tpu-inference 0.12.0.dev20251222__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. tests/__init__.py +13 -0
  2. tests/core/__init__.py +13 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +67 -0
  6. tests/core/test_dp_scheduler.py +724 -0
  7. tests/core/test_init.py +63 -0
  8. tests/distributed/__init__.py +13 -0
  9. tests/distributed/test_distributed_utils.py +120 -0
  10. tests/distributed/test_tpu_connector.py +478 -0
  11. tests/e2e/__init__.py +13 -0
  12. tests/e2e/test_async_scheduler.py +211 -0
  13. tests/e2e/test_data_parallel.py +393 -0
  14. tests/e2e/test_local_disagg.py +257 -0
  15. tests/e2e/test_model_loader.py +268 -0
  16. tests/e2e/test_multi_modal_inference.py +111 -0
  17. tests/e2e/test_pipeline_parallel.py +265 -0
  18. tests/e2e/test_runai_model_streamer_loader.py +104 -0
  19. tests/e2e/test_sampling_params.py +269 -0
  20. tests/e2e/test_speculative_decoding.py +291 -0
  21. tests/e2e/test_structured_decoding.py +46 -0
  22. tests/executors/__init__.py +13 -0
  23. tests/executors/test_ray_distributed_executor.py +199 -0
  24. tests/experimental/__init__.py +13 -0
  25. tests/experimental/test_llama3_jax_stashed.py +208 -0
  26. tests/kernels/__init__.py +13 -0
  27. tests/kernels/collectives/__init__.py +13 -0
  28. tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
  29. tests/kernels/fused_moe_v1_test.py +388 -0
  30. tests/kernels/gmm_test.py +205 -0
  31. tests/kernels/mla_v1_test.py +498 -0
  32. tests/kernels/quantized_matmul_kernel_test.py +159 -0
  33. tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
  34. tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
  35. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
  36. tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
  37. tests/layers/__init__.py +13 -0
  38. tests/layers/common/__init__.py +13 -0
  39. tests/layers/common/test_attention_interface.py +156 -0
  40. tests/layers/common/test_quantization.py +149 -0
  41. tests/layers/jax/__init__.py +13 -0
  42. tests/layers/jax/attention/__init__.py +13 -0
  43. tests/layers/jax/attention/test_common_attention.py +103 -0
  44. tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
  45. tests/layers/jax/attention/test_llama4_attention.py +135 -0
  46. tests/layers/jax/moe/__init__.py +13 -0
  47. tests/layers/jax/moe/test_deepseek_moe.py +235 -0
  48. tests/layers/jax/sample/__init__.py +13 -0
  49. tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
  50. tests/layers/jax/sample/test_sampling.py +115 -0
  51. tests/layers/jax/sample/test_sampling_metadata.py +254 -0
  52. tests/layers/jax/test_layers.py +155 -0
  53. tests/layers/jax/test_qwix.py +969 -0
  54. tests/layers/jax/test_rope.py +93 -0
  55. tests/layers/jax/test_sharding.py +159 -0
  56. tests/layers/jax/test_transformer_block.py +152 -0
  57. tests/layers/vllm/__init__.py +13 -0
  58. tests/layers/vllm/test_attention.py +363 -0
  59. tests/layers/vllm/test_awq.py +405 -0
  60. tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
  61. tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
  62. tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
  63. tests/layers/vllm/test_fp8.py +17 -0
  64. tests/layers/vllm/test_mxfp4.py +297 -0
  65. tests/layers/vllm/test_unquantized.py +621 -0
  66. tests/layers/vllm/utils.py +72 -0
  67. tests/lora/__init__.py +13 -0
  68. tests/lora/conftest.py +46 -0
  69. tests/lora/test_bgmv.py +57 -0
  70. tests/lora/test_layers.py +666 -0
  71. tests/lora/test_lora.py +147 -0
  72. tests/lora/test_lora_perf.py +67 -0
  73. tests/lora/utils.py +88 -0
  74. tests/models/__init__.py +13 -0
  75. tests/models/common/__init__.py +13 -0
  76. tests/models/common/test_model_loader.py +455 -0
  77. tests/models/jax/__init__.py +13 -0
  78. tests/models/jax/test_deepseek_v3.py +401 -0
  79. tests/models/jax/test_llama3.py +184 -0
  80. tests/models/jax/test_llama4.py +298 -0
  81. tests/models/jax/test_llama_eagle3.py +197 -0
  82. tests/models/jax/test_llama_guard_4.py +242 -0
  83. tests/models/jax/test_qwen2.py +172 -0
  84. tests/models/jax/test_qwen2_5_vl.py +606 -0
  85. tests/models/jax/test_qwen3.py +169 -0
  86. tests/models/jax/test_weight_loading.py +180 -0
  87. tests/models/jax/utils/__init__.py +13 -0
  88. tests/models/jax/utils/test_multi_modal_utils.py +212 -0
  89. tests/platforms/__init__.py +13 -0
  90. tests/platforms/test_tpu_platform.py +54 -0
  91. tests/runner/__init__.py +13 -0
  92. tests/runner/test_block_table.py +395 -0
  93. tests/runner/test_input_batch.py +226 -0
  94. tests/runner/test_kv_cache.py +220 -0
  95. tests/runner/test_kv_cache_manager.py +498 -0
  96. tests/runner/test_multimodal_manager.py +429 -0
  97. tests/runner/test_persistent_batch_manager.py +84 -0
  98. tests/runner/test_speculative_decoding_manager.py +368 -0
  99. tests/runner/test_structured_decoding_manager.py +220 -0
  100. tests/runner/test_tpu_runner.py +202 -0
  101. tests/runner/test_tpu_runner_dp.py +1033 -0
  102. tests/runner/test_tpu_runner_mesh.py +200 -0
  103. tests/runner/test_utils.py +411 -0
  104. tests/spec_decode/__init__.py +13 -0
  105. tests/spec_decode/test_eagle3.py +311 -0
  106. tests/test_base.py +215 -0
  107. tests/test_envs.py +280 -0
  108. tests/test_tpu_info.py +134 -0
  109. tests/test_utils.py +193 -0
  110. tests/worker/__init__.py +13 -0
  111. tests/worker/tpu_worker_test.py +414 -0
  112. tpu_inference/__init__.py +67 -0
  113. tpu_inference/core/__init__.py +13 -0
  114. tpu_inference/core/core_tpu.py +786 -0
  115. tpu_inference/core/disagg_executor.py +118 -0
  116. tpu_inference/core/disagg_utils.py +49 -0
  117. tpu_inference/core/sched/__init__.py +13 -0
  118. tpu_inference/core/sched/dp_scheduler.py +814 -0
  119. tpu_inference/distributed/__init__.py +13 -0
  120. tpu_inference/distributed/jax_parallel_state.py +81 -0
  121. tpu_inference/distributed/tpu_connector.py +732 -0
  122. tpu_inference/distributed/utils.py +112 -0
  123. tpu_inference/env_override.py +9 -0
  124. tpu_inference/envs.py +191 -0
  125. tpu_inference/executors/__init__.py +13 -0
  126. tpu_inference/executors/ray_distributed_executor.py +399 -0
  127. tpu_inference/experimental/__init__.py +13 -0
  128. tpu_inference/experimental/llama3_jax_stashed.py +272 -0
  129. tpu_inference/kernels/__init__.py +13 -0
  130. tpu_inference/kernels/collectives/__init__.py +13 -0
  131. tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
  132. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
  133. tpu_inference/kernels/collectives/util.py +47 -0
  134. tpu_inference/kernels/flash_attention/__init__.py +13 -0
  135. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  136. tpu_inference/kernels/fused_moe/__init__.py +13 -0
  137. tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
  138. tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
  139. tpu_inference/kernels/megablox/__init__.py +13 -0
  140. tpu_inference/kernels/megablox/common.py +54 -0
  141. tpu_inference/kernels/megablox/gmm.py +646 -0
  142. tpu_inference/kernels/mla/__init__.py +13 -0
  143. tpu_inference/kernels/mla/v1/__init__.py +13 -0
  144. tpu_inference/kernels/mla/v1/kernel.py +1340 -0
  145. tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
  146. tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
  147. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  148. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  149. tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
  150. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
  151. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
  152. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
  153. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  154. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
  155. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
  156. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
  157. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
  158. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
  159. tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
  160. tpu_inference/layers/__init__.py +13 -0
  161. tpu_inference/layers/common/__init__.py +13 -0
  162. tpu_inference/layers/common/attention_interface.py +403 -0
  163. tpu_inference/layers/common/attention_metadata.py +48 -0
  164. tpu_inference/layers/common/binary_search.py +295 -0
  165. tpu_inference/layers/common/quant_methods.py +23 -0
  166. tpu_inference/layers/common/quantization.py +270 -0
  167. tpu_inference/layers/common/sharding.py +600 -0
  168. tpu_inference/layers/jax/__init__.py +13 -0
  169. tpu_inference/layers/jax/attention/__init__.py +13 -0
  170. tpu_inference/layers/jax/attention/attention.py +268 -0
  171. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
  172. tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
  173. tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
  174. tpu_inference/layers/jax/base.py +165 -0
  175. tpu_inference/layers/jax/constants.py +101 -0
  176. tpu_inference/layers/jax/layers.py +315 -0
  177. tpu_inference/layers/jax/misc.py +30 -0
  178. tpu_inference/layers/jax/moe/__init__.py +13 -0
  179. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
  180. tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
  181. tpu_inference/layers/jax/moe/moe.py +249 -0
  182. tpu_inference/layers/jax/pp_utils.py +53 -0
  183. tpu_inference/layers/jax/rope.py +294 -0
  184. tpu_inference/layers/jax/rope_interface.py +228 -0
  185. tpu_inference/layers/jax/sample/__init__.py +13 -0
  186. tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
  187. tpu_inference/layers/jax/sample/sampling.py +110 -0
  188. tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
  189. tpu_inference/layers/jax/transformer_block.py +121 -0
  190. tpu_inference/layers/vllm/__init__.py +13 -0
  191. tpu_inference/layers/vllm/attention.py +221 -0
  192. tpu_inference/layers/vllm/fused_moe.py +502 -0
  193. tpu_inference/layers/vllm/linear_common.py +221 -0
  194. tpu_inference/layers/vllm/quantization/__init__.py +55 -0
  195. tpu_inference/layers/vllm/quantization/awq.py +221 -0
  196. tpu_inference/layers/vllm/quantization/common.py +124 -0
  197. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
  198. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
  199. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
  200. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
  201. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
  202. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
  203. tpu_inference/layers/vllm/quantization/fp8.py +118 -0
  204. tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
  205. tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
  206. tpu_inference/layers/vllm/sharding.py +244 -0
  207. tpu_inference/logger.py +10 -0
  208. tpu_inference/lora/__init__.py +13 -0
  209. tpu_inference/lora/torch_lora_ops.py +98 -0
  210. tpu_inference/lora/torch_punica_tpu.py +310 -0
  211. tpu_inference/models/__init__.py +13 -0
  212. tpu_inference/models/common/__init__.py +13 -0
  213. tpu_inference/models/common/model_loader.py +520 -0
  214. tpu_inference/models/jax/__init__.py +13 -0
  215. tpu_inference/models/jax/deepseek_v3.py +978 -0
  216. tpu_inference/models/jax/gpt_oss.py +508 -0
  217. tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
  218. tpu_inference/models/jax/llama3.py +436 -0
  219. tpu_inference/models/jax/llama4.py +643 -0
  220. tpu_inference/models/jax/llama_eagle3.py +350 -0
  221. tpu_inference/models/jax/llama_guard_4.py +375 -0
  222. tpu_inference/models/jax/qwen2.py +390 -0
  223. tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
  224. tpu_inference/models/jax/qwen3.py +318 -0
  225. tpu_inference/models/jax/utils/__init__.py +13 -0
  226. tpu_inference/models/jax/utils/file_utils.py +110 -0
  227. tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
  228. tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
  229. tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
  230. tpu_inference/models/jax/utils/weight_utils.py +621 -0
  231. tpu_inference/models/vllm/__init__.py +13 -0
  232. tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
  233. tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
  234. tpu_inference/platforms/__init__.py +16 -0
  235. tpu_inference/platforms/tpu_platform.py +258 -0
  236. tpu_inference/runner/__init__.py +13 -0
  237. tpu_inference/runner/block_table.py +122 -0
  238. tpu_inference/runner/compilation_manager.py +890 -0
  239. tpu_inference/runner/input_batch.py +435 -0
  240. tpu_inference/runner/kv_cache.py +166 -0
  241. tpu_inference/runner/kv_cache_manager.py +508 -0
  242. tpu_inference/runner/lora_utils.py +106 -0
  243. tpu_inference/runner/multimodal_manager.py +231 -0
  244. tpu_inference/runner/persistent_batch_manager.py +296 -0
  245. tpu_inference/runner/speculative_decoding_manager.py +262 -0
  246. tpu_inference/runner/structured_decoding_manager.py +101 -0
  247. tpu_inference/runner/tpu_runner.py +1768 -0
  248. tpu_inference/runner/utils.py +426 -0
  249. tpu_inference/spec_decode/__init__.py +13 -0
  250. tpu_inference/spec_decode/jax/__init__.py +13 -0
  251. tpu_inference/spec_decode/jax/eagle3.py +430 -0
  252. tpu_inference/tpu_info.py +92 -0
  253. tpu_inference/utils.py +345 -0
  254. tpu_inference/worker/__init__.py +13 -0
  255. tpu_inference/worker/tpu_worker.py +468 -0
  256. tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
  257. tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
  258. tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
  259. tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
  260. tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
@@ -0,0 +1,159 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import jax
4
+ import jax.numpy as jnp
5
+ from absl.testing import absltest, parameterized
6
+ from jax._src import test_util as jtu
7
+
8
+ from tpu_inference.kernels.quantized_matmul import (kernel, tuned_block_sizes,
9
+ util)
10
+
11
+ xla_quantized_matmul = kernel.xla_quantized_matmul
12
+ quantized_matmul_kernel = kernel.quantized_matmul_kernel
13
+ quantize_tensor = util.quantize_tensor
14
+ get_tuned_block_sizes = tuned_block_sizes.get_tuned_block_sizes
15
+
16
+ jax.config.parse_flags_with_absl()
17
+
18
+
19
+ @jtu.with_config(jax_numpy_dtype_promotion="standard")
20
+ class QuantizedMatmulKernelTest(jtu.JaxTestCase):
21
+
22
+ def setUp(self):
23
+ super().setUp()
24
+ if not jtu.is_device_tpu_at_least(6):
25
+ self.skipTest("Expect TPUv6+")
26
+
27
+ def _test_quantized_matmul(
28
+ self,
29
+ dtype: jnp.dtype,
30
+ q_dtype: jnp.dtype,
31
+ bs: int,
32
+ n_input_features: int,
33
+ n_output_features: int,
34
+ quantize_activation: bool,
35
+ tuned_value=None,
36
+ atol=0.5,
37
+ rtol=0.5,
38
+ ):
39
+
40
+ prng_key = jax.random.key(1234)
41
+ k0, k1 = jax.random.split(prng_key, 2)
42
+ x = jax.random.uniform(k0, (bs, n_input_features),
43
+ dtype=dtype,
44
+ minval=0,
45
+ maxval=1)
46
+ w = jax.random.uniform(
47
+ k1,
48
+ (n_output_features, n_input_features),
49
+ dtype=dtype,
50
+ minval=-1,
51
+ maxval=1,
52
+ )
53
+ w_q, w_scale = quantize_tensor(w, q_dtype)
54
+ w_scale = jnp.squeeze(w_scale)
55
+ assert w_scale.shape == (n_output_features, )
56
+
57
+ x_q_dtype = w_q.dtype if quantize_activation else dtype
58
+ output = quantized_matmul_kernel(
59
+ x,
60
+ w_q,
61
+ w_scale,
62
+ x_q_dtype=x_q_dtype,
63
+ tuned_value=tuned_value,
64
+ )
65
+ expected = xla_quantized_matmul(
66
+ x, w_q, w_scale, quantize_activation=quantize_activation)
67
+
68
+ self.assertAllClose(output,
69
+ expected,
70
+ rtol=rtol,
71
+ atol=atol,
72
+ check_dtypes=True)
73
+
74
+ @parameterized.product(
75
+ dtype=[jnp.bfloat16, jnp.float32],
76
+ q_dtype=[jnp.int8, jnp.float8_e4m3fn],
77
+ bs=[128, 256, 512],
78
+ n_input_features=[128, 256, 512],
79
+ n_output_features=[128, 256, 512],
80
+ quantize_activation=[True],
81
+ )
82
+ def test_quantized_matmul_various_input_shapes(
83
+ self,
84
+ dtype: jnp.dtype,
85
+ q_dtype: jnp.dtype,
86
+ bs: int,
87
+ n_input_features: int,
88
+ n_output_features: int,
89
+ quantize_activation: bool,
90
+ ):
91
+ self._test_quantized_matmul(
92
+ dtype,
93
+ q_dtype,
94
+ bs,
95
+ n_input_features,
96
+ n_output_features,
97
+ quantize_activation=quantize_activation,
98
+ tuned_value=None,
99
+ )
100
+
101
+ @parameterized.product(
102
+ dtype=[jnp.bfloat16, jnp.float32],
103
+ q_dtype=[jnp.int8, jnp.float8_e4m3fn],
104
+ bs=[64, 192],
105
+ n_input_features=[64, 192],
106
+ n_output_features=[64, 192],
107
+ quantize_activation=[True],
108
+ )
109
+ def test_quantized_matmul_unaligned_input_shapes(
110
+ self,
111
+ dtype: jnp.dtype,
112
+ q_dtype: jnp.dtype,
113
+ bs: int,
114
+ n_input_features: int,
115
+ n_output_features: int,
116
+ quantize_activation: bool,
117
+ ):
118
+ self._test_quantized_matmul(
119
+ dtype,
120
+ q_dtype,
121
+ bs,
122
+ n_input_features,
123
+ n_output_features,
124
+ quantize_activation=quantize_activation,
125
+ tuned_value=None,
126
+ )
127
+
128
+ @parameterized.parameters(
129
+ (jnp.bfloat16, jnp.int8, 128, 1280, 8192, True),
130
+ (jnp.bfloat16, jnp.int8, 128, 28672, 4096, True),
131
+ (jnp.bfloat16, jnp.int8, 128, 4096, 14336, True),
132
+ (jnp.bfloat16, jnp.int8, 128, 4096, 4096, True),
133
+ (jnp.bfloat16, jnp.int8, 128, 6144, 4096, True),
134
+ (jnp.bfloat16, jnp.int8, 128, 7168, 8192, True),
135
+ (jnp.bfloat16, jnp.int8, 128, 8192, 1024, True),
136
+ (jnp.bfloat16, jnp.int8, 128, 8192, 3584, True),
137
+ )
138
+ def test_quantized_matmul_use_tuned_block_sizes(
139
+ self,
140
+ dtype: jnp.dtype,
141
+ q_dtype: jnp.dtype,
142
+ bs: int,
143
+ n_input_features: int,
144
+ n_output_features: int,
145
+ quantize_activation: bool,
146
+ ):
147
+ self._test_quantized_matmul(
148
+ dtype,
149
+ q_dtype,
150
+ bs,
151
+ n_input_features,
152
+ n_output_features,
153
+ quantize_activation=quantize_activation,
154
+ tuned_value=None,
155
+ )
156
+
157
+
158
+ if __name__ == "__main__":
159
+ absltest.main(testLoader=jtu.JaxTestLoader())
@@ -0,0 +1,248 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import jax
16
+ import jax.numpy as jnp
17
+ import numpy as np
18
+ from absl.testing import parameterized
19
+ from jax._src import test_util as jtu
20
+ from jax.sharding import Mesh, NamedSharding
21
+ from jax.sharding import PartitionSpec as P
22
+
23
+ from tpu_inference.kernels.ragged_paged_attention.v2.ragged_kv_cache_update import \
24
+ kv_cache_update
25
+
26
+
27
+ def kv_cache_update_ref(new_kv, slot_mapping, kv_cache):
28
+ """Reference implementation of KV cache update."""
29
+ for i in range(slot_mapping.shape[1]):
30
+ start_idx, new_kv_idx, slice_len = slot_mapping[:, i]
31
+ kv_cache = kv_cache.at[start_idx:start_idx + slice_len].set(
32
+ new_kv[new_kv_idx:new_kv_idx + slice_len])
33
+ return kv_cache
34
+
35
+
36
+ @jtu.with_config(jax_numpy_dtype_promotion="standard")
37
+ class KVCacheUpdateTest(jtu.JaxTestCase):
38
+
39
+ def _generate_data(self, page_size, combined_kv_head_num, head_dim):
40
+ page_num = 20
41
+ padded_num_tokens = 128
42
+ prng_key = jax.random.key(1234)
43
+ kv_cache = jnp.zeros(
44
+ (page_num * page_size, combined_kv_head_num, head_dim),
45
+ dtype=jnp.bfloat16)
46
+ new_kv = jax.random.normal(
47
+ prng_key, (padded_num_tokens, combined_kv_head_num, head_dim),
48
+ dtype=jnp.bfloat16)
49
+ slice_lens = np.array([7, page_size, page_size, 1, 1, 1, 9],
50
+ dtype=np.int32)
51
+ num_slices = jnp.array([len(slice_lens)], dtype=np.int32)
52
+ kv_cache_start_indices = np.array([
53
+ page_size * 2 - 7, page_size * 2, page_size * 3, page_size * 4 + 6,
54
+ page_size * 5 + 7, page_size * 6 + 8, page_size * 15 + 3
55
+ ],
56
+ dtype=np.int32)
57
+ new_kv_cache_indices = np.concatenate(
58
+ [np.array([0], dtype=np.int32),
59
+ np.cumsum(slice_lens[:-1])])
60
+ slot_mapping_np = np.stack(
61
+ [kv_cache_start_indices, new_kv_cache_indices, slice_lens], axis=1)
62
+ slot_mapping_np = np.transpose(slot_mapping_np)
63
+ slot_mapping = jnp.array(slot_mapping_np, dtype=jnp.int32)
64
+ return new_kv, slot_mapping, kv_cache, num_slices
65
+
66
+ @parameterized.product(
67
+ page_size=[32, 33],
68
+ combined_kv_head_num=[2, 16],
69
+ head_dim=[128, 256],
70
+ num_slices_per_block=[None, 8],
71
+ dynamic_validate_inputs=[False, True],
72
+ )
73
+ def test_basic(self, page_size: int, combined_kv_head_num: int,
74
+ head_dim: int, num_slices_per_block: int,
75
+ dynamic_validate_inputs: bool):
76
+ new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
77
+ page_size, combined_kv_head_num, head_dim)
78
+ old_kv_cache_copy = kv_cache.copy()
79
+
80
+ with jax.disable_jit(disable=dynamic_validate_inputs):
81
+ updated_kv_cache = kv_cache_update(
82
+ new_kv,
83
+ slot_mapping,
84
+ kv_cache,
85
+ num_slices,
86
+ page_size=page_size,
87
+ num_slices_per_block=num_slices_per_block,
88
+ dynamic_validate_inputs=dynamic_validate_inputs)
89
+ updated_kv_cache_ref = kv_cache_update_ref(new_kv,
90
+ np.asarray(slot_mapping),
91
+ old_kv_cache_copy)
92
+ self.assertAllClose(updated_kv_cache,
93
+ updated_kv_cache_ref,
94
+ atol=1e-4,
95
+ rtol=1e-4)
96
+
97
+ @parameterized.product(
98
+ page_size=[32, 33],
99
+ combined_kv_head_num=[16, 32],
100
+ head_dim=[128, 256],
101
+ num_slices_per_block=[None, 8],
102
+ )
103
+ def test_torchax_shard_map(self, page_size: int, combined_kv_head_num: int,
104
+ head_dim: int, num_slices_per_block: int):
105
+ new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
106
+ page_size, combined_kv_head_num, head_dim)
107
+ old_kv_cache_copy = kv_cache.copy()
108
+
109
+ mesh = Mesh(jax.devices(), 'x')
110
+ kv_cache_pspec = P(None, 'x', None)
111
+
112
+ new_kv = jax.device_put(new_kv, NamedSharding(mesh, kv_cache_pspec))
113
+ slot_mapping = jax.device_put(slot_mapping, NamedSharding(mesh, P()))
114
+ kv_cache = jax.device_put(kv_cache,
115
+ NamedSharding(mesh, kv_cache_pspec))
116
+ num_slices = jax.device_put(num_slices, NamedSharding(mesh, P()))
117
+
118
+ updated_kv_cache = kv_cache_update(new_kv, slot_mapping, kv_cache,
119
+ num_slices,
120
+ page_size=page_size,
121
+ num_slices_per_block=\
122
+ num_slices_per_block,
123
+ mesh=mesh,
124
+ kv_cache_pspec=kv_cache_pspec,)
125
+ updated_kv_cache_ref = kv_cache_update_ref(new_kv,
126
+ np.asarray(slot_mapping),
127
+ old_kv_cache_copy)
128
+ self.assertAllClose(updated_kv_cache,
129
+ updated_kv_cache_ref,
130
+ atol=1e-4,
131
+ rtol=1e-4)
132
+
133
+ def test_invalid_inputs(self):
134
+ # Test all the cases when the inputs are invalid in the `_dynamic_validate_inputs` method
135
+ page_size = 32
136
+ combined_kv_head_num = 2
137
+ head_dim = 128
138
+
139
+ new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
140
+ page_size, combined_kv_head_num, head_dim)
141
+
142
+ with jax.disable_jit():
143
+ # Case 1: new_kv_start < 0
144
+ invalid_slot_mapping = slot_mapping.at[1, 0].set(-1)
145
+ with self.assertRaisesRegex(
146
+ ValueError, "new_kv_start=-1 must be greater than"):
147
+ kv_cache_update(new_kv,
148
+ invalid_slot_mapping,
149
+ kv_cache,
150
+ num_slices,
151
+ page_size=page_size,
152
+ dynamic_validate_inputs=True)
153
+
154
+ # Case 2: kv_cache_start < 0
155
+ invalid_slot_mapping = slot_mapping.at[0, 0].set(-1)
156
+ with self.assertRaisesRegex(
157
+ ValueError, "kv_cache_start=-1 must be greater than"):
158
+ kv_cache_update(new_kv,
159
+ invalid_slot_mapping,
160
+ kv_cache,
161
+ num_slices,
162
+ page_size=page_size,
163
+ dynamic_validate_inputs=True)
164
+
165
+ # Case 3: slice_len <= 0
166
+ invalid_slot_mapping = slot_mapping.at[2, 0].set(0)
167
+ with self.assertRaisesRegex(
168
+ ValueError, "slice_len=0 must be less or equal to"):
169
+ kv_cache_update(new_kv,
170
+ invalid_slot_mapping,
171
+ kv_cache,
172
+ num_slices,
173
+ page_size=page_size,
174
+ dynamic_validate_inputs=True)
175
+
176
+ # Case 4: slice_len > page_size
177
+ invalid_slot_mapping = slot_mapping.at[2, 0].set(page_size + 1)
178
+ with self.assertRaisesRegex(
179
+ ValueError,
180
+ f"slice_len={page_size + 1} must be less or equal to"):
181
+ kv_cache_update(new_kv,
182
+ invalid_slot_mapping,
183
+ kv_cache,
184
+ num_slices,
185
+ page_size=page_size,
186
+ dynamic_validate_inputs=True)
187
+
188
+ # Case 5: new_kv_start + slice_len > new_token_num
189
+ invalid_slot_mapping = slot_mapping.at[1, 0].set(new_kv.shape[0])
190
+ with self.assertRaisesRegex(
191
+ ValueError,
192
+ "new_kv_start=128 \+ slice_len=7 must be less or equal to new_token_num=128"
193
+ ):
194
+ kv_cache_update(new_kv,
195
+ invalid_slot_mapping,
196
+ kv_cache,
197
+ num_slices,
198
+ page_size=page_size,
199
+ dynamic_validate_inputs=True)
200
+
201
+ # Case 6: kv_cache_start + slice_len > kv_cache_token_num
202
+ invalid_slot_mapping = slot_mapping.at[0, 0].set(kv_cache.shape[0])
203
+ with self.assertRaisesRegex(
204
+ ValueError,
205
+ "kv_cache_start=640 \+ slice_len=7 must be less or equal to kv_cache_token_num=640"
206
+ ):
207
+ kv_cache_update(new_kv,
208
+ invalid_slot_mapping,
209
+ kv_cache,
210
+ num_slices,
211
+ page_size=page_size,
212
+ dynamic_validate_inputs=True)
213
+
214
+ # Case 7: Each slice must reside in the same page
215
+ invalid_slot_mapping = slot_mapping.at[0, 0].set(page_size - 1)
216
+ invalid_slot_mapping = invalid_slot_mapping.at[2, 0].set(page_size)
217
+ with self.assertRaisesRegex(
218
+ ValueError, "Each slice must reside in the same page"):
219
+ kv_cache_update(new_kv,
220
+ invalid_slot_mapping,
221
+ kv_cache,
222
+ num_slices,
223
+ page_size=page_size,
224
+ dynamic_validate_inputs=True)
225
+
226
+ # Case 8: new_kv slices are not continuous
227
+ invalid_slot_mapping = slot_mapping.at[1,
228
+ 1].set(slot_mapping[1, 1] +
229
+ 1)
230
+ with self.assertRaisesRegex(ValueError, "is expeced to equal to"):
231
+ kv_cache_update(new_kv,
232
+ invalid_slot_mapping,
233
+ kv_cache,
234
+ num_slices,
235
+ page_size=page_size,
236
+ dynamic_validate_inputs=True)
237
+
238
+ # Case 9: Overlap among the kv cache slices
239
+ invalid_slot_mapping = slot_mapping.at[0, 4].set(slot_mapping[0,
240
+ 3])
241
+ with self.assertRaisesRegex(
242
+ ValueError, "Overlap detected in kv_cache intervals"):
243
+ kv_cache_update(new_kv,
244
+ invalid_slot_mapping,
245
+ kv_cache,
246
+ num_slices,
247
+ page_size=page_size,
248
+ dynamic_validate_inputs=True)