False):
654
+ sem = sems.at[2, bo_sem_idx]
655
+ vmem_ref = bo_x2_ref.at[bo_sem_idx]
656
+ q_len_start = cu_q_lens_ref[seq_idx] + bo_idx * bq_sz
657
+ q_end = cu_q_lens_ref[seq_idx + 1]
658
+ sz = jnp.minimum(bq_sz, q_end - q_len_start)
659
+
660
+ debug_print(
661
+ "[RPA debug]"
662
+ f" -----------{'wait' if wait else 'start'}_send_bo-----------")
663
+ debug_print("[RPA debug] seq_idx={}", seq_idx)
664
+ debug_print("[RPA debug] bo_idx={}", bo_idx)
665
+ debug_print("[RPA debug] bo_sem_idx={}", bo_sem_idx)
666
+ debug_print("[RPA debug] q_len_start={}", q_len_start)
667
+ debug_print("[RPA debug] q_end={}", q_end)
668
+ debug_print("[RPA debug] sz={}", sz)
669
+
670
+ _async_copy(
671
+ vmem_ref.at[:, pl.ds(0, sz)],
672
+ o_hbm_ref.at[:, pl.ds(q_len_start, sz)],
673
+ sem,
674
+ wait,
675
+ )
676
+
677
+ def start_fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx):
678
+ return _fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx)
679
+
680
+ def wait_fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx):
681
+ return _fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx, wait=True)
682
+
683
+ def start_fetch_bq(seq_idx, bq_idx, bq_sem_idx):
684
+ return _fetch_bq(seq_idx, bq_idx, bq_sem_idx)
685
+
686
+ def wait_fetch_bq(seq_idx, bq_idx, bq_sem_idx):
687
+ return _fetch_bq(seq_idx, bq_idx, bq_sem_idx, wait=True)
688
+
689
+ def start_send_bo(seq_idx, bo_idx, bo_sem_idx):
690
+ bo_ids_ref[bo_sem_idx] = seq_idx
691
+ bo_ids_ref[bo_sem_idx + 2] = bo_idx
692
+ _send_bo(seq_idx, bo_idx, bo_sem_idx)
693
+
694
+ def wait_send_bo(bo_sem_idx):
695
+ old_seq_idx = bo_ids_ref[bo_sem_idx]
696
+ old_bo_idx = bo_ids_ref[bo_sem_idx + 2]
697
+
698
+ @pl.when(jnp.logical_and(0 <= old_seq_idx, old_seq_idx <= seq_idx))
699
+ def _():
700
+ _send_bo(old_seq_idx, old_bo_idx, bo_sem_idx, wait=True)
701
+
702
+ def start_update_kv_cache(seq_idx, bkv_sem_idx, offset, update_sz):
703
+ bkv_update_ids_ref[bkv_sem_idx] = seq_idx
704
+ bkv_update_ids_ref[bkv_sem_idx + 2] = offset
705
+ bkv_update_ids_ref[bkv_sem_idx + 4] = update_sz
706
+ _update_kv_cache(seq_idx, bkv_sem_idx, offset, update_sz)
707
+
708
+ def wait_update_kv_cache(bkv_sem_idx):
709
+ update_sz = bkv_update_ids_ref[bkv_sem_idx + 4]
710
+
711
+ @pl.when(update_sz > 0)
712
+ def _():
713
+ seq_idx = bkv_update_ids_ref[bkv_sem_idx]
714
+ offset = bkv_update_ids_ref[bkv_sem_idx + 2]
715
+ bkv_update_ids_ref[bkv_sem_idx + 4] = 0
716
+ _update_kv_cache(seq_idx,
717
+ bkv_sem_idx,
718
+ offset,
719
+ update_sz,
720
+ wait=True)
721
+
722
+ def load_bq(bq_sem_idx, kv_head_idx, *, actual_bq_sz=bq_sz):
723
+ q_ref = (bq_x2_ref.bitcast(
724
+ jnp.uint32).at[bq_sem_idx, kv_head_idx].reshape(
725
+ bq_sz * num_q_heads_per_kv_head_per_packing,
726
+ actual_head_dim_x2))
727
+ return pltpu.bitcast(
728
+ q_ref[:actual_bq_sz * num_q_heads_per_kv_head_per_packing],
729
+ q_dtype)
730
+
731
+ def strided_load(ref, start, step):
732
+ assert get_dtype_packing(ref.dtype) == 1
733
+ assert len(ref.shape) == 2
734
+ _, l = ref.shape # noqa
735
+ assert l == 128
736
+ vec = ref[start::step]
737
+ return vec
738
+
739
+ def strided_load_bkv(bkv_sem_idx, start, step):
740
+ assert start % kv_packing == 0
741
+ assert step % kv_packing == 0
742
+ start //= kv_packing
743
+ step //= kv_packing
744
+ kv_ref = (bkv_x2_ref.bitcast(jnp.uint32).at[bkv_sem_idx].reshape(
745
+ bkv_sz * step, actual_head_dim_x2))
746
+
747
+ kv = strided_load(kv_ref, start, step)
748
+ bitwidth = 32 // kv_packing
749
+ repack_ty = jnp.dtype(f"uint{bitwidth}")
750
+ lst = []
751
+ for i in range(0, kv_packing):
752
+ cur_kv = pltpu.bitcast((kv >> (i * bitwidth)).astype(repack_ty),
753
+ kv_dtype)
754
+ lst.append(cur_kv)
755
+ return lst
756
+
757
+ def broadcast_minor(src, shape):
758
+ if src.shape == shape:
759
+ return src
760
+ assert src.shape[:-1] == shape[:-1]
761
+ assert src.shape[-1] % 128 == 0
762
+ target_minor = align_to(shape[-1], src.shape[-1])
763
+ # no-op concatenation.
764
+ return jnp.concatenate(
765
+ [src for _ in range(target_minor // src.shape[-1])],
766
+ axis=-1)[..., :shape[-1]]
767
+
768
+ def process(static_q_len=None):
769
+ num_bkv = cdiv(kv_len, bkv_sz)
770
+ if static_q_len is None:
771
+ actual_bq_sz = bq_sz
772
+ num_bq = cdiv(q_len, actual_bq_sz)
773
+ else:
774
+ actual_bq_sz = min(bq_sz, static_q_len)
775
+ num_bq = cdiv(static_q_len, actual_bq_sz)
776
+
777
+ def get_next_bq_ids(seq_idx, bq_idx, bq_sem_idx):
778
+ next_bq_idx = bq_idx + 1
779
+ is_last_bq = next_bq_idx == num_bq
780
+ next_bq_idx = lax.select(is_last_bq, 0, next_bq_idx)
781
+ next_seq_idx = lax.select(is_last_bq, seq_idx + 1, seq_idx)
782
+ next_bq_sem_idx = lax.select(bq_sem_idx == 0, 1, 0)
783
+ return next_seq_idx, next_bq_idx, next_bq_sem_idx
784
+
785
+ def get_next_bkv_ids(seq_idx, bq_idx, bkv_idx, bkv_sem_idx):
786
+ next_bkv_idx = bkv_idx + 1
787
+ is_last_bkv = next_bkv_idx == num_bkv
788
+ next_bq_idx = lax.select(is_last_bkv, bq_idx + 1, bq_idx)
789
+ is_last_bq = next_bq_idx == num_bq
790
+ next_bq_idx = lax.select(is_last_bq, 0, next_bq_idx)
791
+ next_seq_idx = lax.select(is_last_bq, seq_idx + 1, seq_idx)
792
+ next_bkv_sem_idx = lax.select(bkv_sem_idx == 0, 1, 0)
793
+
794
+ if sliding_window is None:
795
+ # When sliding window is disabled, starting bkv_idx of next request is
796
+ # always 0 regardless of seq_idx of next request.
797
+ next_bkv_idx_start = 0
798
+ else:
799
+ # Determine starting bkv_idx of next request based on whether next
800
+ # request is from the same sequence or next sequence.
801
+ next_bkv_idx_start = lax.select(
802
+ is_last_bq,
803
+ next_seq_bkv_idx_start,
804
+ bkv_idx_start,
805
+ )
806
+ next_bkv_idx = lax.select(is_last_bkv, next_bkv_idx_start,
807
+ next_bkv_idx)
808
+
809
+ return next_seq_idx, next_bq_idx, next_bkv_idx, next_bkv_sem_idx
810
+
811
+ def compute_with_bq(bq_idx, _):
812
+ bq_sem_idx = sem_ids_ref[0]
813
+ next_seq_idx, next_bq_idx, next_bq_sem_idx = get_next_bq_ids(
814
+ seq_idx, bq_idx, bq_sem_idx)
815
+
816
+ # Prefetch next bq
817
+ @pl.when(next_seq_idx < num_seqs)
818
+ def prefetch_next_bq():
819
+ sem_ids_ref[0] = next_bq_sem_idx
820
+ start_fetch_bq(next_seq_idx, next_bq_idx, next_bq_sem_idx)
821
+
822
+ def compute_with_bkv(bkv_idx, _):
823
+ # Create bitmask for KV.
824
+ assert bkv_sz % kv_packing == 0
825
+
826
+ # Get next bkv ids.
827
+ bkv_sem_idx = sem_ids_ref[1]
828
+ next_seq_idx, _, next_bkv_idx, next_bkv_sem_idx = get_next_bkv_ids(
829
+ seq_idx, bq_idx, bkv_idx, bkv_sem_idx)
830
+
831
+ # Prefetch next bkv
832
+ @pl.when(next_seq_idx < num_seqs)
833
+ def prefetch_next_bkv():
834
+ sem_ids_ref[1] = next_bkv_sem_idx
835
+ start_fetch_bkv(next_seq_idx, next_bkv_idx,
836
+ next_bkv_sem_idx)
837
+
838
+ # Wait for cur bq if not ready yet
839
+ @pl.when(bkv_idx == bkv_idx_start)
840
+ def wait_cur_bq():
841
+ wait_fetch_bq(seq_idx, bq_idx, bq_sem_idx)
842
+
843
+ # Wait for cur bkv
844
+ offset, update_sz = wait_fetch_bkv(seq_idx, bkv_idx,
845
+ bkv_sem_idx)
846
+
847
+ # Start updating bkv to kv cache if applicable.
848
+ # Only needed in first bq loop.
849
+ @pl.when(jnp.logical_and(update_sz > 0, bq_idx == 0))
850
+ def update_cur_bkv_to_cache():
851
+ start_update_kv_cache(seq_idx, bkv_sem_idx, offset,
852
+ update_sz)
853
+
854
+ debug_print(
855
+ "[RPA debug] -----------flash attention-----------")
856
+ debug_print("[RPA debug] seq_idx={}", seq_idx)
857
+ debug_print("[RPA debug] bq_idx={}", bq_idx)
858
+ debug_print("[RPA debug] bkv_idx={}", bkv_idx)
859
+ if debug_mode:
860
+ # Skip flash attention if debug mode is enabled.
861
+ return
862
+
863
+ # Flash attention with cur bkv and bq
864
+ prev_bq_shape_0 = None
865
+ prev_kv_head_bkv = None
866
+ prev_kv_head_idx = None
867
+ prev_kv_head_p = None
868
+ prev_kv_head_exp_m_diff = None
869
+ for kv_head_start in range(0, actual_num_kv_heads, kv_packing):
870
+ bkv_lst = strided_load_bkv(
871
+ bkv_sem_idx,
872
+ kv_head_start,
873
+ num_kv_heads,
874
+ )
875
+ assert len(bkv_lst) == kv_packing
876
+ for i in range(kv_packing):
877
+ cur_kv_head_idx = kv_head_start + i
878
+ if cur_kv_head_idx >= actual_num_kv_heads:
879
+ break
880
+ cur_kv_head_bq = load_bq(bq_sem_idx,
881
+ cur_kv_head_idx,
882
+ actual_bq_sz=actual_bq_sz)
883
+ cur_kv_head__bkv = bkv_lst[i]
884
+ # FlashAttention is divided into `flash_attention_step1_qk_softmax`
885
+ # and `flash_attention_step2_pv` to pipeline the computation.
886
+ # `step2_pv` for the previous KV head, which depends on the softmax
887
+ # output, is overlapped with `step1_qk_softmax` for the current KV
888
+ # head, reducing overall wait times.
889
+ cur_kv_head_p, cur_kv_head_exp_m_diff = (
890
+ flash_attention_step1_qk_softmax(
891
+ cur_kv_head_bq,
892
+ cur_kv_head__bkv,
893
+ bq_idx=bq_idx,
894
+ bkv_idx=bkv_idx,
895
+ kv_head_idx=cur_kv_head_idx,
896
+ ))
897
+ if prev_bq_shape_0 is not None:
898
+ flash_attention_step2_pv(
899
+ prev_bq_shape_0,
900
+ prev_kv_head_bkv,
901
+ prev_kv_head_p,
902
+ prev_kv_head_exp_m_diff,
903
+ bkv_idx=bkv_idx,
904
+ kv_head_idx=prev_kv_head_idx,
905
+ )
906
+ prev_bq_shape_0 = cur_kv_head_bq.shape[0]
907
+ prev_kv_head_bkv = cur_kv_head__bkv
908
+ prev_kv_head_p = cur_kv_head_p
909
+ prev_kv_head_exp_m_diff = cur_kv_head_exp_m_diff
910
+ prev_kv_head_idx = cur_kv_head_idx
911
+
912
+ # Execute pv of last attention head.
913
+ assert prev_bq_shape_0 is not None
914
+ flash_attention_step2_pv(
915
+ prev_bq_shape_0,
916
+ prev_kv_head_bkv,
917
+ prev_kv_head_p,
918
+ prev_kv_head_exp_m_diff,
919
+ bkv_idx=bkv_idx,
920
+ kv_head_idx=prev_kv_head_idx,
921
+ )
922
+
923
+ lax.fori_loop(bkv_idx_start,
924
+ num_bkv,
925
+ compute_with_bkv,
926
+ None,
927
+ unroll=False)
928
+
929
+ # Load acc and calculate final output.
930
+ acc = acc_ref[...]
931
+ l = broadcast_minor(l_ref[...], acc.shape) # noqa
932
+ out = (lax.div(acc, l) if q_dtype == jnp.float32 else
933
+ (acc * pl.reciprocal(l, approx=True)).astype(q_dtype))
934
+
935
+ # Wait for previous bo to be fully sent before storing new bo.
936
+ bo_sem_idx = sem_ids_ref[2]
937
+ sem_ids_ref[2] = lax.select(bo_sem_idx == 0, 1, 0)
938
+ wait_send_bo(bo_sem_idx)
939
+
940
+ # Store output from acc to bo.
941
+ bo_x2_ref.at[bo_sem_idx].bitcast(jnp.int32).reshape(
942
+ actual_num_kv_heads,
943
+ bq_sz * num_q_heads_per_kv_head_per_packing,
944
+ actual_head_dim_x2,
945
+ )[...] = pltpu.bitcast(out, jnp.int32)
946
+
947
+ # Send cur bo
948
+ start_send_bo(seq_idx, bq_idx, bo_sem_idx)
949
+
950
+ lax.fori_loop(0, num_bq, compute_with_bq, None, unroll=False)
951
+
952
+ ### ------- Kernel start ------- ###
953
+
954
+ @pl.when(seq_idx == 0)
955
+ def prologue():
956
+ start_fetch_bq(0, 0, 0)
957
+
958
+ # Initialize bkv_x2_ref to zeros to avoid NaN issues from accessing
959
+ # uninitialized memory. Bitcast into int32 to avoid tiling issues.
960
+ bkv_x2_int32_ref = bkv_x2_ref.bitcast(jnp.int32).reshape(
961
+ (2, -1, 8, 128))
962
+ zeros = jnp.zeros(bkv_x2_int32_ref.shape[1:], jnp.int32)
963
+
964
+ # To pipeline VST and DMA, we divide the initialization into two steps.
965
+ bkv_x2_int32_ref[0] = zeros
966
+ start_fetch_bkv(0, bkv_idx_start, 0)
967
+ bkv_x2_int32_ref[1] = zeros
968
+
969
+ @pl.when(seq_idx < decode_end)
970
+ def process_decode():
971
+ process(static_q_len=1)
972
+
973
+ @pl.when(jnp.logical_and(decode_end <= seq_idx, seq_idx < prefill_end))
974
+ def process_prefill():
975
+ process(static_q_len=chunk_prefill_size)
976
+
977
+ @pl.when(jnp.logical_and(prefill_end <= seq_idx, seq_idx < mixed_end))
978
+ def process_mixed():
979
+ process()
980
+
981
+ @pl.when(seq_idx == num_seqs - 1)
982
+ def epilogue():
983
+ for i in range(2):
984
+ wait_send_bo(i)
985
+ wait_update_kv_cache(i)
986
+
987
+ ### ------- Kernel end ------- ###
988
+
989
+
990
+ def merge_kv(
991
+ k: jax.
992
+ Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim],
993
+ v: jax.
994
+ Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim],
995
+ ):
996
+ assert k.shape == v.shape
997
+ assert k.dtype == v.dtype
998
+ max_num_tokens, actual_num_kv_heads, actual_head_dim = k.shape
999
+ kv_packing = get_dtype_packing(k.dtype)
1000
+ num_kv_heads = align_to(actual_num_kv_heads, kv_packing)
1001
+ kv = jnp.pad(
1002
+ jnp.concat([k, v], axis=-1),
1003
+ (
1004
+ (0, 0),
1005
+ (0, num_kv_heads - actual_num_kv_heads),
1006
+ (0, 0),
1007
+ ),
1008
+ constant_values=0,
1009
+ ).reshape(
1010
+ max_num_tokens,
1011
+ num_kv_heads // kv_packing,
1012
+ kv_packing,
1013
+ actual_head_dim * 2,
1014
+ )
1015
+ return kv
1016
+
1017
+
1018
+ def prepare_inputs(
1019
+ q: jax.Array, # [max_num_tokens, actual_num_q_heads, actual_head_dim],
1020
+ k: jax.
1021
+ Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim],
1022
+ v: jax.
1023
+ Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim],
1024
+ attention_sink: jax.Array | None = None, # f32[actual_num_q_heads],
1025
+ ):
1026
+ max_num_tokens, actual_num_q_heads, actual_head_dim = q.shape
1027
+ actual_num_kv_heads = k.shape[1]
1028
+ assert actual_num_q_heads % actual_num_kv_heads == 0
1029
+ actual_num_q_heads_per_kv_head = actual_num_q_heads // actual_num_kv_heads
1030
+ q_packing = get_dtype_packing(q.dtype)
1031
+ num_q_heads_per_kv_head = align_to(actual_num_q_heads_per_kv_head,
1032
+ q_packing)
1033
+ head_dim = align_to(actual_head_dim, 128)
1034
+ q = (
1035
+ jnp.pad(
1036
+ q.reshape(
1037
+ max_num_tokens,
1038
+ actual_num_kv_heads,
1039
+ actual_num_q_heads_per_kv_head,
1040
+ actual_head_dim,
1041
+ ),
1042
+ (
1043
+ (0, 0),
1044
+ (0, 0),
1045
+ (0, num_q_heads_per_kv_head - actual_num_q_heads_per_kv_head),
1046
+ (0, head_dim - actual_head_dim),
1047
+ ),
1048
+ constant_values=0,
1049
+ ).reshape(
1050
+ max_num_tokens,
1051
+ actual_num_kv_heads,
1052
+ num_q_heads_per_kv_head // q_packing,
1053
+ q_packing,
1054
+ head_dim,
1055
+ )
1056
+ # TODO(jevinjiang): Explore fusing swapping non-tiling axis to DMA.
1057
+ .swapaxes(0, 1))
1058
+ # TODO(kyuyeunk, chengjiyao): Add kv quantization here.
1059
+ kv = merge_kv(k, v)
1060
+
1061
+ if attention_sink is not None:
1062
+ attention_sink = attention_sink.reshape(
1063
+ (-1, num_q_heads_per_kv_head, 1))
1064
+ attention_sink = jnp.repeat(attention_sink, 128, -1)
1065
+
1066
+ return q, kv, attention_sink
1067
+
1068
+
1069
+ def prepare_outputs(
1070
+ out, # [actual_num_kv_heads, max_num_tokens, num_q_heads_per_kv_head // q_packing, q_packing, actual_head_dim_x2]
1071
+ actual_num_q_heads_per_kv_head: int,
1072
+ actual_head_dim: int,
1073
+ ):
1074
+ (
1075
+ actual_num_kv_heads,
1076
+ max_num_tokens,
1077
+ num_q_heads_per_kv_head_per_q_packing,
1078
+ q_packing,
1079
+ actual_head_dim_x2,
1080
+ ) = out.shape
1081
+ actual_num_q_heads = actual_num_q_heads_per_kv_head * actual_num_kv_heads
1082
+ return (out.swapaxes(0, 1).reshape(
1083
+ max_num_tokens,
1084
+ actual_num_kv_heads,
1085
+ num_q_heads_per_kv_head_per_q_packing * q_packing,
1086
+ actual_head_dim_x2,
1087
+ )[:, :, :actual_num_q_heads_per_kv_head,
1088
+ actual_head_dim:].reshape(max_num_tokens, actual_num_q_heads,
1089
+ actual_head_dim))
1090
+
1091
+
1092
+ # Expect to run this validation during runtime.
1093
+ def dynamic_validate_inputs(
1094
+ queries: jax.
1095
+ Array, # [max_num_tokens, actual_num_q_heads, actual_head_dim]
1096
+ keys: jax.Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim]
1097
+ values: jax.
1098
+ Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim]
1099
+ kv_cache: jax.
1100
+ Array, # [total_num_pages, page_size, num_kv_heads // kv_packing, kv_packing, head_dim]
1101
+ kv_lens: jax.Array, # i32[max_num_seqs]
1102
+ page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
1103
+ cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
1104
+ distribution: jax.Array, # i32[3]
1105
+ attention_sink: jax.Array | None = None, # f32[actual_num_q_heads]
1106
+ *,
1107
+ sm_scale: float = 1.0,
1108
+ sliding_window: int | None = None,
1109
+ soft_cap: float | None = None,
1110
+ mask_value: float | None = DEFAULT_MASK_VALUE,
1111
+ q_scale: float | None = None,
1112
+ k_scale: float | None = None,
1113
+ v_scale: float | None = None,
1114
+ # Kernel optimization params.
1115
+ chunk_prefill_size: int | None = None,
1116
+ # Kernel tuning params.
1117
+ num_kv_pages_per_block: int | None = None,
1118
+ num_queries_per_block: int | None = None,
1119
+ vmem_limit_bytes: int | None = None,
1120
+ # Debug params.
1121
+ debug_mode: bool = False,
1122
+ ):
1123
+ q, k, v = queries, keys, values
1124
+ static_validate_inputs(
1125
+ q,
1126
+ k,
1127
+ v,
1128
+ kv_cache,
1129
+ kv_lens,
1130
+ page_indices,
1131
+ cu_q_lens,
1132
+ distribution,
1133
+ attention_sink,
1134
+ sm_scale=sm_scale,
1135
+ sliding_window=sliding_window,
1136
+ soft_cap=soft_cap,
1137
+ mask_value=mask_value,
1138
+ q_scale=q_scale,
1139
+ k_scale=k_scale,
1140
+ v_scale=v_scale,
1141
+ chunk_prefill_size=chunk_prefill_size,
1142
+ num_kv_pages_per_block=num_kv_pages_per_block,
1143
+ num_queries_per_block=num_queries_per_block,
1144
+ vmem_limit_bytes=vmem_limit_bytes,
1145
+ debug_mode=debug_mode,
1146
+ )
1147
+ max_num_tokens = q.shape[0]
1148
+ total_num_pages = kv_cache.shape[0]
1149
+ page_size = kv_cache.shape[1]
1150
+ max_num_seqs = kv_lens.shape[0]
1151
+ num_page_indices = page_indices.shape[0]
1152
+ assert num_page_indices % max_num_seqs == 0
1153
+ pages_per_seq = num_page_indices // max_num_seqs
1154
+
1155
+ i, j, k = distribution
1156
+ if not (i <= j <= k):
1157
+ raise ValueError(f"Invalid distribution: {distribution=}")
1158
+
1159
+ if k > max_num_seqs:
1160
+ raise ValueError(f"num_seqs={k} must be <= {max_num_seqs=}")
1161
+
1162
+ if cu_q_lens[k] > max_num_tokens:
1163
+ raise ValueError(
1164
+ f"Total q tokens {cu_q_lens[k]} must be <= {max_num_tokens=}.")
1165
+ for i in range(k):
1166
+ q_len = cu_q_lens[i + 1] - cu_q_lens[i]
1167
+ kv_len = kv_lens[i]
1168
+ if not (0 < q_len <= kv_len):
1169
+ raise ValueError(
1170
+ f"Require 0 < {q_len=} <= {kv_len=} at sequence {i}.")
1171
+ page_cnt = cdiv(kv_len, page_size)
1172
+ if page_cnt > pages_per_seq:
1173
+ raise ValueError(
1174
+ f"Require {page_cnt=} <= {pages_per_seq=} at sequence {i} where"
1175
+ f" {kv_len=} and {page_size=}.")
1176
+ for p in range(page_cnt):
1177
+ page_idx = page_indices[i * pages_per_seq + p]
1178
+ if not (0 <= page_idx < total_num_pages):
1179
+ raise ValueError(
1180
+ f"Require 0 <= {page_idx=} < {total_num_pages=} at sequence"
1181
+ f" {i} where {kv_len=} and {page_size=}.")
1182
+
1183
+
1184
+ # Expect to run this validation during compile time.
1185
+ def static_validate_inputs(
1186
+ queries: jax.
1187
+ Array, # [max_num_tokens, actual_num_q_heads, actual_head_dim]
1188
+ keys: jax.Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim]
1189
+ values: jax.
1190
+ Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim]
1191
+ kv_cache: jax.
1192
+ Array, # [total_num_pages, page_size, num_kv_heads // kv_packing, kv_packing, actual_head_dim_x2]
1193
+ kv_lens: jax.Array, # i32[max_num_seqs]
1194
+ page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
1195
+ cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
1196
+ distribution: jax.Array, # i32[3]
1197
+ attention_sink: jax.Array | None = None, # f32[actual_num_q_heads]
1198
+ *,
1199
+ sm_scale: float = 1.0,
1200
+ sliding_window: int | None = None,
1201
+ soft_cap: float | None = None,
1202
+ mask_value: float | None = DEFAULT_MASK_VALUE,
1203
+ q_scale: float | None = None,
1204
+ k_scale: float | None = None,
1205
+ v_scale: float | None = None,
1206
+ # Kernel optimization params.
1207
+ chunk_prefill_size: int | None = None,
1208
+ # Kernel tuning params.
1209
+ num_kv_pages_per_block: int | None = None,
1210
+ num_queries_per_block: int | None = None,
1211
+ vmem_limit_bytes: int | None = None,
1212
+ # Debug params.
1213
+ debug_mode: bool = False,
1214
+ ):
1215
+ """Validate inputs to the RPA kernel statically."""
1216
+ q, k, v = queries, keys, values
1217
+ if not (len(q.shape) == len(k.shape) == len(v.shape) == 3):
1218
+ raise ValueError(
1219
+ f"Expected 3D array for {q.shape=}, {k.shape=}, {v.shape=}")
1220
+ if k.shape != v.shape:
1221
+ raise ValueError(f"Expected {k.shape=} to be equal to {v.shape=}")
1222
+ if not (q.shape[0] == k.shape[0] == v.shape[0]):
1223
+ raise ValueError(
1224
+ f"Expected {q.shape[0]=} to be equal to {k.shape[0]=} and {v.shape[0]=}"
1225
+ )
1226
+ if not (q.shape[2] == k.shape[2] == v.shape[2]):
1227
+ raise ValueError(
1228
+ f"Expected {q.shape[2]=} to be equal to {k.shape[2]=} and {v.shape[2]=}"
1229
+ )
1230
+ if attention_sink is not None:
1231
+ if attention_sink.shape[0] != q.shape[1]:
1232
+ raise ValueError(
1233
+ f"Expected {attention_sink.shape[0]=} to be equal to"
1234
+ f" {q.shape[1]=} (num_q_heads).")
1235
+ if attention_sink.dtype != jnp.float32:
1236
+ raise ValueError(
1237
+ f"Expected {attention_sink.dtype=} to be equal to {jnp.float32=}."
1238
+ )
1239
+
1240
+ actual_head_dim = q.shape[2]
1241
+ if actual_head_dim != 64:
1242
+ raise ValueError(f"Expected {actual_head_dim=} to be 64.")
1243
+ actual_num_q_heads = q.shape[1]
1244
+ actual_num_kv_heads = k.shape[1]
1245
+
1246
+ if actual_num_q_heads % actual_num_kv_heads != 0:
1247
+ raise ValueError(f"Expected {actual_num_q_heads=} to be divisible by"
1248
+ f" {actual_num_kv_heads=}.")
1249
+
1250
+ (
1251
+ _,
1252
+ page_size,
1253
+ num_kv_heads_per_kv_packing,
1254
+ kv_packing,
1255
+ actual_head_dim_x2,
1256
+ ) = kv_cache.shape
1257
+
1258
+ if actual_head_dim_x2 != 128:
1259
+ raise ValueError(f"Expected {actual_head_dim_x2=} is equal to 128")
1260
+ # Note: we expect the kv quantization happens outside of the RPA kernel.
1261
+ if not (kv_cache.dtype == k.dtype == v.dtype):
1262
+ raise ValueError(
1263
+ f"Expected {kv_cache.dtype=} to be equal to {k.dtype=} and {v.dtype=}."
1264
+ )
1265
+ # Integer kv quantization is currently not supported.
1266
+ if not jnp.issubdtype(kv_cache.dtype, jnp.floating):
1267
+ raise ValueError(f"Expected {kv_cache.dtype=} to be a floating point.")
1268
+ if kv_packing != get_dtype_packing(kv_cache.dtype):
1269
+ raise ValueError(
1270
+ f"{kv_packing=} does not match with {kv_cache.dtype=}")
1271
+
1272
+ num_kv_heads = num_kv_heads_per_kv_packing * kv_packing
1273
+ if align_to(actual_num_kv_heads, kv_packing) != num_kv_heads:
1274
+ raise ValueError(
1275
+ f"Invalid {num_kv_heads=}, {actual_num_kv_heads=}, {kv_packing=}")
1276
+
1277
+ if not (jnp.int32 == kv_lens.dtype == page_indices.dtype == cu_q_lens.dtype
1278
+ == distribution.dtype):
1279
+ raise ValueError(
1280
+ f"Expected int32 dtype for {kv_lens.dtype=}, {page_indices.dtype=},"
1281
+ f" {cu_q_lens.dtype=}, {distribution.dtype=}")
1282
+
1283
+ if not (len(kv_lens.shape) == len(page_indices.shape) == len(
1284
+ cu_q_lens.shape) == 1):
1285
+ raise ValueError(
1286
+ f"Expected 1D array for {kv_lens.shape=}, {page_indices.shape=},"
1287
+ f" {cu_q_lens.shape=}")
1288
+
1289
+ max_num_seqs = kv_lens.shape[0]
1290
+ num_page_indices = page_indices.shape[0]
1291
+ if num_page_indices % max_num_seqs != 0:
1292
+ raise ValueError(
1293
+ f"Expected {num_page_indices=} to be divisible by {max_num_seqs=}."
1294
+ )
1295
+ if cu_q_lens.shape != (max_num_seqs + 1, ):
1296
+ raise ValueError(
1297
+ f"Expected {cu_q_lens.shape=} to be ({max_num_seqs + 1},).")
1298
+ if distribution.shape != (3, ):
1299
+ raise ValueError(f"Expected {distribution.shape=} to be (3,).")
1300
+
1301
+ if page_size % kv_packing != 0:
1302
+ raise ValueError(f"{page_size=} must be divisible by {kv_packing=}.")
1303
+ if sliding_window is not None and sliding_window <= 0:
1304
+ raise ValueError(f"{sliding_window=} must be positive.")
1305
+ if soft_cap is not None and soft_cap == 0.0:
1306
+ raise ValueError(f"{soft_cap=} must not be 0.0.")
1307
+ if chunk_prefill_size is not None and chunk_prefill_size <= 0:
1308
+ raise ValueError(f"{chunk_prefill_size=} must be positive.")
1309
+ if num_kv_pages_per_block is not None:
1310
+ if num_kv_pages_per_block <= 0:
1311
+ raise ValueError(f"{num_kv_pages_per_block=} must be positive.")
1312
+ if num_queries_per_block is not None:
1313
+ if num_queries_per_block <= 0:
1314
+ raise ValueError(f"{num_queries_per_block=} must be positive.")
1315
+ if vmem_limit_bytes is not None and vmem_limit_bytes <= 0:
1316
+ raise ValueError(f"{vmem_limit_bytes=} must be positive.")
1317
+
1318
+ # No constraints for the following inputs.
1319
+ del sm_scale
1320
+ del mask_value
1321
+ del q_scale
1322
+ del k_scale
1323
+ del v_scale
1324
+ del debug_mode
1325
+
1326
+
1327
+ def get_kernel_scope_name(bq_size, bkv_p, page_size):
1328
+ return f"RPA-HD_64-bq_{bq_size}-bkvp_{bkv_p}-p_{page_size}-"
1329
+
1330
+
1331
+ @functools.partial(
1332
+ jax.jit,
1333
+ static_argnames=(
1334
+ "sm_scale",
1335
+ "sliding_window",
1336
+ "soft_cap",
1337
+ "mask_value",
1338
+ "q_scale",
1339
+ "k_scale",
1340
+ "v_scale",
1341
+ "chunk_prefill_size",
1342
+ "num_kv_pages_per_block",
1343
+ "num_queries_per_block",
1344
+ "vmem_limit_bytes",
1345
+ "debug_mode",
1346
+ ),
1347
+ donate_argnames=("kv_cache", ),
1348
+ )
1349
+ def ragged_paged_attention_hd64(
1350
+ queries: jax.
1351
+ Array, # [max_num_tokens, actual_num_q_heads, actual_head_dim]
1352
+ keys: jax.Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim]
1353
+ values: jax.
1354
+ Array, # [max_num_tokens, actual_num_kv_heads, actual_head_dim]
1355
+ kv_cache: jax.
1356
+ Array, # [total_num_pages, page_size, num_kv_heads // kv_packing, kv_packing, actual_head_dim_x2]
1357
+ kv_lens: jax.Array, # i32[max_num_seqs]
1358
+ page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
1359
+ cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
1360
+ distribution: jax.Array, # i32[3]
1361
+ attention_sink: jax.Array | None = None, # f32[actual_num_q_heads]
1362
+ *,
1363
+ sm_scale: float = 1.0,
1364
+ sliding_window: int | None = None,
1365
+ soft_cap: float | None = None,
1366
+ mask_value: float | None = DEFAULT_MASK_VALUE,
1367
+ q_scale: float | None = None,
1368
+ k_scale: float | None = None,
1369
+ v_scale: float | None = None,
1370
+ # Kernel optimization params.
1371
+ chunk_prefill_size: int | None = None,
1372
+ # Kernel tuning params.
1373
+ num_kv_pages_per_block: int | None = None,
1374
+ num_queries_per_block: int | None = None,
1375
+ vmem_limit_bytes: int | None = None,
1376
+ # Debug params.
1377
+ debug_mode: bool = False,
1378
+ ):
1379
+ """A variant of ragged paged attention for head_dim=64.
1380
+
1381
+ Args:
1382
+ queries: concatenated all sequences' queries.
1383
+ keys: concatenated all sequences' keys (quantized).
1384
+ values: concatenated all sequences' values (quantized).
1385
+ kv_cache: paged KV cache with TPU-friendly shape.
1386
+ kv_lens: padded kv lengths. Only the first num_seqs values are valid.
1387
+ page_indices: flattened page indices look-up table by (seq_id, page_id).
1388
+ cu_q_lens: the cumulative sum of the effective query lengths. Similar to
1389
+ kv_lens, only the first num_seqs+1 values are valid.
1390
+ distribution: (i, j, k) represents that sequences[0:i] are decode-only,
1391
+ sequences[i:j] are chunked-prefill-only, and sequences[j:k] are mixed. The
1392
+ k is also the total number of sequences.
1393
+ attention_sink: optional attention sink for each q head.
1394
+ sm_scale: the softmax scale which will be applied to the Q@K^T.
1395
+ sliding_window: the sliding window size for the attention.
1396
+ soft_cap: the logit soft cap for the attention.
1397
+ mask_value: mask value for causal mask.
1398
+ q_scale: the scale for the query.
1399
+ k_scale: the scale for the key cache.
1400
+ v_scale: the scale for the value cache.
1401
+ chunk_prefill_size: the chunk prefill size for the attention.
1402
+ num_kv_pages_per_block: number of kv pages to be processed in one flash
1403
+ attention block in the pallas kernel.
1404
+ num_queries_per_block: number of kv pages to be processed in one flash
1405
+ attention block in the pallas kernel.
1406
+ vmem_limit_bytes: the vmem limit for the pallas kernel.
1407
+ debug_mode: if true, RPA does not issue any DMAs or run flash attention but
1408
+ print debug info. Need to compile with `--xla_tpu_enable_log_recorder`.
1409
+
1410
+ Returns:
1411
+ The output of the attention.
1412
+ """
1413
+ q, k, v = queries, keys, values
1414
+ static_validate_inputs(
1415
+ q,
1416
+ k,
1417
+ v,
1418
+ kv_cache,
1419
+ kv_lens,
1420
+ page_indices,
1421
+ cu_q_lens,
1422
+ distribution,
1423
+ attention_sink,
1424
+ sm_scale=sm_scale,
1425
+ sliding_window=sliding_window,
1426
+ soft_cap=soft_cap,
1427
+ mask_value=mask_value,
1428
+ q_scale=q_scale,
1429
+ k_scale=k_scale,
1430
+ v_scale=v_scale,
1431
+ chunk_prefill_size=chunk_prefill_size,
1432
+ num_kv_pages_per_block=num_kv_pages_per_block,
1433
+ num_queries_per_block=num_queries_per_block,
1434
+ vmem_limit_bytes=vmem_limit_bytes,
1435
+ )
1436
+
1437
+ actual_num_q_heads = q.shape[1]
1438
+ actual_head_dim = q.shape[2]
1439
+ actual_num_kv_heads = k.shape[1]
1440
+
1441
+ actual_num_q_heads_per_kv_head = actual_num_q_heads // actual_num_kv_heads
1442
+ q, kv, attention_sink = prepare_inputs(q, k, v, attention_sink)
1443
+ (
1444
+ _,
1445
+ max_num_tokens,
1446
+ num_q_heads_per_kv_head_per_q_packing,
1447
+ q_packing,
1448
+ head_dim,
1449
+ ) = q.shape
1450
+ page_size = kv_cache.shape[1]
1451
+ max_num_seqs = kv_lens.shape[0]
1452
+ num_page_indices = page_indices.shape[0]
1453
+ assert num_page_indices % max_num_seqs == 0
1454
+ pages_per_seq = num_page_indices // max_num_seqs
1455
+ num_q_heads_per_kv_head = num_q_heads_per_kv_head_per_q_packing * q_packing
1456
+
1457
+ bkv_p = num_kv_pages_per_block
1458
+ bq_sz = num_queries_per_block
1459
+ if bq_sz is None or bkv_p is None:
1460
+ bkv_p, bq_sz = get_tuned_block_sizes(
1461
+ q.dtype,
1462
+ kv_cache.dtype,
1463
+ actual_num_q_heads,
1464
+ actual_num_kv_heads,
1465
+ actual_head_dim,
1466
+ page_size,
1467
+ max_num_tokens,
1468
+ pages_per_seq,
1469
+ sliding_window,
1470
+ )
1471
+ bkv_sz = bkv_p * page_size
1472
+ if vmem_limit_bytes is None:
1473
+ # TODO (jevinjiang/jacobplatin): change this to use
1474
+ # `get_vmem_estimate_bytes` when VREG spilling is fixed.
1475
+ vmem_limit_bytes = DEFAULT_VMEM_LIMIT_BYTES
1476
+ grid = (distribution[2], )
1477
+
1478
+ in_specs = [
1479
+ pl.BlockSpec(memory_space=pltpu.HBM),
1480
+ pl.BlockSpec(memory_space=pltpu.HBM),
1481
+ pl.BlockSpec(memory_space=pltpu.HBM),
1482
+ None if attention_sink is None else pl.BlockSpec(
1483
+ memory_space=pltpu.VMEM),
1484
+ ]
1485
+
1486
+ out_specs = [
1487
+ pl.BlockSpec(memory_space=pltpu.HBM),
1488
+ pl.BlockSpec(memory_space=pltpu.HBM),
1489
+ ]
1490
+
1491
+ bkv_double_buf = pltpu.VMEM(
1492
+ (2, bkv_sz, *kv_cache.shape[2:]),
1493
+ kv_cache.dtype,
1494
+ )
1495
+
1496
+ bq_double_buf = pltpu.VMEM(
1497
+ (2, actual_num_kv_heads, bq_sz, *q.shape[2:]),
1498
+ q.dtype,
1499
+ )
1500
+
1501
+ bo_double_buf = bq_double_buf
1502
+
1503
+ l_scratch = pltpu.VMEM(
1504
+ (actual_num_kv_heads, bq_sz * num_q_heads_per_kv_head, 128),
1505
+ jnp.float32,
1506
+ )
1507
+ m_scratch = l_scratch
1508
+
1509
+ acc_scratch = pltpu.VMEM(
1510
+ (actual_num_kv_heads, bq_sz * num_q_heads_per_kv_head, head_dim),
1511
+ jnp.float32,
1512
+ )
1513
+
1514
+ scratch_shapes = [
1515
+ bkv_double_buf, # Double buffering for kv block.
1516
+ bq_double_buf, # Double buffering for q block.
1517
+ bo_double_buf, # Double buffering for output block.
1518
+ # Semaphores for double buffering of bkv, bq, bo and bkv_update.
1519
+ pltpu.SemaphoreType.DMA((4, 2)),
1520
+ # Intermediate buffers per kv head for flash attention.
1521
+ l_scratch,
1522
+ m_scratch,
1523
+ acc_scratch,
1524
+ ]
1525
+
1526
+ scalar_prefetches = (
1527
+ kv_lens,
1528
+ # TODO(jevinjiang): can we use ragged page_indices to save some smem?
1529
+ page_indices,
1530
+ cu_q_lens,
1531
+ distribution,
1532
+ # (bq_sem_idx, bkv_sem_idx, bo_sem_idx)
1533
+ jnp.zeros((3, ), jnp.int32),
1534
+ # (bo_sem_0_seq_idx, bo_sem_1_seq_idx, bo_sem_0_bo_idx, bo_sem_1_bo_idx)
1535
+ jnp.full((4, ), -1, jnp.int32),
1536
+ # (bkv_sem_0_seq_idx, bkv_sem_1_seq_idx, bkv_sem_0_offset, bkv_sem_1_offset, bkv_sem_0_sz, bkv_sem_1_sz)
1537
+ jnp.full((6, ), -1, jnp.int32),
1538
+ )
1539
+
1540
+ scope_name = get_kernel_scope_name(bq_sz, bkv_p, page_size)
1541
+ kernel = pl.pallas_call(
1542
+ functools.partial(
1543
+ _ragged_paged_attention_kernel,
1544
+ sm_scale=sm_scale,
1545
+ sliding_window=sliding_window,
1546
+ soft_cap=soft_cap,
1547
+ mask_value=mask_value,
1548
+ q_scale=q_scale,
1549
+ k_scale=k_scale,
1550
+ v_scale=v_scale,
1551
+ chunk_prefill_size=chunk_prefill_size,
1552
+ bq_sz=bq_sz,
1553
+ bkv_p=bkv_p,
1554
+ debug_mode=debug_mode,
1555
+ ),
1556
+ grid_spec=pltpu.PrefetchScalarGridSpec(
1557
+ num_scalar_prefetch=len(scalar_prefetches),
1558
+ in_specs=in_specs,
1559
+ out_specs=out_specs,
1560
+ grid=grid,
1561
+ scratch_shapes=scratch_shapes,
1562
+ ),
1563
+ compiler_params=pltpu.CompilerParams(
1564
+ # TODO(jevinjiang): since each sequence depends on the previous
1565
+ # one, we need some extra work to support Megacore mode.
1566
+ dimension_semantics=("arbitrary", ),
1567
+ vmem_limit_bytes=vmem_limit_bytes,
1568
+ ),
1569
+ out_shape=[
1570
+ jax.ShapeDtypeStruct(shape=q.shape, dtype=q.dtype),
1571
+ jax.ShapeDtypeStruct(shape=kv_cache.shape, dtype=kv_cache.dtype),
1572
+ ],
1573
+ input_output_aliases={
1574
+ 7: 0,
1575
+ 9: 1
1576
+ },
1577
+ name=scope_name,
1578
+ )
1579
+
1580
+ output, updated_kv_cache = kernel(*scalar_prefetches, q, kv, kv_cache,
1581
+ attention_sink)
1582
+ return (
1583
+ prepare_outputs(output, actual_num_q_heads_per_kv_head,
1584
+ actual_head_dim),
1585
+ updated_kv_cache,
1586
+ )