tpu-inference 0.12.0.dev20251222__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +67 -0
- tests/core/test_dp_scheduler.py +724 -0
- tests/core/test_init.py +63 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +393 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +291 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +388 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +498 -0
- tests/kernels/quantized_matmul_kernel_test.py +159 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/layers/jax/test_qwix.py +969 -0
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +405 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +297 -0
- tests/layers/vllm/test_unquantized.py +621 -0
- tests/layers/vllm/utils.py +72 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +46 -0
- tests/lora/test_bgmv.py +57 -0
- tests/lora/test_layers.py +666 -0
- tests/lora/test_lora.py +147 -0
- tests/lora/test_lora_perf.py +67 -0
- tests/lora/utils.py +88 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +606 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +202 -0
- tests/runner/test_tpu_runner_dp.py +1033 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +215 -0
- tests/test_envs.py +280 -0
- tests/test_tpu_info.py +134 -0
- tests/test_utils.py +193 -0
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +67 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +49 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +814 -0
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +81 -0
- tpu_inference/distributed/tpu_connector.py +732 -0
- tpu_inference/distributed/utils.py +112 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +191 -0
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +399 -0
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +272 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +1340 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +403 -0
- tpu_inference/layers/common/attention_metadata.py +48 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +23 -0
- tpu_inference/layers/common/quantization.py +270 -0
- tpu_inference/layers/common/sharding.py +600 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +268 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
- tpu_inference/layers/jax/base.py +165 -0
- tpu_inference/layers/jax/constants.py +101 -0
- tpu_inference/layers/jax/layers.py +315 -0
- tpu_inference/layers/jax/misc.py +30 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
- tpu_inference/layers/jax/moe/moe.py +249 -0
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +294 -0
- tpu_inference/layers/jax/rope_interface.py +228 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
- tpu_inference/layers/jax/sample/sampling.py +110 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
- tpu_inference/layers/jax/transformer_block.py +121 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +502 -0
- tpu_inference/layers/vllm/linear_common.py +221 -0
- tpu_inference/layers/vllm/quantization/__init__.py +55 -0
- tpu_inference/layers/vllm/quantization/awq.py +221 -0
- tpu_inference/layers/vllm/quantization/common.py +124 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
- tpu_inference/layers/vllm/quantization/fp8.py +118 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
- tpu_inference/layers/vllm/sharding.py +244 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +98 -0
- tpu_inference/lora/torch_punica_tpu.py +310 -0
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +520 -0
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +978 -0
- tpu_inference/models/jax/gpt_oss.py +508 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
- tpu_inference/models/jax/llama3.py +436 -0
- tpu_inference/models/jax/llama4.py +643 -0
- tpu_inference/models/jax/llama_eagle3.py +350 -0
- tpu_inference/models/jax/llama_guard_4.py +375 -0
- tpu_inference/models/jax/qwen2.py +390 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
- tpu_inference/models/jax/qwen3.py +318 -0
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +110 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
- tpu_inference/models/jax/utils/weight_utils.py +621 -0
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
- tpu_inference/platforms/__init__.py +16 -0
- tpu_inference/platforms/tpu_platform.py +258 -0
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +890 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +166 -0
- tpu_inference/runner/kv_cache_manager.py +508 -0
- tpu_inference/runner/lora_utils.py +106 -0
- tpu_inference/runner/multimodal_manager.py +231 -0
- tpu_inference/runner/persistent_batch_manager.py +296 -0
- tpu_inference/runner/speculative_decoding_manager.py +262 -0
- tpu_inference/runner/structured_decoding_manager.py +101 -0
- tpu_inference/runner/tpu_runner.py +1768 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +430 -0
- tpu_inference/tpu_info.py +92 -0
- tpu_inference/utils.py +345 -0
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +468 -0
- tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
- tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
- tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
- tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,547 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import math
|
|
16
|
+
from dataclasses import InitVar, dataclass
|
|
17
|
+
from typing import Any, Tuple
|
|
18
|
+
|
|
19
|
+
import jax
|
|
20
|
+
import jax.numpy as jnp
|
|
21
|
+
from flax import nnx
|
|
22
|
+
from flax.typing import Sharding
|
|
23
|
+
from jax.sharding import Mesh
|
|
24
|
+
from jax.sharding import PartitionSpec as P
|
|
25
|
+
|
|
26
|
+
from tpu_inference import utils
|
|
27
|
+
from tpu_inference.kernels.mla.v1.kernel import mla_ragged_paged_attention
|
|
28
|
+
from tpu_inference.kernels.ragged_paged_attention.v3.kernel import \
|
|
29
|
+
ragged_paged_attention
|
|
30
|
+
from tpu_inference.kernels.ragged_paged_attention.v3.tuned_block_sizes import \
|
|
31
|
+
get_tuned_block_sizes
|
|
32
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
33
|
+
from tpu_inference.layers.common.sharding import ShardingAxisName
|
|
34
|
+
from tpu_inference.layers.jax.base import create_param
|
|
35
|
+
from tpu_inference.layers.jax.layers import RMSNorm
|
|
36
|
+
from tpu_inference.layers.jax.rope import DeepseekScalingRotaryEmbedding
|
|
37
|
+
|
|
38
|
+
KVCache = Tuple[jax.Array, jax.Array]
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
# TODO (wenxindongwork): Add MLA KV cache implementation. For now, cache complete KV vectors.
|
|
42
|
+
@dataclass(kw_only=True)
|
|
43
|
+
class MLA(nnx.Module):
|
|
44
|
+
"""An implementation of Multi-Head Latent Attention as
|
|
45
|
+
described in the DeepSeek V3 paper.
|
|
46
|
+
|
|
47
|
+
Attributes:
|
|
48
|
+
mesh: The JAX device mesh for distributed computation.
|
|
49
|
+
"""
|
|
50
|
+
hidden_size: int
|
|
51
|
+
num_attention_heads: int
|
|
52
|
+
num_key_value_heads: int
|
|
53
|
+
head_dim: int
|
|
54
|
+
rope_theta: float
|
|
55
|
+
rope_scaling: dict[str, Any]
|
|
56
|
+
dtype: jnp.dtype
|
|
57
|
+
kv_cache_dtype: str
|
|
58
|
+
mesh: Mesh
|
|
59
|
+
|
|
60
|
+
q_lora_rank: int
|
|
61
|
+
kv_lora_rank: int
|
|
62
|
+
qk_nope_head_dim: int
|
|
63
|
+
qk_rope_head_dim: int
|
|
64
|
+
v_head_dim: int
|
|
65
|
+
rms_norm_eps: float
|
|
66
|
+
|
|
67
|
+
# Sharding attributes
|
|
68
|
+
rd_sharding: Sharding = ()
|
|
69
|
+
q_da_sharding: Sharding = ()
|
|
70
|
+
ap_sharding: Sharding = ()
|
|
71
|
+
anh_sharding: Sharding = ()
|
|
72
|
+
kv_da_sharding: Sharding = ()
|
|
73
|
+
|
|
74
|
+
activation_attention_td: Sharding = ()
|
|
75
|
+
activation_q_td: Sharding = ()
|
|
76
|
+
query_tnh: P = P()
|
|
77
|
+
keyvalue_skh: P = P()
|
|
78
|
+
|
|
79
|
+
attn_o_tnh: P = P()
|
|
80
|
+
activation_attention_out_td: Sharding = ()
|
|
81
|
+
|
|
82
|
+
random_init: bool = False
|
|
83
|
+
attention_chunk_size: int | None = None
|
|
84
|
+
rope_input_ordering: str = "split"
|
|
85
|
+
quant: Any | None = None
|
|
86
|
+
rope_mscale_all_dim: float = 1.0
|
|
87
|
+
use_mla_kernel: bool = False
|
|
88
|
+
|
|
89
|
+
rngs: InitVar[nnx.Rngs]
|
|
90
|
+
|
|
91
|
+
_q_scale: float = 1
|
|
92
|
+
_k_scale: float = 1
|
|
93
|
+
_v_scale: float = 1
|
|
94
|
+
|
|
95
|
+
def __post_init__(self, rngs: nnx.Rngs):
|
|
96
|
+
self.N = self.num_attention_heads
|
|
97
|
+
self.K = self.num_key_value_heads
|
|
98
|
+
self.D = self.hidden_size
|
|
99
|
+
self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
|
|
100
|
+
|
|
101
|
+
if not self.use_mla_kernel:
|
|
102
|
+
assert self.N == self.K, "N and K must be equal for MLA"
|
|
103
|
+
|
|
104
|
+
if self.rope_scaling["factor"] <= 1.0:
|
|
105
|
+
yarn_mscale = 1.0
|
|
106
|
+
else:
|
|
107
|
+
yarn_mscale = 0.1 * self.rope_mscale_all_dim * math.log(
|
|
108
|
+
self.rope_scaling["factor"]) + 1.0
|
|
109
|
+
self.scale = self.qk_head_dim**-0.5 * yarn_mscale**2
|
|
110
|
+
|
|
111
|
+
self.rope = DeepseekScalingRotaryEmbedding(
|
|
112
|
+
rotary_dim=self.qk_rope_head_dim,
|
|
113
|
+
rope_theta=self.rope_theta,
|
|
114
|
+
original_max_position_embeddings=self.
|
|
115
|
+
rope_scaling["original_max_position_embeddings"],
|
|
116
|
+
scaling_factor=self.rope_scaling["factor"],
|
|
117
|
+
dtype=self.dtype,
|
|
118
|
+
beta_fast=self.rope_scaling["beta_fast"],
|
|
119
|
+
beta_slow=self.rope_scaling["beta_slow"],
|
|
120
|
+
mscale_value=self.rope_scaling["mscale"],
|
|
121
|
+
mscale_all_dim=self.rope_scaling["mscale_all_dim"],
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
# Initializes the weight kernels
|
|
125
|
+
self.kernel_q_down_proj_DA = create_param(rngs,
|
|
126
|
+
(self.D, self.q_lora_rank),
|
|
127
|
+
self.q_da_sharding,
|
|
128
|
+
self.dtype,
|
|
129
|
+
random_init=self.random_init)
|
|
130
|
+
self.kernel_q_up_proj_AP = create_param(
|
|
131
|
+
rngs,
|
|
132
|
+
(self.q_lora_rank, self.N * self.qk_head_dim),
|
|
133
|
+
self.ap_sharding,
|
|
134
|
+
self.dtype,
|
|
135
|
+
random_init=self.random_init,
|
|
136
|
+
)
|
|
137
|
+
self.kernel_kv_down_proj_DA = create_param(
|
|
138
|
+
rngs,
|
|
139
|
+
(self.D, self.kv_lora_rank + self.qk_rope_head_dim),
|
|
140
|
+
self.kv_da_sharding,
|
|
141
|
+
self.dtype,
|
|
142
|
+
random_init=self.random_init,
|
|
143
|
+
)
|
|
144
|
+
# NOTE (jacobplatin): we are keeping these variables as 3D because
|
|
145
|
+
# we would need to reshape them before the below projection,
|
|
146
|
+
# which caused issues as Qwix wasn't quantizing it correctly
|
|
147
|
+
# on the abstract pass
|
|
148
|
+
if self.use_mla_kernel:
|
|
149
|
+
self.kernel_k_up_proj_ANH = create_param(
|
|
150
|
+
rngs,
|
|
151
|
+
(self.kv_lora_rank, self.N, self.qk_nope_head_dim),
|
|
152
|
+
self.anh_sharding,
|
|
153
|
+
self.dtype,
|
|
154
|
+
random_init=self.random_init,
|
|
155
|
+
)
|
|
156
|
+
self.kernel_v_up_proj_ANH = create_param(
|
|
157
|
+
rngs,
|
|
158
|
+
(self.kv_lora_rank, self.N, self.v_head_dim),
|
|
159
|
+
self.anh_sharding,
|
|
160
|
+
self.dtype,
|
|
161
|
+
random_init=self.random_init,
|
|
162
|
+
)
|
|
163
|
+
else:
|
|
164
|
+
self.kernel_kv_up_proj_AL = create_param(
|
|
165
|
+
rngs,
|
|
166
|
+
(self.kv_lora_rank, self.N *
|
|
167
|
+
(self.qk_nope_head_dim + self.v_head_dim)),
|
|
168
|
+
self.
|
|
169
|
+
ap_sharding, # NOTE: we use the same sharding for kv_up_proj_AL and kernel_q_up_proj_AP
|
|
170
|
+
self.dtype,
|
|
171
|
+
random_init=self.random_init,
|
|
172
|
+
)
|
|
173
|
+
self.kernel_o_proj_RD = create_param(
|
|
174
|
+
rngs, (self.N * self.v_head_dim, self.D),
|
|
175
|
+
self.rd_sharding,
|
|
176
|
+
self.dtype,
|
|
177
|
+
random_init=self.random_init)
|
|
178
|
+
self.q_rms_norm = RMSNorm(
|
|
179
|
+
dims=self.q_lora_rank,
|
|
180
|
+
epsilon=self.rms_norm_eps,
|
|
181
|
+
with_scale=True,
|
|
182
|
+
dtype=self.dtype,
|
|
183
|
+
random_init=self.random_init,
|
|
184
|
+
rngs=rngs,
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
self.kv_rms_norm = RMSNorm(
|
|
188
|
+
dims=self.kv_lora_rank,
|
|
189
|
+
random_init=self.random_init,
|
|
190
|
+
epsilon=self.rms_norm_eps,
|
|
191
|
+
with_scale=True,
|
|
192
|
+
dtype=self.dtype,
|
|
193
|
+
rngs=rngs,
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
self.kv_cache_quantized_dtype = None
|
|
197
|
+
if self.kv_cache_dtype != "auto":
|
|
198
|
+
self.kv_cache_quantized_dtype = utils.get_jax_dtype_from_str_dtype(
|
|
199
|
+
self.kv_cache_dtype)
|
|
200
|
+
|
|
201
|
+
def __call__(self,
|
|
202
|
+
x,
|
|
203
|
+
is_prefill,
|
|
204
|
+
kv_cache: KVCache,
|
|
205
|
+
attention_metadata: AttentionMetadata,
|
|
206
|
+
use_attention_rope: bool = True):
|
|
207
|
+
"""Performs the forward pass of the attention module.
|
|
208
|
+
|
|
209
|
+
Args:
|
|
210
|
+
x: The input tensor of shape `(batch_size, seq_len, d_model)`.
|
|
211
|
+
is_prefill: Whether the operation mode is prefill (otherwise it is generate).
|
|
212
|
+
kv_cache: The key-value cache for storing past attention states.
|
|
213
|
+
attention_metadata: Metadata for attention, such as input positions.
|
|
214
|
+
|
|
215
|
+
Returns:
|
|
216
|
+
A tuple containing:
|
|
217
|
+
- The updated KV cache.
|
|
218
|
+
- The attention output tensor of shape
|
|
219
|
+
`(batch_size, seq_len, d_model)`.
|
|
220
|
+
"""
|
|
221
|
+
md = attention_metadata
|
|
222
|
+
x = jnp.asarray(x, self.dtype)
|
|
223
|
+
x_SD = nnx.with_sharding_constraint(x, self.activation_attention_td)
|
|
224
|
+
x_q_TD = nnx.with_sharding_constraint(x, self.activation_q_td)
|
|
225
|
+
|
|
226
|
+
with jax.named_scope("q_proj"):
|
|
227
|
+
# Query down projection.
|
|
228
|
+
q_TA = jnp.einsum("TD,DA -> TA", x_q_TD,
|
|
229
|
+
self.kernel_q_down_proj_DA.value)
|
|
230
|
+
q_TA = self.q_rms_norm(q_TA)
|
|
231
|
+
# Query up projection, then reshape to TNH.
|
|
232
|
+
q_TP = jnp.einsum("TA,AP -> TP", q_TA,
|
|
233
|
+
self.kernel_q_up_proj_AP.value)
|
|
234
|
+
q_TNH = q_TP.reshape(q_TA.shape[0], self.N, self.qk_head_dim)
|
|
235
|
+
# Split the query into nope and rope.
|
|
236
|
+
q_nope_TNH = q_TNH[..., :self.qk_nope_head_dim]
|
|
237
|
+
q_rope_TNH = q_TNH[..., self.qk_nope_head_dim:]
|
|
238
|
+
q_rope_TNH = self.rope.apply_rope(md.input_positions, q_rope_TNH)
|
|
239
|
+
if self.use_mla_kernel:
|
|
240
|
+
# Absorb the k up-projection matrix into q
|
|
241
|
+
q_TNA = jnp.einsum("TNH,ANH -> TNA", q_nope_TNH,
|
|
242
|
+
self.kernel_k_up_proj_ANH.value)
|
|
243
|
+
q_TNA = nnx.with_sharding_constraint(q_TNA, self.query_tnh)
|
|
244
|
+
else:
|
|
245
|
+
# Concatenate the nope and rope queries.
|
|
246
|
+
q_TNH = jnp.concatenate([q_nope_TNH, q_rope_TNH], axis=-1)
|
|
247
|
+
# Multiply the query by scaling factor
|
|
248
|
+
q_TNH = nnx.with_sharding_constraint(q_TNH, self.query_tnh)
|
|
249
|
+
|
|
250
|
+
with jax.named_scope("kv_proj"):
|
|
251
|
+
# KV down projection.
|
|
252
|
+
kv_SA = jnp.einsum("SD,DA -> SA", x_SD,
|
|
253
|
+
self.kernel_kv_down_proj_DA.value)
|
|
254
|
+
# Split the key and value into latent kv vector and k rope vector.
|
|
255
|
+
k_rope_SH = kv_SA[..., self.kv_lora_rank:]
|
|
256
|
+
# Reshape k_rope_BSH to include head dimension for RoPE application
|
|
257
|
+
k_rope_SNH = k_rope_SH[..., None, :]
|
|
258
|
+
k_rope_SNH = self.rope.apply_rope(md.input_positions, k_rope_SNH)
|
|
259
|
+
assert k_rope_SNH.shape[1] == 1
|
|
260
|
+
k_rope_SH = k_rope_SNH[:, 0, :]
|
|
261
|
+
|
|
262
|
+
kv_SA = kv_SA[..., :self.kv_lora_rank]
|
|
263
|
+
kv_SA = self.kv_rms_norm(kv_SA)
|
|
264
|
+
kv_SA = nnx.with_sharding_constraint(kv_SA, self.keyvalue_skh)
|
|
265
|
+
|
|
266
|
+
if not self.use_mla_kernel:
|
|
267
|
+
k_rope_SNH = jnp.broadcast_to(
|
|
268
|
+
k_rope_SNH,
|
|
269
|
+
(k_rope_SNH.shape[0], self.N, self.qk_rope_head_dim))
|
|
270
|
+
# KV up projection, then reshape to SN(Hk+Hv).
|
|
271
|
+
kv_SL = jnp.einsum("SA,AL -> SL", kv_SA,
|
|
272
|
+
self.kernel_kv_up_proj_AL.value)
|
|
273
|
+
kv_nope_SNH = kv_SL.reshape(
|
|
274
|
+
kv_SA.shape[0], self.N,
|
|
275
|
+
self.qk_nope_head_dim + self.v_head_dim)
|
|
276
|
+
# Split the latent kv vector into k nope vector and v vector.
|
|
277
|
+
k_nope_SNH = kv_nope_SNH[..., :self.qk_nope_head_dim]
|
|
278
|
+
v_SNH = kv_nope_SNH[..., self.qk_nope_head_dim:]
|
|
279
|
+
# Concatenate the key vector.
|
|
280
|
+
k_SNH = jnp.concatenate([k_nope_SNH, k_rope_SNH], axis=-1)
|
|
281
|
+
k_SNH = nnx.with_sharding_constraint(k_SNH, self.keyvalue_skh)
|
|
282
|
+
v_SNH = nnx.with_sharding_constraint(v_SNH, self.keyvalue_skh)
|
|
283
|
+
|
|
284
|
+
with jax.named_scope("attn_op"):
|
|
285
|
+
# TODO(wenxindongwork): K and V have different head dimension,
|
|
286
|
+
# which is not supported by the current kv cache implementation.
|
|
287
|
+
# For now we are padding the v dimension to match the k dimension.
|
|
288
|
+
# Furthermore, deepseekv3 k head dimension is 192, which is
|
|
289
|
+
# not supported by the current attention kernel, which expects
|
|
290
|
+
# q, k, v head dimension to be multiple of 128. For now, we will
|
|
291
|
+
# pad the q, k, v dimension to multiple of 128.
|
|
292
|
+
# We should update the MLA kv cache implementation in the future.
|
|
293
|
+
if not self.use_mla_kernel: # MLA kernel handles padding
|
|
294
|
+
multiple_of_128 = ((self.qk_head_dim - 1) // 128 + 1) * 128
|
|
295
|
+
q_TNH = jnp.pad(q_TNH,
|
|
296
|
+
((0, 0), (0, 0),
|
|
297
|
+
(0, multiple_of_128 - self.qk_head_dim)))
|
|
298
|
+
k_SNH = jnp.pad(k_SNH,
|
|
299
|
+
((0, 0), (0, 0),
|
|
300
|
+
(0, multiple_of_128 - self.qk_head_dim)))
|
|
301
|
+
v_SNH = jnp.pad(v_SNH,
|
|
302
|
+
((0, 0), (0, 0),
|
|
303
|
+
(0, multiple_of_128 - self.v_head_dim)))
|
|
304
|
+
|
|
305
|
+
q_scale = k_scale = v_scale = None
|
|
306
|
+
|
|
307
|
+
# TODO(gpolovets): MLA does not currently support quantized KV!
|
|
308
|
+
if not self.use_mla_kernel:
|
|
309
|
+
if self.kv_cache_quantized_dtype:
|
|
310
|
+
# TODO(kyuyeunk/jacobplatin): Enable w8a8 when VREG spill issue is resolved.
|
|
311
|
+
k_scale = self._k_scale
|
|
312
|
+
v_scale = self._v_scale
|
|
313
|
+
k_SNH, v_SNH = utils.quantize_kv(
|
|
314
|
+
k_SNH, v_SNH, self.kv_cache_quantized_dtype, k_scale,
|
|
315
|
+
v_scale)
|
|
316
|
+
|
|
317
|
+
new_kv_cache, outputs_TNH = self.attention(
|
|
318
|
+
is_prefill,
|
|
319
|
+
kv_cache,
|
|
320
|
+
q_TNH,
|
|
321
|
+
k_SNH,
|
|
322
|
+
v_SNH,
|
|
323
|
+
attention_metadata,
|
|
324
|
+
self.mesh,
|
|
325
|
+
q_scale,
|
|
326
|
+
k_scale,
|
|
327
|
+
v_scale,
|
|
328
|
+
)
|
|
329
|
+
# TODO(wenxindongwork): For now, unpad the outputs_TNH to match the v_head_dim.
|
|
330
|
+
# We shall add the MLA kv cache implementation in the future.
|
|
331
|
+
outputs_TNH = outputs_TNH[..., :self.v_head_dim]
|
|
332
|
+
|
|
333
|
+
else:
|
|
334
|
+
new_kv_cache, outputs_TNA = self.mla_attention(
|
|
335
|
+
kv_cache,
|
|
336
|
+
q_TNA,
|
|
337
|
+
q_rope_TNH,
|
|
338
|
+
kv_SA,
|
|
339
|
+
k_rope_SH,
|
|
340
|
+
attention_metadata,
|
|
341
|
+
self.mesh,
|
|
342
|
+
)
|
|
343
|
+
outputs_TNH = jnp.einsum("TNA,ANH -> TNH", outputs_TNA,
|
|
344
|
+
self.kernel_v_up_proj_ANH.value)
|
|
345
|
+
|
|
346
|
+
with jax.named_scope("o_proj"):
|
|
347
|
+
outputs_TNH = nnx.with_sharding_constraint(
|
|
348
|
+
outputs_TNH, self.activation_attention_out_td)
|
|
349
|
+
outputs_TR = outputs_TNH.reshape(outputs_TNH.shape[0],
|
|
350
|
+
self.N * self.v_head_dim)
|
|
351
|
+
o_TD = jnp.einsum("TR,RD -> TD", outputs_TR,
|
|
352
|
+
self.kernel_o_proj_RD.value)
|
|
353
|
+
|
|
354
|
+
return new_kv_cache, o_TD
|
|
355
|
+
|
|
356
|
+
def attention(
|
|
357
|
+
self,
|
|
358
|
+
is_prefill: bool,
|
|
359
|
+
kv_cache: KVCache,
|
|
360
|
+
q_TNH: jax.Array,
|
|
361
|
+
k_SKH: jax.Array,
|
|
362
|
+
v_SKH: jax.Array,
|
|
363
|
+
attention_metadata: AttentionMetadata,
|
|
364
|
+
mesh: Mesh,
|
|
365
|
+
q_scale: float | None = None,
|
|
366
|
+
k_scale: float | None = None,
|
|
367
|
+
v_scale: float | None = None,
|
|
368
|
+
) -> Tuple[KVCache, jax.Array]:
|
|
369
|
+
"""Performs scaled dot-product attention and updates the KV cache.
|
|
370
|
+
|
|
371
|
+
This function handles the core attention logic, which varies between
|
|
372
|
+
prefill and generation modes. In prefill, it computes self-attention
|
|
373
|
+
over the input sequence with a causal mask. In generation, it attends
|
|
374
|
+
to the full history of keys and values stored in the cache.
|
|
375
|
+
|
|
376
|
+
Args:
|
|
377
|
+
is_prefill: A boolean indicating if the mode is 'prefill'.
|
|
378
|
+
kv_cache: The key-value cache to be updated and used.
|
|
379
|
+
q_TNH: Query tensor of shape `(query_seq, num_attention_heads, head_dim)`.
|
|
380
|
+
k_SKH: Key tensor of shape `(kv_seq, num_key_value_heads, head_dim)`.
|
|
381
|
+
v_SKH: Value tensor of shape `(kv_seq, num_key_value_heads, head_dim)`.
|
|
382
|
+
attention_metadata: Metadata containing sequence lengths.
|
|
383
|
+
mesh: The JAX device mesh (unused in this specific function but
|
|
384
|
+
kept for potential future use or API consistency).
|
|
385
|
+
q_scale: Quantization scale for q.
|
|
386
|
+
k_scale: Quantization scale for k.
|
|
387
|
+
v_scale: Quantization scale for v.
|
|
388
|
+
|
|
389
|
+
Returns:
|
|
390
|
+
A tuple containing:
|
|
391
|
+
- The updated KV cache.
|
|
392
|
+
- The attention output tensor of shape
|
|
393
|
+
`(seq, num_q_heads, head_dim)`.
|
|
394
|
+
"""
|
|
395
|
+
md = attention_metadata
|
|
396
|
+
in_specs = (
|
|
397
|
+
self.query_tnh, # q
|
|
398
|
+
self.keyvalue_skh, # k
|
|
399
|
+
self.keyvalue_skh, # v
|
|
400
|
+
P(None, None, "model"), # kv_cache
|
|
401
|
+
P(), # md.seq_lens: Replicated
|
|
402
|
+
P(), # page_indices_flat: Replicated
|
|
403
|
+
P(), # query_start_loc: Replicated
|
|
404
|
+
P(), # distribution: Replicated
|
|
405
|
+
)
|
|
406
|
+
out_specs = (self.attn_o_tnh, P(None, None, "model"))
|
|
407
|
+
|
|
408
|
+
def _ragged_paged_attention(*args):
|
|
409
|
+
outputs = ragged_paged_attention(
|
|
410
|
+
*args,
|
|
411
|
+
sm_scale=self.scale,
|
|
412
|
+
q_scale=q_scale,
|
|
413
|
+
k_scale=k_scale,
|
|
414
|
+
v_scale=v_scale,
|
|
415
|
+
)
|
|
416
|
+
return outputs
|
|
417
|
+
|
|
418
|
+
output_TNH, kv_cache = jax.jit(
|
|
419
|
+
jax.shard_map(
|
|
420
|
+
_ragged_paged_attention,
|
|
421
|
+
mesh=mesh,
|
|
422
|
+
in_specs=in_specs,
|
|
423
|
+
out_specs=out_specs,
|
|
424
|
+
check_vma=False,
|
|
425
|
+
))(
|
|
426
|
+
q_TNH,
|
|
427
|
+
k_SKH,
|
|
428
|
+
v_SKH,
|
|
429
|
+
kv_cache,
|
|
430
|
+
md.seq_lens,
|
|
431
|
+
md.block_tables,
|
|
432
|
+
md.query_start_loc,
|
|
433
|
+
md.request_distribution,
|
|
434
|
+
)
|
|
435
|
+
return kv_cache, output_TNH
|
|
436
|
+
|
|
437
|
+
def mla_attention(
|
|
438
|
+
self,
|
|
439
|
+
kv_cache: KVCache,
|
|
440
|
+
q_TNA: jax.Array,
|
|
441
|
+
q_rope_TNH: jax.Array,
|
|
442
|
+
k_SA: jax.Array,
|
|
443
|
+
k_rope_SH: jax.Array,
|
|
444
|
+
attention_metadata: AttentionMetadata,
|
|
445
|
+
mesh: Mesh,
|
|
446
|
+
) -> Tuple[KVCache, jax.Array]:
|
|
447
|
+
"""Performs scaled dot-product attention and updates the KV cache.
|
|
448
|
+
|
|
449
|
+
This function handles the core attention logic, which varies between
|
|
450
|
+
prefill and generation modes. In prefill, it computes self-attention
|
|
451
|
+
over the input sequence with a causal mask. In generation, it attends
|
|
452
|
+
to the full history of keys and values stored in the cache.
|
|
453
|
+
|
|
454
|
+
Args:
|
|
455
|
+
kv_cache: The key-value cache to be updated and used.
|
|
456
|
+
q_TNA: Query tensor of shape `(query_seq, num_attention_heads, lkv_dim)`.
|
|
457
|
+
q_rope_TNH: Query rope tensor of shape `(query_seq, num_attention_heads, rope_dim)`.
|
|
458
|
+
k_SA: Key tensor of shape `(kv_seq, lkv_dim)`.
|
|
459
|
+
k_rope_SH: Key rope tensor of shape `(kv_seq, rope_dim)`.
|
|
460
|
+
attention_metadata: Metadata containing sequence lengths.
|
|
461
|
+
mesh: The JAX device mesh (unused in this specific function but
|
|
462
|
+
kept for potential future use or API consistency).
|
|
463
|
+
q_scale: Quantization scale for q.
|
|
464
|
+
k_scale: Quantization scale for k.
|
|
465
|
+
v_scale: Quantization scale for v.
|
|
466
|
+
|
|
467
|
+
Returns:
|
|
468
|
+
A tuple containing:
|
|
469
|
+
- The updated KV cache.
|
|
470
|
+
- The attention output tensor of shape
|
|
471
|
+
`(seq, num_q_heads, head_dim)`.
|
|
472
|
+
"""
|
|
473
|
+
md = attention_metadata
|
|
474
|
+
in_specs = (
|
|
475
|
+
self.query_tnh, # q
|
|
476
|
+
self.query_tnh, # q_rope
|
|
477
|
+
self.keyvalue_skh, # k
|
|
478
|
+
self.keyvalue_skh, # k_rope
|
|
479
|
+
P(ShardingAxisName.MLP_TENSOR), # kv_cache
|
|
480
|
+
P(ShardingAxisName.ATTN_DATA), # md.seq_lens: Replicated
|
|
481
|
+
P(ShardingAxisName.ATTN_DATA), # page_indices_flat: Replicated
|
|
482
|
+
P(ShardingAxisName.ATTN_DATA), # query_start_loc: Replicated
|
|
483
|
+
P(ShardingAxisName.ATTN_DATA), # distribution: Replicated
|
|
484
|
+
)
|
|
485
|
+
|
|
486
|
+
out_specs = (self.attn_o_tnh, P(ShardingAxisName.MLP_TENSOR))
|
|
487
|
+
|
|
488
|
+
def _mla_ragged_paged_attention(q, q_rope, k, k_rope, kv_cache, *args):
|
|
489
|
+
|
|
490
|
+
def _initialize_block_sizes():
|
|
491
|
+
# Set reasonable starting estimates for block sizes. (TODO(gpolovets): update this to use tuned sizes)
|
|
492
|
+
# Referring to get_tuned_block_sizes() in kernels/ragged_paged_attention/v3/tuned_block_sizes.py: 'TPU v7'/128/'q_bfloat16_kv_bfloat16/q_head-128_kv_head-1_head-128'/4096
|
|
493
|
+
max_num_tokens = q.shape[0]
|
|
494
|
+
max_num_seqs = md.seq_lens.shape[0]
|
|
495
|
+
num_page_indices = md.block_tables.shape[0]
|
|
496
|
+
assert num_page_indices % max_num_seqs == 0
|
|
497
|
+
pages_per_seq = num_page_indices // max_num_seqs
|
|
498
|
+
# num_kv_pages_per_block = min(pages_per_seq, 16)
|
|
499
|
+
bkv_p, bq_sz = get_tuned_block_sizes(
|
|
500
|
+
q.dtype,
|
|
501
|
+
kv_cache.dtype,
|
|
502
|
+
self.num_attention_heads,
|
|
503
|
+
1,
|
|
504
|
+
self.qk_nope_head_dim,
|
|
505
|
+
kv_cache.shape[1], # page size
|
|
506
|
+
max_num_tokens,
|
|
507
|
+
pages_per_seq,
|
|
508
|
+
)
|
|
509
|
+
num_kv_pages_per_block = min(min(pages_per_seq, bkv_p), 4)
|
|
510
|
+
num_queries_per_block = min(min(max_num_tokens, bq_sz),
|
|
511
|
+
4) # OOMS at 8
|
|
512
|
+
return num_kv_pages_per_block, num_queries_per_block
|
|
513
|
+
|
|
514
|
+
num_kv_pages_per_block, num_queries_per_block = _initialize_block_sizes(
|
|
515
|
+
)
|
|
516
|
+
output, kv_cache = mla_ragged_paged_attention(
|
|
517
|
+
q,
|
|
518
|
+
q_rope,
|
|
519
|
+
k,
|
|
520
|
+
k_rope,
|
|
521
|
+
kv_cache,
|
|
522
|
+
*args,
|
|
523
|
+
sm_scale=self.scale,
|
|
524
|
+
num_kv_pages_per_block=num_kv_pages_per_block,
|
|
525
|
+
num_queries_per_block=num_queries_per_block)
|
|
526
|
+
|
|
527
|
+
return kv_cache, output
|
|
528
|
+
|
|
529
|
+
kv_cache, output_TNH = jax.jit(
|
|
530
|
+
jax.shard_map(
|
|
531
|
+
_mla_ragged_paged_attention,
|
|
532
|
+
mesh=mesh,
|
|
533
|
+
in_specs=in_specs,
|
|
534
|
+
out_specs=out_specs,
|
|
535
|
+
check_vma=False,
|
|
536
|
+
), )(
|
|
537
|
+
q_TNA,
|
|
538
|
+
q_rope_TNH,
|
|
539
|
+
k_SA,
|
|
540
|
+
k_rope_SH,
|
|
541
|
+
kv_cache,
|
|
542
|
+
md.seq_lens,
|
|
543
|
+
md.block_tables,
|
|
544
|
+
md.query_start_loc,
|
|
545
|
+
md.request_distribution,
|
|
546
|
+
)
|
|
547
|
+
return kv_cache, output_TNH
|