tpu-inference 0.12.0.dev20251222__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. tests/__init__.py +13 -0
  2. tests/core/__init__.py +13 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +67 -0
  6. tests/core/test_dp_scheduler.py +724 -0
  7. tests/core/test_init.py +63 -0
  8. tests/distributed/__init__.py +13 -0
  9. tests/distributed/test_distributed_utils.py +120 -0
  10. tests/distributed/test_tpu_connector.py +478 -0
  11. tests/e2e/__init__.py +13 -0
  12. tests/e2e/test_async_scheduler.py +211 -0
  13. tests/e2e/test_data_parallel.py +393 -0
  14. tests/e2e/test_local_disagg.py +257 -0
  15. tests/e2e/test_model_loader.py +268 -0
  16. tests/e2e/test_multi_modal_inference.py +111 -0
  17. tests/e2e/test_pipeline_parallel.py +265 -0
  18. tests/e2e/test_runai_model_streamer_loader.py +104 -0
  19. tests/e2e/test_sampling_params.py +269 -0
  20. tests/e2e/test_speculative_decoding.py +291 -0
  21. tests/e2e/test_structured_decoding.py +46 -0
  22. tests/executors/__init__.py +13 -0
  23. tests/executors/test_ray_distributed_executor.py +199 -0
  24. tests/experimental/__init__.py +13 -0
  25. tests/experimental/test_llama3_jax_stashed.py +208 -0
  26. tests/kernels/__init__.py +13 -0
  27. tests/kernels/collectives/__init__.py +13 -0
  28. tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
  29. tests/kernels/fused_moe_v1_test.py +388 -0
  30. tests/kernels/gmm_test.py +205 -0
  31. tests/kernels/mla_v1_test.py +498 -0
  32. tests/kernels/quantized_matmul_kernel_test.py +159 -0
  33. tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
  34. tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
  35. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
  36. tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
  37. tests/layers/__init__.py +13 -0
  38. tests/layers/common/__init__.py +13 -0
  39. tests/layers/common/test_attention_interface.py +156 -0
  40. tests/layers/common/test_quantization.py +149 -0
  41. tests/layers/jax/__init__.py +13 -0
  42. tests/layers/jax/attention/__init__.py +13 -0
  43. tests/layers/jax/attention/test_common_attention.py +103 -0
  44. tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
  45. tests/layers/jax/attention/test_llama4_attention.py +135 -0
  46. tests/layers/jax/moe/__init__.py +13 -0
  47. tests/layers/jax/moe/test_deepseek_moe.py +235 -0
  48. tests/layers/jax/sample/__init__.py +13 -0
  49. tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
  50. tests/layers/jax/sample/test_sampling.py +115 -0
  51. tests/layers/jax/sample/test_sampling_metadata.py +254 -0
  52. tests/layers/jax/test_layers.py +155 -0
  53. tests/layers/jax/test_qwix.py +969 -0
  54. tests/layers/jax/test_rope.py +93 -0
  55. tests/layers/jax/test_sharding.py +159 -0
  56. tests/layers/jax/test_transformer_block.py +152 -0
  57. tests/layers/vllm/__init__.py +13 -0
  58. tests/layers/vllm/test_attention.py +363 -0
  59. tests/layers/vllm/test_awq.py +405 -0
  60. tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
  61. tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
  62. tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
  63. tests/layers/vllm/test_fp8.py +17 -0
  64. tests/layers/vllm/test_mxfp4.py +297 -0
  65. tests/layers/vllm/test_unquantized.py +621 -0
  66. tests/layers/vllm/utils.py +72 -0
  67. tests/lora/__init__.py +13 -0
  68. tests/lora/conftest.py +46 -0
  69. tests/lora/test_bgmv.py +57 -0
  70. tests/lora/test_layers.py +666 -0
  71. tests/lora/test_lora.py +147 -0
  72. tests/lora/test_lora_perf.py +67 -0
  73. tests/lora/utils.py +88 -0
  74. tests/models/__init__.py +13 -0
  75. tests/models/common/__init__.py +13 -0
  76. tests/models/common/test_model_loader.py +455 -0
  77. tests/models/jax/__init__.py +13 -0
  78. tests/models/jax/test_deepseek_v3.py +401 -0
  79. tests/models/jax/test_llama3.py +184 -0
  80. tests/models/jax/test_llama4.py +298 -0
  81. tests/models/jax/test_llama_eagle3.py +197 -0
  82. tests/models/jax/test_llama_guard_4.py +242 -0
  83. tests/models/jax/test_qwen2.py +172 -0
  84. tests/models/jax/test_qwen2_5_vl.py +606 -0
  85. tests/models/jax/test_qwen3.py +169 -0
  86. tests/models/jax/test_weight_loading.py +180 -0
  87. tests/models/jax/utils/__init__.py +13 -0
  88. tests/models/jax/utils/test_multi_modal_utils.py +212 -0
  89. tests/platforms/__init__.py +13 -0
  90. tests/platforms/test_tpu_platform.py +54 -0
  91. tests/runner/__init__.py +13 -0
  92. tests/runner/test_block_table.py +395 -0
  93. tests/runner/test_input_batch.py +226 -0
  94. tests/runner/test_kv_cache.py +220 -0
  95. tests/runner/test_kv_cache_manager.py +498 -0
  96. tests/runner/test_multimodal_manager.py +429 -0
  97. tests/runner/test_persistent_batch_manager.py +84 -0
  98. tests/runner/test_speculative_decoding_manager.py +368 -0
  99. tests/runner/test_structured_decoding_manager.py +220 -0
  100. tests/runner/test_tpu_runner.py +202 -0
  101. tests/runner/test_tpu_runner_dp.py +1033 -0
  102. tests/runner/test_tpu_runner_mesh.py +200 -0
  103. tests/runner/test_utils.py +411 -0
  104. tests/spec_decode/__init__.py +13 -0
  105. tests/spec_decode/test_eagle3.py +311 -0
  106. tests/test_base.py +215 -0
  107. tests/test_envs.py +280 -0
  108. tests/test_tpu_info.py +134 -0
  109. tests/test_utils.py +193 -0
  110. tests/worker/__init__.py +13 -0
  111. tests/worker/tpu_worker_test.py +414 -0
  112. tpu_inference/__init__.py +67 -0
  113. tpu_inference/core/__init__.py +13 -0
  114. tpu_inference/core/core_tpu.py +786 -0
  115. tpu_inference/core/disagg_executor.py +118 -0
  116. tpu_inference/core/disagg_utils.py +49 -0
  117. tpu_inference/core/sched/__init__.py +13 -0
  118. tpu_inference/core/sched/dp_scheduler.py +814 -0
  119. tpu_inference/distributed/__init__.py +13 -0
  120. tpu_inference/distributed/jax_parallel_state.py +81 -0
  121. tpu_inference/distributed/tpu_connector.py +732 -0
  122. tpu_inference/distributed/utils.py +112 -0
  123. tpu_inference/env_override.py +9 -0
  124. tpu_inference/envs.py +191 -0
  125. tpu_inference/executors/__init__.py +13 -0
  126. tpu_inference/executors/ray_distributed_executor.py +399 -0
  127. tpu_inference/experimental/__init__.py +13 -0
  128. tpu_inference/experimental/llama3_jax_stashed.py +272 -0
  129. tpu_inference/kernels/__init__.py +13 -0
  130. tpu_inference/kernels/collectives/__init__.py +13 -0
  131. tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
  132. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
  133. tpu_inference/kernels/collectives/util.py +47 -0
  134. tpu_inference/kernels/flash_attention/__init__.py +13 -0
  135. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  136. tpu_inference/kernels/fused_moe/__init__.py +13 -0
  137. tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
  138. tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
  139. tpu_inference/kernels/megablox/__init__.py +13 -0
  140. tpu_inference/kernels/megablox/common.py +54 -0
  141. tpu_inference/kernels/megablox/gmm.py +646 -0
  142. tpu_inference/kernels/mla/__init__.py +13 -0
  143. tpu_inference/kernels/mla/v1/__init__.py +13 -0
  144. tpu_inference/kernels/mla/v1/kernel.py +1340 -0
  145. tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
  146. tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
  147. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  148. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  149. tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
  150. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
  151. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
  152. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
  153. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  154. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
  155. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
  156. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
  157. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
  158. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
  159. tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
  160. tpu_inference/layers/__init__.py +13 -0
  161. tpu_inference/layers/common/__init__.py +13 -0
  162. tpu_inference/layers/common/attention_interface.py +403 -0
  163. tpu_inference/layers/common/attention_metadata.py +48 -0
  164. tpu_inference/layers/common/binary_search.py +295 -0
  165. tpu_inference/layers/common/quant_methods.py +23 -0
  166. tpu_inference/layers/common/quantization.py +270 -0
  167. tpu_inference/layers/common/sharding.py +600 -0
  168. tpu_inference/layers/jax/__init__.py +13 -0
  169. tpu_inference/layers/jax/attention/__init__.py +13 -0
  170. tpu_inference/layers/jax/attention/attention.py +268 -0
  171. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
  172. tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
  173. tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
  174. tpu_inference/layers/jax/base.py +165 -0
  175. tpu_inference/layers/jax/constants.py +101 -0
  176. tpu_inference/layers/jax/layers.py +315 -0
  177. tpu_inference/layers/jax/misc.py +30 -0
  178. tpu_inference/layers/jax/moe/__init__.py +13 -0
  179. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
  180. tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
  181. tpu_inference/layers/jax/moe/moe.py +249 -0
  182. tpu_inference/layers/jax/pp_utils.py +53 -0
  183. tpu_inference/layers/jax/rope.py +294 -0
  184. tpu_inference/layers/jax/rope_interface.py +228 -0
  185. tpu_inference/layers/jax/sample/__init__.py +13 -0
  186. tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
  187. tpu_inference/layers/jax/sample/sampling.py +110 -0
  188. tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
  189. tpu_inference/layers/jax/transformer_block.py +121 -0
  190. tpu_inference/layers/vllm/__init__.py +13 -0
  191. tpu_inference/layers/vllm/attention.py +221 -0
  192. tpu_inference/layers/vllm/fused_moe.py +502 -0
  193. tpu_inference/layers/vllm/linear_common.py +221 -0
  194. tpu_inference/layers/vllm/quantization/__init__.py +55 -0
  195. tpu_inference/layers/vllm/quantization/awq.py +221 -0
  196. tpu_inference/layers/vllm/quantization/common.py +124 -0
  197. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
  198. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
  199. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
  200. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
  201. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
  202. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
  203. tpu_inference/layers/vllm/quantization/fp8.py +118 -0
  204. tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
  205. tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
  206. tpu_inference/layers/vllm/sharding.py +244 -0
  207. tpu_inference/logger.py +10 -0
  208. tpu_inference/lora/__init__.py +13 -0
  209. tpu_inference/lora/torch_lora_ops.py +98 -0
  210. tpu_inference/lora/torch_punica_tpu.py +310 -0
  211. tpu_inference/models/__init__.py +13 -0
  212. tpu_inference/models/common/__init__.py +13 -0
  213. tpu_inference/models/common/model_loader.py +520 -0
  214. tpu_inference/models/jax/__init__.py +13 -0
  215. tpu_inference/models/jax/deepseek_v3.py +978 -0
  216. tpu_inference/models/jax/gpt_oss.py +508 -0
  217. tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
  218. tpu_inference/models/jax/llama3.py +436 -0
  219. tpu_inference/models/jax/llama4.py +643 -0
  220. tpu_inference/models/jax/llama_eagle3.py +350 -0
  221. tpu_inference/models/jax/llama_guard_4.py +375 -0
  222. tpu_inference/models/jax/qwen2.py +390 -0
  223. tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
  224. tpu_inference/models/jax/qwen3.py +318 -0
  225. tpu_inference/models/jax/utils/__init__.py +13 -0
  226. tpu_inference/models/jax/utils/file_utils.py +110 -0
  227. tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
  228. tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
  229. tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
  230. tpu_inference/models/jax/utils/weight_utils.py +621 -0
  231. tpu_inference/models/vllm/__init__.py +13 -0
  232. tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
  233. tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
  234. tpu_inference/platforms/__init__.py +16 -0
  235. tpu_inference/platforms/tpu_platform.py +258 -0
  236. tpu_inference/runner/__init__.py +13 -0
  237. tpu_inference/runner/block_table.py +122 -0
  238. tpu_inference/runner/compilation_manager.py +890 -0
  239. tpu_inference/runner/input_batch.py +435 -0
  240. tpu_inference/runner/kv_cache.py +166 -0
  241. tpu_inference/runner/kv_cache_manager.py +508 -0
  242. tpu_inference/runner/lora_utils.py +106 -0
  243. tpu_inference/runner/multimodal_manager.py +231 -0
  244. tpu_inference/runner/persistent_batch_manager.py +296 -0
  245. tpu_inference/runner/speculative_decoding_manager.py +262 -0
  246. tpu_inference/runner/structured_decoding_manager.py +101 -0
  247. tpu_inference/runner/tpu_runner.py +1768 -0
  248. tpu_inference/runner/utils.py +426 -0
  249. tpu_inference/spec_decode/__init__.py +13 -0
  250. tpu_inference/spec_decode/jax/__init__.py +13 -0
  251. tpu_inference/spec_decode/jax/eagle3.py +430 -0
  252. tpu_inference/tpu_info.py +92 -0
  253. tpu_inference/utils.py +345 -0
  254. tpu_inference/worker/__init__.py +13 -0
  255. tpu_inference/worker/tpu_worker.py +468 -0
  256. tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
  257. tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
  258. tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
  259. tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
  260. tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
@@ -0,0 +1,502 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import functools
16
+
17
+ import jax
18
+ from jax import numpy as jnp
19
+ from jax.sharding import Mesh
20
+ from jax.sharding import PartitionSpec as P
21
+
22
+ from tpu_inference.kernels.megablox.gmm import gmm
23
+ from tpu_inference.layers.vllm.linear_common import \
24
+ slice_sharded_tensor_for_concatenation
25
+
26
+
27
+ def activation_fn(activation: str, x1: jax.Array, x2: jax.Array) -> jax.Array:
28
+ match activation:
29
+ case "silu":
30
+ return jax.nn.silu(x1) * x2
31
+ case "swigluoai":
32
+ return _swigluoai(x1, x2)
33
+ case _:
34
+ raise NotImplementedError(
35
+ f"FusedMoE does not support {activation} activation")
36
+
37
+
38
+ def _swigluoai(x1: jax.Array,
39
+ x2: jax.Array,
40
+ alpha=1.702,
41
+ limit=7.0) -> jax.Array:
42
+ x1 = jnp.clip(x1, a_max=limit)
43
+ x2 = jnp.clip(x2, a_min=-limit, a_max=limit)
44
+
45
+ gated_activation = x1 * jax.nn.sigmoid(alpha * x1)
46
+
47
+ return gated_activation * (x2 + 1)
48
+
49
+
50
+ def _round_up_to_multiple_of_128_within_limit(x: int, limit: int) -> int:
51
+ """
52
+ Rounds the given integer `x` up to the nearest multiple of 128, without
53
+ exceeding the specified `limit`.
54
+
55
+ If `x` is less than or equal to 128, returns 128.
56
+ If `x` is less than `limit`, returns the smallest multiple of 128 greater
57
+ than or equal to `x`.
58
+ If `x` is greater than or equal to `limit`, searches for the largest
59
+ multiple of 128 less than or equal to `limit` (down to 512) that divides `x`
60
+ evenly, and returns it.
61
+ If no such candidate is found, returns `limit`.
62
+
63
+ Args:
64
+ x (int): The integer to round up.
65
+ limit (int): The upper bound (must be a multiple of 128).
66
+
67
+ Returns:
68
+ int: The rounded value according to the rules above.
69
+
70
+ Raises:
71
+ AssertionError: If `limit` is less than 128 or not a multiple of 128.
72
+ """
73
+ assert limit >= 128 and limit % 128 == 0
74
+ if x <= 128:
75
+ return 128
76
+ if x < limit:
77
+ return (x + 127) // 128 * 128
78
+ for candidate in range(limit, 511, -128):
79
+ if x % candidate == 0:
80
+ return candidate
81
+ return limit
82
+
83
+
84
+ def _get_tiling_size_for_gmm_kernel(m: int, k: int, n: int,
85
+ g: int) -> tuple[int, int, int]:
86
+ """
87
+ Calculate optimal tiling sizes for a GMM kernel in a Mixture of Experts
88
+ (MoE) setting.
89
+
90
+ Args:
91
+ m (int): The total number of tokens.
92
+ n (int): The output feature dimension.
93
+ k (int): The input feature dimension.
94
+ g (int): The number of experts.
95
+
96
+ Returns:
97
+ tuple[int, int, int]: A tuple (tm, tk, tn)
98
+ """
99
+
100
+ # TODO(Chengji): increase the upper limit tiling size of m when we can set
101
+ # the vmem size to be used for gmm kernel.
102
+ # NOTE: In average each expert has m // g tokens, but as it might be
103
+ # unbalanced, here we doubled the token size when choosing tiling size of m.
104
+ # 2m//g can be either greater or less than 512. If there are 32 tokens and
105
+ # topk=2, m=topk * num_tokens=64, in this case, 2*m//g will be less than
106
+ # 512.
107
+ tm = _round_up_to_multiple_of_128_within_limit(2 * m // g, 512)
108
+ tm = min(tm, m) # there's a requirement that m % tm == 0
109
+ # k/n correspond to n_input_features/n_output_features in the matmul so they
110
+ # are normally greater than 2048, unless the num shards is large.
111
+ tk = _round_up_to_multiple_of_128_within_limit(k, 2048)
112
+ tn = _round_up_to_multiple_of_128_within_limit(n, 2048)
113
+ return tm, tk, tn
114
+
115
+
116
+ def tensor_sharded_gmm_merged_column_parallel(
117
+ lhs: jax.Array,
118
+ rhs: jax.Array,
119
+ rhs_scale: jax.Array | None,
120
+ rhs_bias: jax.Array | None,
121
+ group_sizes: jax.Array,
122
+ mesh: Mesh,
123
+ ) -> list[jax.Array]:
124
+
125
+ def _gmm(lhs, rhs, rhs_scale, rhs_bias, group_sizes):
126
+ m, g, n, k = lhs.shape[0], *rhs.shape
127
+ tm, tk, tn = _get_tiling_size_for_gmm_kernel(m, k, n, g)
128
+ return gmm(
129
+ lhs,
130
+ rhs,
131
+ group_sizes,
132
+ rhs_scale=rhs_scale,
133
+ rhs_bias=rhs_bias,
134
+ preferred_element_type=lhs.dtype,
135
+ tiling=(tm, tk, tn),
136
+ transpose_rhs=True,
137
+ group_offset=jnp.array(0),
138
+ )
139
+
140
+ rhs_scale_spec = None if rhs_scale is None else P(None, None, None,
141
+ "model")
142
+ rhs_bias_spec = None if rhs_bias is None else P(None, None, "model")
143
+
144
+ gmm_result = jax.shard_map(
145
+ _gmm,
146
+ mesh=mesh,
147
+ in_specs=(
148
+ P("data", None),
149
+ P(None, "model", None),
150
+ rhs_scale_spec,
151
+ rhs_bias_spec,
152
+ P("data"),
153
+ ),
154
+ out_specs=(P("data", "model")),
155
+ check_vma=False,
156
+ )(lhs, rhs, rhs_scale, rhs_bias, group_sizes)
157
+
158
+ tp_size = mesh.shape["model"]
159
+ intermediate_size = gmm_result.shape[-1] // 2
160
+ output_sizes = [intermediate_size, intermediate_size]
161
+ return slice_sharded_tensor_for_concatenation(gmm_result, output_sizes,
162
+ tp_size)
163
+
164
+
165
+ def tensor_sharded_gmm_row_parallel(
166
+ lhs: jax.Array,
167
+ rhs: jax.Array,
168
+ rhs_scale: jax.Array | None,
169
+ rhs_bias: jax.Array | None,
170
+ group_sizes: jax.Array,
171
+ mesh: Mesh,
172
+ ) -> jax.Array:
173
+
174
+ def _gmm_all_reduce(lhs, rhs, rhs_scale, rhs_bias, group_sizes):
175
+ m, g, n, k = lhs.shape[0], *rhs.shape
176
+ tm, tk, tn = _get_tiling_size_for_gmm_kernel(m, k, n, g)
177
+ if rhs_bias is not None:
178
+ shard_id = jax.lax.axis_index("model")
179
+ rhs_bias = jnp.where(shard_id == 0, rhs_bias, 0)
180
+ out = gmm(
181
+ lhs,
182
+ rhs,
183
+ group_sizes,
184
+ rhs_scale=rhs_scale,
185
+ rhs_bias=rhs_bias,
186
+ preferred_element_type=lhs.dtype,
187
+ tiling=(tm, tk, tn),
188
+ transpose_rhs=True,
189
+ group_offset=jnp.array(0),
190
+ )
191
+ return jax.lax.psum(out, axis_name="model")
192
+
193
+ num_blocks = 1 if rhs_scale is None else rhs_scale.shape[1]
194
+ rhs_scale_spec = None if num_blocks == 1 else P(None, "model", None, None)
195
+ rhs_bias_spec = None if rhs_bias is None else P(None, None, None)
196
+ gmm_result = jax.shard_map(
197
+ _gmm_all_reduce,
198
+ mesh=mesh,
199
+ in_specs=(
200
+ P("data", "model"),
201
+ P(None, None, "model"),
202
+ rhs_scale_spec,
203
+ rhs_bias_spec,
204
+ P("data"),
205
+ ),
206
+ out_specs=(P("data")),
207
+ check_vma=False,
208
+ )(lhs, rhs, rhs_scale, rhs_bias, group_sizes)
209
+
210
+ return gmm_result.astype(lhs.dtype)
211
+
212
+
213
+ def expert_sharded_gmm(
214
+ lhs: jax.Array,
215
+ rhs: jax.Array,
216
+ rhs_scale: jax.Array | None,
217
+ rhs_bias: jax.Array | None,
218
+ group_sizes: jax.Array,
219
+ is_last_expert: bool,
220
+ mesh: Mesh,
221
+ ) -> jax.Array:
222
+ ep_size = mesh.shape["model"]
223
+
224
+ num_experts = rhs.shape[0]
225
+ num_experts_per_shard = num_experts // ep_size
226
+ group_offset = jnp.arange(0, num_experts, num_experts_per_shard)
227
+
228
+ def _gmm(lhs, rhs, rhs_scale, rhs_bias, group_sizes, group_offset):
229
+ m, g, n, k = lhs.shape[0], *rhs.shape
230
+ tm, tk, tn = _get_tiling_size_for_gmm_kernel(m, k, n, g)
231
+
232
+ gmm_res = gmm(
233
+ lhs=lhs,
234
+ rhs=rhs,
235
+ rhs_scale=rhs_scale,
236
+ rhs_bias=rhs_bias,
237
+ group_sizes=group_sizes,
238
+ preferred_element_type=lhs.dtype,
239
+ tiling=(tm, tk, tn),
240
+ transpose_rhs=True,
241
+ group_offset=group_offset[0],
242
+ )
243
+ return gmm_res
244
+
245
+ # The result from gmm on each shard has the same shape, but only the rows
246
+ # for this shard has non-zero values. Taking below as an working example:
247
+ # A, A, A, A 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0
248
+ # A, A, A, A 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0
249
+ # A, A, A, A 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0
250
+ # 0, 0, 0, 0 B, B, B, B 0, 0, 0, 0 0, 0, 0, 0
251
+ # 0, 0, 0, 0 B, B, B, B 0, 0, 0, 0 0, 0, 0, 0
252
+ # 0, 0, 0, 0 0, 0, 0, 0 C, C, C, C 0, 0, 0, 0
253
+ # 0, 0, 0, 0 0, 0, 0, 0 C, C, C, C 0, 0, 0, 0
254
+ # 0, 0, 0, 0 0, 0, 0, 0 C, C, C, C 0, 0, 0, 0
255
+ # 0, 0, 0, 0 0, 0, 0, 0 C, C, C, C 0, 0, 0, 0
256
+ # 0, 0, 0, 0 0, 0, 0, 0 C, C, C, C 0, 0, 0, 0
257
+ # 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 D, D, D, D
258
+ # 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 D, D, D, D
259
+ # 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 D, D, D, D
260
+ # 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 D, D, D, D
261
+ # shard-0 shard-1 shard-2 shard-3
262
+ # Each shards has 3 (row A), 2 (row B), 5 (row C) and 4 (row D).
263
+ lhs_spec = P("model") if is_last_expert else P()
264
+ rhs_scale_spec = None if rhs_scale is None else P("model")
265
+ rhs_bias_spec = None if rhs_bias is None else P("model")
266
+ gmm_res = jax.shard_map(
267
+ _gmm,
268
+ mesh=mesh,
269
+ in_specs=(
270
+ lhs_spec,
271
+ P("model", None, None),
272
+ rhs_scale_spec,
273
+ rhs_bias_spec,
274
+ P(),
275
+ P("model"),
276
+ ),
277
+ out_specs=(P("model", None)),
278
+ check_vma=False,
279
+ )(lhs, rhs, rhs_scale, rhs_bias, group_sizes, group_offset)
280
+
281
+ if not is_last_expert:
282
+ return gmm_res
283
+
284
+ # For i-th shard, it is responsible groups (AKA experts) from
285
+ # i*num_experts_per_shard to (i+1)*num_experts_per_shard We sum them up to
286
+ # get total rows in that shard, and that is the size for shard to send to
287
+ # its peers. This is also the number of non-zero rows from the gmm results.
288
+ # In the working example, send_sizes would be [3, 2, 5, 4].
289
+
290
+ # group_sizes has shape of [num_tokens_per_shard * num_experts_per_shard].
291
+ # So reshaping to [num_tokens_per_shard, num_experts_per_shard] and applying
292
+ # sum(axis=1) will get desired send_sizes shaped [num_tokens_per_shard].
293
+ send_sizes = group_sizes.reshape(-1, num_experts_per_shard).sum(axis=1)
294
+ # In the working example, input_offsets would be [0, 3, 5, 10]
295
+ input_offsets = jnp.concatenate((jnp.array([0]), send_sizes.cumsum()[:-1]))
296
+ output_offsets = input_offsets
297
+ recv_sizes = send_sizes
298
+
299
+ def _ragged_all_to_all(operand, input_offsets, send_sizes, output_offsets,
300
+ recv_sizes):
301
+ output = jnp.zeros_like(operand)
302
+
303
+ # input_offsets, send_sizes and output_offsets are sharded and there is
304
+ # only 1 elemnt in each shard, we are taking the 0-th element from them
305
+ # just so that jnp.repeat generates the arrays with correct shape.
306
+ input_offsets_of_shard = jnp.repeat(input_offsets[0], ep_size)
307
+ send_sizes_of_shard = jnp.repeat(send_sizes[0], ep_size)
308
+ output_offsets_of_shard = jnp.repeat(output_offsets[0], ep_size)
309
+
310
+ # recv_sizes is replicated across shards, because all the shards receive
311
+ # the same data and write to the output in the same way (same
312
+ # output_offsets and same recv_sizes) and thus generates replicated
313
+ # output.
314
+ recv_sizes_of_shard = recv_sizes
315
+
316
+ # In the working example, for each shard, the values of the offsets and
317
+ # sizes would be:
318
+ # shard-0 shard-1 shard-2 shard-3
319
+ # input_offsets_of_shard [0, 0, 0, 0] [3, 3, 3, 3] [5, 5, 5, 5] [10,10,10,10]
320
+ # send_sizes_of_shard [3, 3, 3, 3] [2, 2, 2, 2] [5, 5, 5, 5] [4, 4, 4, 4 ]
321
+ # output_offsets_of_shard [0, 0, 0, 0] [0, 0, 0, 0] [0, 0, 0, 0] [10,10,10,10]
322
+ # recv_sizes_of_shard [3, 2, 5, 4] [3, 2, 5, 4] [3, 2, 5, 4] [3, 2, 5, 4]
323
+ return jax.lax.ragged_all_to_all(
324
+ operand,
325
+ output,
326
+ input_offsets_of_shard,
327
+ send_sizes_of_shard,
328
+ output_offsets_of_shard,
329
+ recv_sizes_of_shard,
330
+ axis_name="model",
331
+ )
332
+
333
+ # Use ragged_all_to_all to send the result from gmm for each expert to all
334
+ # the shards. In the working example, the result would be:
335
+ # A, A, A, A A, A, A, A A, A, A, A A, A, A, A
336
+ # A, A, A, A A, A, A, A A, A, A, A A, A, A, A
337
+ # A, A, A, A A, A, A, A A, A, A, A A, A, A, A
338
+ # B, B, B, B B, B, B, B B, B, B, B B, B, B, B
339
+ # B, B, B, B B, B, B, B B, B, B, B B, B, B, B
340
+ # C, C, C, C C, C, C, C C, C, C, C C, C, C, C
341
+ # C, C, C, C C, C, C, C C, C, C, C C, C, C, C
342
+ # C, C, C, C C, C, C, C C, C, C, C C, C, C, C
343
+ # C, C, C, C C, C, C, C C, C, C, C C, C, C, C
344
+ # C, C, C, C C, C, C, C C, C, C, C C, C, C, C
345
+ # D, D, D, D D, D, D, D D, D, D, D D, D, D, D
346
+ # D, D, D, D D, D, D, D D, D, D, D D, D, D, D
347
+ # D, D, D, D D, D, D, D D, D, D, D D, D, D, D
348
+ # D, D, D, D D, D, D, D D, D, D, D D, D, D, D
349
+ # shard-0 shard-1 shard-2 shard-3
350
+ return jax.shard_map(
351
+ _ragged_all_to_all,
352
+ mesh=mesh,
353
+ in_specs=(P("model", None), P("model"), P("model"), P("model"), P()),
354
+ out_specs=(P()),
355
+ check_vma=False,
356
+ )(gmm_res, input_offsets, send_sizes, output_offsets, recv_sizes)
357
+
358
+
359
+ @functools.partial(
360
+ jax.jit,
361
+ static_argnames=(
362
+ "topk",
363
+ "renormalize",
364
+ "mesh",
365
+ "use_ep",
366
+ "activation",
367
+ ),
368
+ )
369
+ def fused_moe_func(
370
+ hidden_states: jax.Array,
371
+ w1: jax.Array,
372
+ w2: jax.Array,
373
+ w1_scale: jax.Array | None,
374
+ w2_scale: jax.Array | None,
375
+ w1_bias: jax.Array | None,
376
+ w2_bias: jax.Array | None,
377
+ gating_output: jax.Array,
378
+ topk: int,
379
+ renormalize: bool,
380
+ mesh: Mesh,
381
+ use_ep: bool,
382
+ activation: str,
383
+ ) -> jax.Array:
384
+ """Route tokens in hidden_states into each experts based on routing.
385
+
386
+ Args:
387
+ hidden_states: [num_tokens, hidden_size]
388
+ w1: first moe weights [num_experts, intermediate_size * 2, hidden_size]
389
+ w2: second moe weights [num_experts, hidden_size, intermediate_size]
390
+ w1_scale: w1 scale [num_experts, num_blocks, 1, intermediate_size * 2]
391
+ w2_scale: w2 scale [num_experts, num_blocks, 1, hidden_size]
392
+ w1_bias: optional bias of w1 [num_experts, 1, intermediate_size * 2]
393
+ w2_bias: optional bias of w2 [num_experts, 1, hidden_size]
394
+ gating_output: routing information of tokens [num_tokens, num_experts]
395
+ topk: number of experts to choose per token.
396
+ renormalize: normalize gating_output.
397
+ mesh: mesh to perform moe.
398
+ use_ep: use expert parallelism.
399
+ activation: activation function to perform on the output of w1.
400
+
401
+ Returns:
402
+ Output of moe operation [num_tokens, hidden_size]
403
+ """
404
+ num_tokens, hidden_size = hidden_states.shape
405
+ global_num_experts, _, padded_hidden_size = w1.shape
406
+ dtype = hidden_states.dtype
407
+
408
+ assert (num_tokens * topk) % 16 == 0, (
409
+ "The kernel requires num_tokens * topk to be a multiple of "
410
+ f"16 but got {num_tokens}*{topk}={num_tokens*topk}")
411
+
412
+ assert gating_output.shape == (num_tokens, global_num_experts)
413
+
414
+ topk_weights = jax.nn.softmax(gating_output.astype(jnp.float32), axis=-1)
415
+ topk_weights, topk_indices = jax.lax.top_k(topk_weights, k=topk)
416
+ if renormalize:
417
+ topk_weights = topk_weights / topk_weights.sum(axis=-1, keepdims=True)
418
+ topk_weights = topk_weights.astype(dtype)
419
+
420
+ def _process_tokens_locally(hidden_states_local, topk_indices_local):
421
+ num_tokens_local = hidden_states_local.shape[0]
422
+ topk_indices_flat = topk_indices_local.flatten()
423
+ topk_argsort_indices = jnp.argsort(topk_indices_flat)
424
+ topk_argsort_revert_indices = jnp.argsort(topk_argsort_indices)
425
+ token_indices = jnp.arange(num_tokens_local,
426
+ dtype=jnp.int32).repeat(topk)
427
+ token_indices_sorted = token_indices[topk_argsort_indices]
428
+ group_sizes_local = jnp.bincount(topk_indices_flat,
429
+ length=global_num_experts)
430
+
431
+ x = hidden_states_local[token_indices_sorted]
432
+ return x, group_sizes_local, topk_argsort_revert_indices
433
+
434
+ x, group_sizes, topk_argsort_revert_indices = jax.shard_map(
435
+ _process_tokens_locally,
436
+ mesh=mesh,
437
+ in_specs=(P("data", None), P("data", None)),
438
+ out_specs=(P("data", None), P("data"), P("data")),
439
+ )(hidden_states, topk_indices)
440
+
441
+ x = jnp.pad(x, ((0, 0), (0, padded_hidden_size - hidden_size)))
442
+
443
+ if use_ep:
444
+ x = expert_sharded_gmm(
445
+ x,
446
+ w1,
447
+ w1_scale,
448
+ w1_bias,
449
+ group_sizes,
450
+ is_last_expert=False,
451
+ mesh=mesh,
452
+ )
453
+ x1, x2 = jnp.split(x, 2, -1)
454
+
455
+ x = activation_fn(activation, x1, x2)
456
+
457
+ x = expert_sharded_gmm(
458
+ x,
459
+ w2,
460
+ w2_scale,
461
+ w2_bias,
462
+ group_sizes,
463
+ is_last_expert=True,
464
+ mesh=mesh,
465
+ )
466
+ else:
467
+ x1, x2 = tensor_sharded_gmm_merged_column_parallel(
468
+ x,
469
+ w1,
470
+ w1_scale,
471
+ w1_bias,
472
+ group_sizes,
473
+ mesh=mesh,
474
+ )
475
+
476
+ x = activation_fn(activation, x1, x2)
477
+
478
+ x = tensor_sharded_gmm_row_parallel(
479
+ x,
480
+ w2,
481
+ w2_scale,
482
+ w2_bias,
483
+ group_sizes,
484
+ mesh=mesh,
485
+ )
486
+
487
+ def _finalize_output(x_local, topk_argsort_revert_indices_local,
488
+ topk_weights_local):
489
+ x_local = x_local[topk_argsort_revert_indices_local].reshape(
490
+ -1, topk, padded_hidden_size)
491
+ x_local = x_local * jnp.expand_dims(topk_weights_local, axis=-1)
492
+ x_local = x_local.sum(axis=-2)
493
+ return x_local
494
+
495
+ x = jax.shard_map(
496
+ _finalize_output,
497
+ mesh=mesh,
498
+ in_specs=(P("data", None), P("data"), P("data", None)),
499
+ out_specs=(P("data", None)),
500
+ )(x, topk_argsort_revert_indices, topk_weights)
501
+
502
+ return x[:num_tokens, :hidden_size]