tpu-inference 0.12.0.dev20251222__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +67 -0
- tests/core/test_dp_scheduler.py +724 -0
- tests/core/test_init.py +63 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +393 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +291 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +388 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +498 -0
- tests/kernels/quantized_matmul_kernel_test.py +159 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/layers/jax/test_qwix.py +969 -0
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +405 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +297 -0
- tests/layers/vllm/test_unquantized.py +621 -0
- tests/layers/vllm/utils.py +72 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +46 -0
- tests/lora/test_bgmv.py +57 -0
- tests/lora/test_layers.py +666 -0
- tests/lora/test_lora.py +147 -0
- tests/lora/test_lora_perf.py +67 -0
- tests/lora/utils.py +88 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +606 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +202 -0
- tests/runner/test_tpu_runner_dp.py +1033 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +215 -0
- tests/test_envs.py +280 -0
- tests/test_tpu_info.py +134 -0
- tests/test_utils.py +193 -0
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +67 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +49 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +814 -0
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +81 -0
- tpu_inference/distributed/tpu_connector.py +732 -0
- tpu_inference/distributed/utils.py +112 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +191 -0
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +399 -0
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +272 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +1340 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +403 -0
- tpu_inference/layers/common/attention_metadata.py +48 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +23 -0
- tpu_inference/layers/common/quantization.py +270 -0
- tpu_inference/layers/common/sharding.py +600 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +268 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
- tpu_inference/layers/jax/base.py +165 -0
- tpu_inference/layers/jax/constants.py +101 -0
- tpu_inference/layers/jax/layers.py +315 -0
- tpu_inference/layers/jax/misc.py +30 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
- tpu_inference/layers/jax/moe/moe.py +249 -0
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +294 -0
- tpu_inference/layers/jax/rope_interface.py +228 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
- tpu_inference/layers/jax/sample/sampling.py +110 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
- tpu_inference/layers/jax/transformer_block.py +121 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +502 -0
- tpu_inference/layers/vllm/linear_common.py +221 -0
- tpu_inference/layers/vllm/quantization/__init__.py +55 -0
- tpu_inference/layers/vllm/quantization/awq.py +221 -0
- tpu_inference/layers/vllm/quantization/common.py +124 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
- tpu_inference/layers/vllm/quantization/fp8.py +118 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
- tpu_inference/layers/vllm/sharding.py +244 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +98 -0
- tpu_inference/lora/torch_punica_tpu.py +310 -0
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +520 -0
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +978 -0
- tpu_inference/models/jax/gpt_oss.py +508 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
- tpu_inference/models/jax/llama3.py +436 -0
- tpu_inference/models/jax/llama4.py +643 -0
- tpu_inference/models/jax/llama_eagle3.py +350 -0
- tpu_inference/models/jax/llama_guard_4.py +375 -0
- tpu_inference/models/jax/qwen2.py +390 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
- tpu_inference/models/jax/qwen3.py +318 -0
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +110 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
- tpu_inference/models/jax/utils/weight_utils.py +621 -0
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
- tpu_inference/platforms/__init__.py +16 -0
- tpu_inference/platforms/tpu_platform.py +258 -0
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +890 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +166 -0
- tpu_inference/runner/kv_cache_manager.py +508 -0
- tpu_inference/runner/lora_utils.py +106 -0
- tpu_inference/runner/multimodal_manager.py +231 -0
- tpu_inference/runner/persistent_batch_manager.py +296 -0
- tpu_inference/runner/speculative_decoding_manager.py +262 -0
- tpu_inference/runner/structured_decoding_manager.py +101 -0
- tpu_inference/runner/tpu_runner.py +1768 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +430 -0
- tpu_inference/tpu_info.py +92 -0
- tpu_inference/utils.py +345 -0
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +468 -0
- tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
- tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
- tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
- tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,606 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from functools import partial
|
|
16
|
+
from unittest.mock import MagicMock, patch
|
|
17
|
+
|
|
18
|
+
import jax
|
|
19
|
+
import jax.numpy as jnp
|
|
20
|
+
import numpy as np
|
|
21
|
+
import pytest
|
|
22
|
+
from flax import nnx
|
|
23
|
+
from flax.typing import PRNGKey
|
|
24
|
+
from jax.sharding import Mesh
|
|
25
|
+
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import \
|
|
26
|
+
Qwen2_5_VLConfig
|
|
27
|
+
from vllm.config import (CacheConfig, DeviceConfig, MultiModalConfig,
|
|
28
|
+
ParallelConfig, SchedulerConfig)
|
|
29
|
+
|
|
30
|
+
# Import the module itself to allow patching
|
|
31
|
+
# Corrected imports for the code under test
|
|
32
|
+
from tpu_inference.models.jax.qwen2_5_vl import (
|
|
33
|
+
AttentionMetadata, Qwen2_5_VisionAttention, Qwen2_5_VisionBlock,
|
|
34
|
+
Qwen2_5_VisionMLP, Qwen2_5_VisionPatchEmbed, Qwen2_5_VisionPatchMerger,
|
|
35
|
+
Qwen2_5_VisionRotaryEmbedding, Qwen2_5_VisionTransformer,
|
|
36
|
+
Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLImagePixelInputs, SegmentIds,
|
|
37
|
+
apply_rotary_pos_emb_vision, generate_window_segment_ids)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
# --- Configuration Mocking ---
|
|
41
|
+
class MockModelConfig:
|
|
42
|
+
|
|
43
|
+
def __init__(self, hf_config, dtype):
|
|
44
|
+
self.hf_config = hf_config
|
|
45
|
+
self.dtype = dtype
|
|
46
|
+
self.multimodal_config = MultiModalConfig(
|
|
47
|
+
image_input_type="pixel",
|
|
48
|
+
image_token_id=hf_config.image_token_id,
|
|
49
|
+
image_input_shape=None)
|
|
50
|
+
self.model = "mock_qwen2_5_vl"
|
|
51
|
+
# Add other attributes if needed by the code
|
|
52
|
+
self.tokenizer = "mock_tokenizer"
|
|
53
|
+
self.tokenizer_mode = "auto"
|
|
54
|
+
self.trust_remote_code = True
|
|
55
|
+
self.seed = 0
|
|
56
|
+
|
|
57
|
+
def is_multimodal_model(self):
|
|
58
|
+
return True
|
|
59
|
+
|
|
60
|
+
def get_hidden_size(self):
|
|
61
|
+
return self.hf_config.hidden_size
|
|
62
|
+
|
|
63
|
+
def get_head_size(self):
|
|
64
|
+
return self.hf_config.hidden_size // self.hf_config.num_attention_heads
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class MockVllmConfig:
|
|
68
|
+
"""A mock VllmConfig sufficient for testing the Qwen2.5 VL model."""
|
|
69
|
+
|
|
70
|
+
def __init__(self, tie_word_embeddings: bool = False):
|
|
71
|
+
vision_config = {
|
|
72
|
+
"hidden_size": 16,
|
|
73
|
+
"intermediate_size": 32,
|
|
74
|
+
"patch_size": 14,
|
|
75
|
+
"image_size": 28,
|
|
76
|
+
"temporal_patch_size": 2,
|
|
77
|
+
"in_channels": 3,
|
|
78
|
+
"window_size": 28,
|
|
79
|
+
"spatial_merge_size": 2,
|
|
80
|
+
"fullatt_block_indexes": [0],
|
|
81
|
+
"out_hidden_size": 24,
|
|
82
|
+
"depth": 2,
|
|
83
|
+
"hidden_act": "gelu",
|
|
84
|
+
"num_heads": 2,
|
|
85
|
+
}
|
|
86
|
+
hf_config = Qwen2_5_VLConfig(
|
|
87
|
+
vision_config=vision_config,
|
|
88
|
+
hidden_size=16,
|
|
89
|
+
num_hidden_layers=2,
|
|
90
|
+
num_attention_heads=2,
|
|
91
|
+
num_key_value_heads=2,
|
|
92
|
+
intermediate_size=32,
|
|
93
|
+
rms_norm_eps=1e-6,
|
|
94
|
+
image_token_id=200000,
|
|
95
|
+
video_token_id=200001,
|
|
96
|
+
tie_word_embeddings=tie_word_embeddings,
|
|
97
|
+
vocab_size=32000,
|
|
98
|
+
rope_theta=1000000.0,
|
|
99
|
+
)
|
|
100
|
+
self.model_config = MockModelConfig(hf_config, jnp.bfloat16)
|
|
101
|
+
self.cache_config = MagicMock(spec=CacheConfig)
|
|
102
|
+
self.parallelism_config = MagicMock(spec=ParallelConfig)
|
|
103
|
+
self.scheduler_config = MagicMock(spec=SchedulerConfig)
|
|
104
|
+
self.device_config = MagicMock(spec=DeviceConfig)
|
|
105
|
+
self.load_config = MagicMock()
|
|
106
|
+
self.extra_configs = {}
|
|
107
|
+
self.additional_config = {}
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
@pytest.fixture(scope="module")
|
|
111
|
+
def mesh():
|
|
112
|
+
"""Creates a mesh with all required axes for testing."""
|
|
113
|
+
if not jax.devices():
|
|
114
|
+
pytest.skip("No JAX devices available for mesh creation.")
|
|
115
|
+
devices = np.array(jax.local_devices())
|
|
116
|
+
return Mesh(devices.reshape((len(devices), 1, 1)),
|
|
117
|
+
axis_names=('data', 'attn_dp', 'model'))
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
@pytest.fixture
|
|
121
|
+
def rng() -> PRNGKey:
|
|
122
|
+
"""Provides a reusable JAX PRNGKey."""
|
|
123
|
+
return jax.random.PRNGKey(42)
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
@pytest.fixture
|
|
127
|
+
def mock_vllm_config() -> MockVllmConfig:
|
|
128
|
+
return MockVllmConfig()
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
@pytest.fixture
|
|
132
|
+
def rngs(rng: PRNGKey) -> nnx.Rngs:
|
|
133
|
+
return nnx.Rngs(params=rng)
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
# --- Test Classes ---
|
|
137
|
+
class TestUtils:
|
|
138
|
+
|
|
139
|
+
def test_apply_rotary_pos_emb_vision(self, rng: PRNGKey):
|
|
140
|
+
B, T, N, H = 1, 10, 2, 8
|
|
141
|
+
x = jax.random.normal(rng, (B, T, N, H))
|
|
142
|
+
rotary_pos_emb = jax.random.normal(rng, (T, H // 2))
|
|
143
|
+
x_rotated = apply_rotary_pos_emb_vision(x, rotary_pos_emb)
|
|
144
|
+
assert x_rotated.shape == (B, T, N, H)
|
|
145
|
+
|
|
146
|
+
def test_generate_window_segment_ids(self):
|
|
147
|
+
cu_seqlens = jnp.array([0, 5, 10])
|
|
148
|
+
seq_len = 10
|
|
149
|
+
padded_seq_len = 16
|
|
150
|
+
segment_ids = generate_window_segment_ids(cu_seqlens, seq_len,
|
|
151
|
+
padded_seq_len)
|
|
152
|
+
assert isinstance(segment_ids, SegmentIds)
|
|
153
|
+
assert segment_ids.q.shape == (1, padded_seq_len)
|
|
154
|
+
assert segment_ids.kv.shape == (1, padded_seq_len)
|
|
155
|
+
expected_q = np.array(
|
|
156
|
+
[[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0]])
|
|
157
|
+
np.testing.assert_array_equal(segment_ids.q, expected_q)
|
|
158
|
+
np.testing.assert_array_equal(segment_ids.kv, expected_q)
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
class TestQwen2_5_VisionMLP:
|
|
162
|
+
|
|
163
|
+
def test_forward(self, mock_vllm_config: MockVllmConfig, rngs: nnx.Rngs):
|
|
164
|
+
config = mock_vllm_config.model_config.hf_config.vision_config
|
|
165
|
+
dtype = mock_vllm_config.model_config.dtype
|
|
166
|
+
mlp = Qwen2_5_VisionMLP(config, dtype, rngs)
|
|
167
|
+
x = jnp.ones((5, config.hidden_size), dtype=dtype)
|
|
168
|
+
y = mlp(x)
|
|
169
|
+
assert y.shape == (5, config.hidden_size)
|
|
170
|
+
assert y.dtype == dtype
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
class TestQwen2_5_VisionAttention:
|
|
174
|
+
|
|
175
|
+
@patch('tpu_inference.models.jax.qwen2_5_vl.sharded_flash_attention')
|
|
176
|
+
def test_forward_fullattn(self, mock_flash_attention: MagicMock,
|
|
177
|
+
mock_vllm_config: MockVllmConfig, rngs: nnx.Rngs,
|
|
178
|
+
mesh: Mesh, rng: PRNGKey):
|
|
179
|
+
attn_module = Qwen2_5_VisionAttention(
|
|
180
|
+
mock_vllm_config.model_config.hf_config,
|
|
181
|
+
mock_vllm_config.model_config.dtype, rngs, mesh)
|
|
182
|
+
B, T, D = 1, 10, attn_module.hidden_size
|
|
183
|
+
# sharded_flash_attention is a factory, so we mock the returned function
|
|
184
|
+
mock_attn_fn = MagicMock(return_value=jnp.ones((B,
|
|
185
|
+
attn_module.num_heads,
|
|
186
|
+
128,
|
|
187
|
+
attn_module.head_dim)))
|
|
188
|
+
attn_module.flash_attention = mock_attn_fn
|
|
189
|
+
x = jax.random.normal(rng, (T, B, D))
|
|
190
|
+
rotary_pos_emb = jax.random.normal(rng, (T, attn_module.head_dim // 2))
|
|
191
|
+
cu_seqlens = jnp.array([0, 5])
|
|
192
|
+
|
|
193
|
+
y_full = attn_module(x,
|
|
194
|
+
rotary_pos_emb,
|
|
195
|
+
cu_window_seqlens=cu_seqlens,
|
|
196
|
+
use_fullattn=True)
|
|
197
|
+
assert y_full.shape == (T, B, D)
|
|
198
|
+
mock_attn_fn.assert_called_once()
|
|
199
|
+
assert mock_attn_fn.call_args[0][3].q.shape == (1, 128)
|
|
200
|
+
|
|
201
|
+
@patch('tpu_inference.models.jax.qwen2_5_vl.sharded_flash_attention')
|
|
202
|
+
def test_forward_windowed(self, mock_flash_attention: MagicMock,
|
|
203
|
+
mock_vllm_config: MockVllmConfig, rngs: nnx.Rngs,
|
|
204
|
+
mesh: Mesh, rng: PRNGKey):
|
|
205
|
+
attn_module = Qwen2_5_VisionAttention(
|
|
206
|
+
mock_vllm_config.model_config.hf_config,
|
|
207
|
+
mock_vllm_config.model_config.dtype, rngs, mesh)
|
|
208
|
+
B, T, D = 1, 10, attn_module.hidden_size
|
|
209
|
+
mock_attn_fn = MagicMock(return_value=jnp.ones((B,
|
|
210
|
+
attn_module.num_heads,
|
|
211
|
+
128,
|
|
212
|
+
attn_module.head_dim)))
|
|
213
|
+
attn_module.flash_attention = mock_attn_fn
|
|
214
|
+
x = jax.random.normal(rng, (T, B, D))
|
|
215
|
+
rotary_pos_emb = jax.random.normal(rng, (T, attn_module.head_dim // 2))
|
|
216
|
+
cu_window_seqlens = jnp.array([0, 5, 10])
|
|
217
|
+
|
|
218
|
+
y_window = attn_module(x,
|
|
219
|
+
rotary_pos_emb,
|
|
220
|
+
cu_window_seqlens=cu_window_seqlens,
|
|
221
|
+
use_fullattn=False)
|
|
222
|
+
assert y_window.shape == (T, B, D)
|
|
223
|
+
mock_attn_fn.assert_called_once()
|
|
224
|
+
assert mock_attn_fn.call_args[0][3].q.shape == (1, 128)
|
|
225
|
+
|
|
226
|
+
def test_batch_fail(self, mock_vllm_config: MockVllmConfig, rngs: nnx.Rngs,
|
|
227
|
+
mesh: Mesh, rng: PRNGKey):
|
|
228
|
+
attn_module = Qwen2_5_VisionAttention(
|
|
229
|
+
mock_vllm_config.model_config.hf_config,
|
|
230
|
+
mock_vllm_config.model_config.dtype, rngs, mesh)
|
|
231
|
+
T, B, D = 10, 2, attn_module.hidden_size
|
|
232
|
+
x = jax.random.normal(rng, (T, B, D))
|
|
233
|
+
rotary_pos_emb = jax.random.normal(rng, (T, attn_module.head_dim // 2))
|
|
234
|
+
with pytest.raises(
|
|
235
|
+
AssertionError,
|
|
236
|
+
match="Vision attention currently only supports batch size 1"):
|
|
237
|
+
attn_module(x, rotary_pos_emb, use_fullattn=True)
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
class TestQwen2_5_VisionBlock:
|
|
241
|
+
|
|
242
|
+
@patch('tpu_inference.models.jax.qwen2_5_vl.Qwen2_5_VisionMLP',
|
|
243
|
+
autospec=True)
|
|
244
|
+
@patch('tpu_inference.models.jax.qwen2_5_vl.Qwen2_5_VisionAttention',
|
|
245
|
+
autospec=True)
|
|
246
|
+
def test_forward(self, MockAttention: MagicMock, MockMLP: MagicMock,
|
|
247
|
+
mock_vllm_config: MockVllmConfig, rngs: nnx.Rngs,
|
|
248
|
+
mesh: Mesh, rng: PRNGKey):
|
|
249
|
+
config = mock_vllm_config.model_config.hf_config
|
|
250
|
+
dtype = mock_vllm_config.model_config.dtype
|
|
251
|
+
D = config.vision_config.hidden_size
|
|
252
|
+
T, B = 10, 1
|
|
253
|
+
|
|
254
|
+
mock_attn_instance = MockAttention.return_value
|
|
255
|
+
mock_attn_instance.return_value = jnp.zeros((T, B, D), dtype=dtype)
|
|
256
|
+
mock_mlp_instance = MockMLP.return_value
|
|
257
|
+
mock_mlp_instance.return_value = jnp.zeros((T, B, D), dtype=dtype)
|
|
258
|
+
|
|
259
|
+
block = Qwen2_5_VisionBlock(config, dtype, rngs, mesh)
|
|
260
|
+
x = jax.random.normal(rng, (T, B, D))
|
|
261
|
+
rotary_pos_emb = jax.random.normal(
|
|
262
|
+
rng, (T, config.vision_config.hidden_size //
|
|
263
|
+
config.vision_config.num_heads // 2))
|
|
264
|
+
|
|
265
|
+
y = block(x, rotary_pos_emb, use_fullattn=True)
|
|
266
|
+
assert y.shape == (T, B, D)
|
|
267
|
+
mock_attn_instance.assert_called_once()
|
|
268
|
+
mock_mlp_instance.assert_called_once()
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
class TestQwen2_5_VisionPatchEmbed:
|
|
272
|
+
|
|
273
|
+
def test_forward(self, mock_vllm_config: MockVllmConfig, rngs: nnx.Rngs,
|
|
274
|
+
rng: PRNGKey):
|
|
275
|
+
vc = mock_vllm_config.model_config.hf_config.vision_config
|
|
276
|
+
dtype = mock_vllm_config.model_config.dtype
|
|
277
|
+
patch_embed = Qwen2_5_VisionPatchEmbed(
|
|
278
|
+
rngs,
|
|
279
|
+
patch_size=vc.patch_size,
|
|
280
|
+
temporal_patch_size=vc.temporal_patch_size,
|
|
281
|
+
in_channels=vc.in_channels,
|
|
282
|
+
hidden_size=vc.hidden_size,
|
|
283
|
+
dtype=dtype)
|
|
284
|
+
num_patches = 4
|
|
285
|
+
patch_dim = vc.in_channels * vc.temporal_patch_size * vc.patch_size * vc.patch_size
|
|
286
|
+
x = jax.random.normal(rng, (num_patches, patch_dim))
|
|
287
|
+
y = patch_embed(x)
|
|
288
|
+
assert y.shape == (num_patches, vc.hidden_size)
|
|
289
|
+
|
|
290
|
+
|
|
291
|
+
class TestQwen2_5_VisionPatchMerger:
|
|
292
|
+
|
|
293
|
+
def test_forward(self, mock_vllm_config: MockVllmConfig, rngs: nnx.Rngs,
|
|
294
|
+
rng: PRNGKey):
|
|
295
|
+
vc = mock_vllm_config.model_config.hf_config.vision_config
|
|
296
|
+
dtype = mock_vllm_config.model_config.dtype
|
|
297
|
+
merger = Qwen2_5_VisionPatchMerger(
|
|
298
|
+
d_model=vc.out_hidden_size,
|
|
299
|
+
context_dim=vc.hidden_size,
|
|
300
|
+
norm_layer=partial(nnx.RMSNorm, epsilon=1e-6),
|
|
301
|
+
spatial_merge_size=vc.spatial_merge_size,
|
|
302
|
+
dtype=dtype,
|
|
303
|
+
rngs=rngs)
|
|
304
|
+
x = jax.random.normal(rng,
|
|
305
|
+
(5, vc.spatial_merge_size**2, vc.hidden_size))
|
|
306
|
+
y = merger(x)
|
|
307
|
+
assert y.shape == (5, vc.out_hidden_size)
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
class TestQwen2_5_VisionRotaryEmbedding:
|
|
311
|
+
|
|
312
|
+
def test_forward(self):
|
|
313
|
+
dim = 16
|
|
314
|
+
seqlen = 10
|
|
315
|
+
rotary_emb = Qwen2_5_VisionRotaryEmbedding(dim=dim)
|
|
316
|
+
emb = rotary_emb(seqlen)
|
|
317
|
+
assert emb.shape == (seqlen, dim // 2)
|
|
318
|
+
|
|
319
|
+
|
|
320
|
+
class TestQwen2_5_VisionTransformer:
|
|
321
|
+
|
|
322
|
+
@pytest.fixture
|
|
323
|
+
def vision_transformer(self, mock_vllm_config: MockVllmConfig,
|
|
324
|
+
rngs: nnx.Rngs, mesh: Mesh):
|
|
325
|
+
return Qwen2_5_VisionTransformer(mock_vllm_config, rngs, mesh)
|
|
326
|
+
|
|
327
|
+
def test_rotary_pos_emb_thw(self,
|
|
328
|
+
vision_transformer: Qwen2_5_VisionTransformer):
|
|
329
|
+
t, h, w = 2, 4, 4
|
|
330
|
+
emb = vision_transformer.rotary_pos_emb_thw(t, h, w)
|
|
331
|
+
vc = vision_transformer.config
|
|
332
|
+
sm = vc.spatial_merge_size
|
|
333
|
+
head_dim_half = (vc.hidden_size // vc.num_heads) // 2
|
|
334
|
+
expected_shape = (t * (h // sm) * (w // sm), sm * sm, head_dim_half)
|
|
335
|
+
assert emb.shape == expected_shape
|
|
336
|
+
|
|
337
|
+
def test_get_window_index_thw(
|
|
338
|
+
self, vision_transformer: Qwen2_5_VisionTransformer):
|
|
339
|
+
grid_t, grid_h, grid_w = 1, 8, 8
|
|
340
|
+
index_new, cu_seqlens_tmp = vision_transformer.get_window_index_thw(
|
|
341
|
+
grid_t, grid_h, grid_w)
|
|
342
|
+
vc = vision_transformer.config
|
|
343
|
+
sm = vc.spatial_merge_size
|
|
344
|
+
num_valid_indices = grid_t * (grid_h // sm) * (grid_w // sm)
|
|
345
|
+
assert index_new.shape == (num_valid_indices, )
|
|
346
|
+
assert jnp.all(index_new >= 0)
|
|
347
|
+
|
|
348
|
+
def test_get_rope_by_thw(self,
|
|
349
|
+
vision_transformer: Qwen2_5_VisionTransformer):
|
|
350
|
+
t, h, w = 1, 8, 8
|
|
351
|
+
res = vision_transformer.get_rope_by_thw(t, h, w)
|
|
352
|
+
assert isinstance(res, tuple)
|
|
353
|
+
assert len(res) == 4
|
|
354
|
+
rotary_pos_emb_thw, window_index_thw, cu_seqlens_window_thw, cu_seqlens_thw = res
|
|
355
|
+
|
|
356
|
+
vc = vision_transformer.config
|
|
357
|
+
sm = vc.spatial_merge_size
|
|
358
|
+
# The rotary embedding output for each position is head_dim // 2
|
|
359
|
+
head_dim_rope = (vc.hidden_size // vc.num_heads) // 2
|
|
360
|
+
expected_len = window_index_thw.shape[0] * sm * sm
|
|
361
|
+
assert rotary_pos_emb_thw.shape == (expected_len, head_dim_rope)
|
|
362
|
+
|
|
363
|
+
@pytest.mark.parametrize("enable_dynamic_image_sizes", [False, True])
|
|
364
|
+
def test_call(self, mock_vllm_config: MockVllmConfig, rngs: nnx.Rngs,
|
|
365
|
+
mesh: Mesh, rng: PRNGKey, enable_dynamic_image_sizes: bool):
|
|
366
|
+
mock_vllm_config.additional_config = {
|
|
367
|
+
"enable_dynamic_image_sizes": enable_dynamic_image_sizes
|
|
368
|
+
}
|
|
369
|
+
vision_transformer = Qwen2_5_VisionTransformer(mock_vllm_config, rngs,
|
|
370
|
+
mesh)
|
|
371
|
+
# Mock the flash_attention call to avoid sharding errors in test environment
|
|
372
|
+
for block in vision_transformer.blocks:
|
|
373
|
+
# The mock should return a tensor of the same shape as the query 'q'
|
|
374
|
+
block.attn.flash_attention = MagicMock(
|
|
375
|
+
side_effect=lambda q, k, v, seg: jnp.ones_like(q))
|
|
376
|
+
|
|
377
|
+
vc = vision_transformer.config
|
|
378
|
+
t_pix, h_pix, w_pix = 2, 84, 28
|
|
379
|
+
|
|
380
|
+
# The number of patches is calculated from the pixel dimensions of the image/video
|
|
381
|
+
num_patches = (t_pix // vc.temporal_patch_size) * \
|
|
382
|
+
(h_pix // vc.patch_size) * \
|
|
383
|
+
(w_pix // vc.patch_size)
|
|
384
|
+
|
|
385
|
+
patch_dim = vc.in_channels * vc.temporal_patch_size * vc.patch_size * vc.patch_size
|
|
386
|
+
x = jax.random.normal(rng, (num_patches, patch_dim))
|
|
387
|
+
|
|
388
|
+
# The grid_thw should be in terms of patch grid dimensions, not pixels
|
|
389
|
+
t_grid = t_pix // vc.temporal_patch_size
|
|
390
|
+
h_grid = h_pix // vc.patch_size
|
|
391
|
+
w_grid = w_pix // vc.patch_size
|
|
392
|
+
grid_thw = ((t_grid, h_grid, w_grid), )
|
|
393
|
+
|
|
394
|
+
embeddings = vision_transformer(x, grid_thw)
|
|
395
|
+
|
|
396
|
+
# The number of output tokens is determined by the grid dimensions and spatial merge size.
|
|
397
|
+
expected_len = t_grid * (h_grid // vc.spatial_merge_size) * (
|
|
398
|
+
w_grid // vc.spatial_merge_size)
|
|
399
|
+
assert embeddings.shape == (expected_len, vc.out_hidden_size)
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
class TestQwen2_5_VLForConditionalGeneration:
|
|
403
|
+
|
|
404
|
+
@pytest.fixture
|
|
405
|
+
def model(self, mock_vllm_config: MockVllmConfig, rng: PRNGKey,
|
|
406
|
+
mesh: Mesh):
|
|
407
|
+
with patch('tpu_inference.models.jax.qwen2_5_vl.Qwen2_5_VisionTransformer', autospec=True) as MockVision, \
|
|
408
|
+
patch('tpu_inference.models.jax.qwen2_5_vl.Qwen2ForCausalLM', autospec=True) as MockLM:
|
|
409
|
+
mock_visual = MockVision.return_value
|
|
410
|
+
mock_visual.dtype = mock_vllm_config.model_config.dtype
|
|
411
|
+
mock_visual.config = mock_vllm_config.model_config.hf_config.vision_config
|
|
412
|
+
mock_visual.spatial_merge_size = mock_vllm_config.model_config.hf_config.vision_config.spatial_merge_size
|
|
413
|
+
|
|
414
|
+
model = Qwen2_5_VLForConditionalGeneration(mock_vllm_config, rng,
|
|
415
|
+
mesh)
|
|
416
|
+
# Directly assign mocked instances
|
|
417
|
+
model.visual = mock_visual
|
|
418
|
+
model.language_model = MockLM.return_value
|
|
419
|
+
yield model
|
|
420
|
+
|
|
421
|
+
def test_validate_and_reshape_mm_tensor(
|
|
422
|
+
self, model: Qwen2_5_VLForConditionalGeneration):
|
|
423
|
+
data_list = [np.ones((2, 4)), np.ones((3, 4))]
|
|
424
|
+
reshaped_list = model._validate_and_reshape_mm_tensor(
|
|
425
|
+
data_list, "test_list")
|
|
426
|
+
assert reshaped_list.shape == (5, 4)
|
|
427
|
+
assert isinstance(reshaped_list, jax.Array)
|
|
428
|
+
|
|
429
|
+
data_2d = np.ones((5, 4))
|
|
430
|
+
reshaped_2d = model._validate_and_reshape_mm_tensor(data_2d, "test_2d")
|
|
431
|
+
assert reshaped_2d.shape == (5, 4)
|
|
432
|
+
|
|
433
|
+
data_3d = np.ones((2, 5, 4))
|
|
434
|
+
reshaped_3d = model._validate_and_reshape_mm_tensor(data_3d, "test_3d")
|
|
435
|
+
assert reshaped_3d.shape == (10, 4)
|
|
436
|
+
|
|
437
|
+
with pytest.raises(ValueError, match="Incorrect type of test_invalid"):
|
|
438
|
+
model._validate_and_reshape_mm_tensor("invalid", "test_invalid")
|
|
439
|
+
|
|
440
|
+
def test_parse_and_validate_image_input(
|
|
441
|
+
self, model: Qwen2_5_VLForConditionalGeneration):
|
|
442
|
+
grid = ((2, 28, 28), )
|
|
443
|
+
vc = model.config.vision_config
|
|
444
|
+
patch_dim = vc.in_channels * vc.temporal_patch_size * vc.patch_size * vc.patch_size
|
|
445
|
+
pixel_values = np.ones((4, patch_dim))
|
|
446
|
+
|
|
447
|
+
parsed = model._parse_and_validate_image_input(
|
|
448
|
+
grid, pixel_values=pixel_values)
|
|
449
|
+
assert parsed is not None
|
|
450
|
+
assert parsed['type'] == "pixel_values"
|
|
451
|
+
assert parsed['pixel_values'].shape == (4, patch_dim)
|
|
452
|
+
assert parsed['image_grid_thw'] == grid
|
|
453
|
+
|
|
454
|
+
parsed_none = model._parse_and_validate_image_input(grid)
|
|
455
|
+
assert parsed_none is None
|
|
456
|
+
|
|
457
|
+
def test_parse_and_validate_multimodal_inputs(
|
|
458
|
+
self, model: Qwen2_5_VLForConditionalGeneration):
|
|
459
|
+
grid = ((2, 28, 28), )
|
|
460
|
+
vc = model.config.vision_config
|
|
461
|
+
patch_dim = vc.in_channels * vc.temporal_patch_size * vc.patch_size * vc.patch_size
|
|
462
|
+
pixel_values = np.ones((4, patch_dim))
|
|
463
|
+
|
|
464
|
+
mm_inputs = model._parse_and_validate_multimodal_inputs(
|
|
465
|
+
grid, pixel_values=pixel_values)
|
|
466
|
+
assert "image" in mm_inputs
|
|
467
|
+
assert mm_inputs["image"]['type'] == "pixel_values"
|
|
468
|
+
|
|
469
|
+
mm_inputs_empty = model._parse_and_validate_multimodal_inputs(grid)
|
|
470
|
+
assert not mm_inputs_empty
|
|
471
|
+
|
|
472
|
+
def test_process_image_input_pixels(
|
|
473
|
+
self, model: Qwen2_5_VLForConditionalGeneration):
|
|
474
|
+
grid_thw = ((2, 28, 28), (2, 28, 28))
|
|
475
|
+
vc = model.config.vision_config
|
|
476
|
+
num_patches = 8 # 4 per image
|
|
477
|
+
patch_dim = vc.in_channels * vc.temporal_patch_size * vc.patch_size * vc.patch_size
|
|
478
|
+
pixel_values = jnp.ones((num_patches, patch_dim))
|
|
479
|
+
image_input = Qwen2_5_VLImagePixelInputs(type="pixel_values",
|
|
480
|
+
pixel_values=pixel_values,
|
|
481
|
+
image_grid_thw=grid_thw)
|
|
482
|
+
|
|
483
|
+
tokens_per_image = (2 * 28 * 28) // (vc.spatial_merge_size**2)
|
|
484
|
+
mock_embeds = jnp.ones((tokens_per_image, vc.out_hidden_size))
|
|
485
|
+
model.visual.return_value = mock_embeds
|
|
486
|
+
|
|
487
|
+
embeddings = model._process_image_input(image_input)
|
|
488
|
+
assert isinstance(embeddings, tuple)
|
|
489
|
+
assert len(embeddings) == 2
|
|
490
|
+
assert embeddings[0].shape == (tokens_per_image, vc.out_hidden_size)
|
|
491
|
+
assert embeddings[1].shape == (tokens_per_image, vc.out_hidden_size)
|
|
492
|
+
assert model.visual.call_count == 2
|
|
493
|
+
|
|
494
|
+
def test_get_multimodal_embeddings(
|
|
495
|
+
self, model: Qwen2_5_VLForConditionalGeneration):
|
|
496
|
+
grid_thw = ((2, 28, 28), )
|
|
497
|
+
vc = model.config.vision_config
|
|
498
|
+
patch_dim = vc.in_channels * vc.temporal_patch_size * vc.patch_size * vc.patch_size
|
|
499
|
+
pixel_values = np.ones((4, patch_dim))
|
|
500
|
+
tokens_per_image = (2 * 28 * 28) // (vc.spatial_merge_size**2)
|
|
501
|
+
mock_vision_output = jnp.ones((tokens_per_image, vc.out_hidden_size))
|
|
502
|
+
|
|
503
|
+
with patch.object(model,
|
|
504
|
+
'_process_image_input',
|
|
505
|
+
return_value=(mock_vision_output, )) as mock_process:
|
|
506
|
+
mm_embeds = model.get_multimodal_embeddings(
|
|
507
|
+
grid_thw, pixel_values=pixel_values)
|
|
508
|
+
mock_process.assert_called_once()
|
|
509
|
+
assert isinstance(mm_embeds, tuple)
|
|
510
|
+
assert len(mm_embeds) == 1
|
|
511
|
+
assert mm_embeds[0].shape == (tokens_per_image, vc.out_hidden_size)
|
|
512
|
+
|
|
513
|
+
mm_embeds_none = model.get_multimodal_embeddings(grid_thw)
|
|
514
|
+
assert len(mm_embeds_none) == 0
|
|
515
|
+
|
|
516
|
+
@patch('tpu_inference.models.jax.qwen2_5_vl.merge_multimodal_embeddings')
|
|
517
|
+
def test_get_input_embeddings(self, mock_merge_embeddings: MagicMock,
|
|
518
|
+
model: Qwen2_5_VLForConditionalGeneration,
|
|
519
|
+
rng: PRNGKey):
|
|
520
|
+
input_ids = jax.random.randint(rng, (1, 10), 0,
|
|
521
|
+
model.config.vocab_size)
|
|
522
|
+
mock_text_embeds = jnp.ones((1, 10, model.config.hidden_size))
|
|
523
|
+
model.language_model.model = MagicMock()
|
|
524
|
+
model.language_model.model.embed = MagicMock(
|
|
525
|
+
return_value=mock_text_embeds)
|
|
526
|
+
|
|
527
|
+
embeds = model.get_input_embeddings(input_ids, None)
|
|
528
|
+
np.testing.assert_array_equal(embeds, mock_text_embeds)
|
|
529
|
+
mock_merge_embeddings.assert_not_called()
|
|
530
|
+
|
|
531
|
+
empty_mm = jnp.ones((0, model.config.hidden_size), )
|
|
532
|
+
embeds_empty_mm = model.get_input_embeddings(input_ids, empty_mm)
|
|
533
|
+
np.testing.assert_array_equal(embeds_empty_mm, mock_text_embeds)
|
|
534
|
+
mock_merge_embeddings.assert_not_called()
|
|
535
|
+
|
|
536
|
+
mm_embeds = jnp.ones((5, model.config.hidden_size))
|
|
537
|
+
mock_merged = jnp.ones((1, 15, model.config.hidden_size))
|
|
538
|
+
mock_merge_embeddings.return_value = mock_merged
|
|
539
|
+
|
|
540
|
+
embeds_mm = model.get_input_embeddings(input_ids, mm_embeds)
|
|
541
|
+
np.testing.assert_array_equal(embeds_mm, mock_merged)
|
|
542
|
+
mock_merge_embeddings.assert_called_once_with(
|
|
543
|
+
input_ids, mock_text_embeds, mm_embeds,
|
|
544
|
+
[model.config.image_token_id, model.config.video_token_id])
|
|
545
|
+
|
|
546
|
+
def test_call(self, model: Qwen2_5_VLForConditionalGeneration,
|
|
547
|
+
rng: PRNGKey):
|
|
548
|
+
kv_caches = [MagicMock()]
|
|
549
|
+
input_ids = jax.random.randint(rng, (1, 10), 0,
|
|
550
|
+
model.config.vocab_size)
|
|
551
|
+
attn_meta = MagicMock(spec=AttentionMetadata)
|
|
552
|
+
mock_lm_output = ([MagicMock()],
|
|
553
|
+
jnp.ones((1, 10, model.config.hidden_size)), [])
|
|
554
|
+
model.language_model.return_value = mock_lm_output
|
|
555
|
+
|
|
556
|
+
new_kvs, x, aux_hidden_states = model(kv_caches, input_ids, attn_meta)
|
|
557
|
+
model.language_model.assert_called_once_with(
|
|
558
|
+
kv_caches=kv_caches,
|
|
559
|
+
input_ids=input_ids,
|
|
560
|
+
attention_metadata=attn_meta,
|
|
561
|
+
inputs_embeds=None)
|
|
562
|
+
assert len(new_kvs) == 1
|
|
563
|
+
assert x.shape == (1, 10, model.config.hidden_size)
|
|
564
|
+
assert len(aux_hidden_states) == 0
|
|
565
|
+
|
|
566
|
+
def test_compute_logits(self, model: Qwen2_5_VLForConditionalGeneration,
|
|
567
|
+
rng: PRNGKey):
|
|
568
|
+
hidden_states = jnp.ones((1, 10, model.config.hidden_size))
|
|
569
|
+
mock_logits = jnp.ones((1, 10, model.config.vocab_size))
|
|
570
|
+
model.language_model.compute_logits.return_value = mock_logits
|
|
571
|
+
|
|
572
|
+
logits = model.compute_logits(hidden_states)
|
|
573
|
+
np.testing.assert_array_equal(logits, mock_logits)
|
|
574
|
+
model.language_model.compute_logits.assert_called_once_with(
|
|
575
|
+
hidden_states)
|
|
576
|
+
|
|
577
|
+
@patch('tpu_inference.models.jax.qwen2_5_vl.load_hf_weights')
|
|
578
|
+
def test_load_weights(self, mock_load_weights: MagicMock,
|
|
579
|
+
model: Qwen2_5_VLForConditionalGeneration,
|
|
580
|
+
mock_vllm_config: MockVllmConfig, rng: PRNGKey,
|
|
581
|
+
mesh: Mesh):
|
|
582
|
+
model.load_weights(rng)
|
|
583
|
+
mock_load_weights.assert_called_once()
|
|
584
|
+
kwargs = mock_load_weights.call_args.kwargs
|
|
585
|
+
assert kwargs['vllm_config'] == mock_vllm_config
|
|
586
|
+
assert kwargs['model'] is model
|
|
587
|
+
assert "model.embed_tokens" in kwargs['metadata_map'].name_map
|
|
588
|
+
assert "lm_head" in kwargs[
|
|
589
|
+
'metadata_map'].name_map # Should be present when not tied
|
|
590
|
+
assert kwargs['mesh'] is mesh
|
|
591
|
+
assert isinstance(model.rng, nnx.Rngs)
|
|
592
|
+
assert model.language_model.rng is model.rng
|
|
593
|
+
|
|
594
|
+
@patch('tpu_inference.models.jax.qwen2_5_vl.load_hf_weights')
|
|
595
|
+
def test_load_weights_tied(self, mock_load_weights: MagicMock,
|
|
596
|
+
rng: PRNGKey, mesh: Mesh):
|
|
597
|
+
mock_vllm_config_tied = MockVllmConfig(tie_word_embeddings=True)
|
|
598
|
+
with patch('tpu_inference.models.jax.qwen2_5_vl.Qwen2_5_VisionTransformer', autospec=True), \
|
|
599
|
+
patch('tpu_inference.models.jax.qwen2_5_vl.Qwen2ForCausalLM', autospec=True):
|
|
600
|
+
model = Qwen2_5_VLForConditionalGeneration(mock_vllm_config_tied,
|
|
601
|
+
rng, mesh)
|
|
602
|
+
|
|
603
|
+
model.load_weights(rng)
|
|
604
|
+
mock_load_weights.assert_called_once()
|
|
605
|
+
kwargs = mock_load_weights.call_args.kwargs
|
|
606
|
+
assert "lm_head" not in kwargs['metadata_map'].name_map
|