tpu-inference 0.12.0.dev20251222__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. tests/__init__.py +13 -0
  2. tests/core/__init__.py +13 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +67 -0
  6. tests/core/test_dp_scheduler.py +724 -0
  7. tests/core/test_init.py +63 -0
  8. tests/distributed/__init__.py +13 -0
  9. tests/distributed/test_distributed_utils.py +120 -0
  10. tests/distributed/test_tpu_connector.py +478 -0
  11. tests/e2e/__init__.py +13 -0
  12. tests/e2e/test_async_scheduler.py +211 -0
  13. tests/e2e/test_data_parallel.py +393 -0
  14. tests/e2e/test_local_disagg.py +257 -0
  15. tests/e2e/test_model_loader.py +268 -0
  16. tests/e2e/test_multi_modal_inference.py +111 -0
  17. tests/e2e/test_pipeline_parallel.py +265 -0
  18. tests/e2e/test_runai_model_streamer_loader.py +104 -0
  19. tests/e2e/test_sampling_params.py +269 -0
  20. tests/e2e/test_speculative_decoding.py +291 -0
  21. tests/e2e/test_structured_decoding.py +46 -0
  22. tests/executors/__init__.py +13 -0
  23. tests/executors/test_ray_distributed_executor.py +199 -0
  24. tests/experimental/__init__.py +13 -0
  25. tests/experimental/test_llama3_jax_stashed.py +208 -0
  26. tests/kernels/__init__.py +13 -0
  27. tests/kernels/collectives/__init__.py +13 -0
  28. tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
  29. tests/kernels/fused_moe_v1_test.py +388 -0
  30. tests/kernels/gmm_test.py +205 -0
  31. tests/kernels/mla_v1_test.py +498 -0
  32. tests/kernels/quantized_matmul_kernel_test.py +159 -0
  33. tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
  34. tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
  35. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
  36. tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
  37. tests/layers/__init__.py +13 -0
  38. tests/layers/common/__init__.py +13 -0
  39. tests/layers/common/test_attention_interface.py +156 -0
  40. tests/layers/common/test_quantization.py +149 -0
  41. tests/layers/jax/__init__.py +13 -0
  42. tests/layers/jax/attention/__init__.py +13 -0
  43. tests/layers/jax/attention/test_common_attention.py +103 -0
  44. tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
  45. tests/layers/jax/attention/test_llama4_attention.py +135 -0
  46. tests/layers/jax/moe/__init__.py +13 -0
  47. tests/layers/jax/moe/test_deepseek_moe.py +235 -0
  48. tests/layers/jax/sample/__init__.py +13 -0
  49. tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
  50. tests/layers/jax/sample/test_sampling.py +115 -0
  51. tests/layers/jax/sample/test_sampling_metadata.py +254 -0
  52. tests/layers/jax/test_layers.py +155 -0
  53. tests/layers/jax/test_qwix.py +969 -0
  54. tests/layers/jax/test_rope.py +93 -0
  55. tests/layers/jax/test_sharding.py +159 -0
  56. tests/layers/jax/test_transformer_block.py +152 -0
  57. tests/layers/vllm/__init__.py +13 -0
  58. tests/layers/vllm/test_attention.py +363 -0
  59. tests/layers/vllm/test_awq.py +405 -0
  60. tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
  61. tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
  62. tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
  63. tests/layers/vllm/test_fp8.py +17 -0
  64. tests/layers/vllm/test_mxfp4.py +297 -0
  65. tests/layers/vllm/test_unquantized.py +621 -0
  66. tests/layers/vllm/utils.py +72 -0
  67. tests/lora/__init__.py +13 -0
  68. tests/lora/conftest.py +46 -0
  69. tests/lora/test_bgmv.py +57 -0
  70. tests/lora/test_layers.py +666 -0
  71. tests/lora/test_lora.py +147 -0
  72. tests/lora/test_lora_perf.py +67 -0
  73. tests/lora/utils.py +88 -0
  74. tests/models/__init__.py +13 -0
  75. tests/models/common/__init__.py +13 -0
  76. tests/models/common/test_model_loader.py +455 -0
  77. tests/models/jax/__init__.py +13 -0
  78. tests/models/jax/test_deepseek_v3.py +401 -0
  79. tests/models/jax/test_llama3.py +184 -0
  80. tests/models/jax/test_llama4.py +298 -0
  81. tests/models/jax/test_llama_eagle3.py +197 -0
  82. tests/models/jax/test_llama_guard_4.py +242 -0
  83. tests/models/jax/test_qwen2.py +172 -0
  84. tests/models/jax/test_qwen2_5_vl.py +606 -0
  85. tests/models/jax/test_qwen3.py +169 -0
  86. tests/models/jax/test_weight_loading.py +180 -0
  87. tests/models/jax/utils/__init__.py +13 -0
  88. tests/models/jax/utils/test_multi_modal_utils.py +212 -0
  89. tests/platforms/__init__.py +13 -0
  90. tests/platforms/test_tpu_platform.py +54 -0
  91. tests/runner/__init__.py +13 -0
  92. tests/runner/test_block_table.py +395 -0
  93. tests/runner/test_input_batch.py +226 -0
  94. tests/runner/test_kv_cache.py +220 -0
  95. tests/runner/test_kv_cache_manager.py +498 -0
  96. tests/runner/test_multimodal_manager.py +429 -0
  97. tests/runner/test_persistent_batch_manager.py +84 -0
  98. tests/runner/test_speculative_decoding_manager.py +368 -0
  99. tests/runner/test_structured_decoding_manager.py +220 -0
  100. tests/runner/test_tpu_runner.py +202 -0
  101. tests/runner/test_tpu_runner_dp.py +1033 -0
  102. tests/runner/test_tpu_runner_mesh.py +200 -0
  103. tests/runner/test_utils.py +411 -0
  104. tests/spec_decode/__init__.py +13 -0
  105. tests/spec_decode/test_eagle3.py +311 -0
  106. tests/test_base.py +215 -0
  107. tests/test_envs.py +280 -0
  108. tests/test_tpu_info.py +134 -0
  109. tests/test_utils.py +193 -0
  110. tests/worker/__init__.py +13 -0
  111. tests/worker/tpu_worker_test.py +414 -0
  112. tpu_inference/__init__.py +67 -0
  113. tpu_inference/core/__init__.py +13 -0
  114. tpu_inference/core/core_tpu.py +786 -0
  115. tpu_inference/core/disagg_executor.py +118 -0
  116. tpu_inference/core/disagg_utils.py +49 -0
  117. tpu_inference/core/sched/__init__.py +13 -0
  118. tpu_inference/core/sched/dp_scheduler.py +814 -0
  119. tpu_inference/distributed/__init__.py +13 -0
  120. tpu_inference/distributed/jax_parallel_state.py +81 -0
  121. tpu_inference/distributed/tpu_connector.py +732 -0
  122. tpu_inference/distributed/utils.py +112 -0
  123. tpu_inference/env_override.py +9 -0
  124. tpu_inference/envs.py +191 -0
  125. tpu_inference/executors/__init__.py +13 -0
  126. tpu_inference/executors/ray_distributed_executor.py +399 -0
  127. tpu_inference/experimental/__init__.py +13 -0
  128. tpu_inference/experimental/llama3_jax_stashed.py +272 -0
  129. tpu_inference/kernels/__init__.py +13 -0
  130. tpu_inference/kernels/collectives/__init__.py +13 -0
  131. tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
  132. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
  133. tpu_inference/kernels/collectives/util.py +47 -0
  134. tpu_inference/kernels/flash_attention/__init__.py +13 -0
  135. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  136. tpu_inference/kernels/fused_moe/__init__.py +13 -0
  137. tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
  138. tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
  139. tpu_inference/kernels/megablox/__init__.py +13 -0
  140. tpu_inference/kernels/megablox/common.py +54 -0
  141. tpu_inference/kernels/megablox/gmm.py +646 -0
  142. tpu_inference/kernels/mla/__init__.py +13 -0
  143. tpu_inference/kernels/mla/v1/__init__.py +13 -0
  144. tpu_inference/kernels/mla/v1/kernel.py +1340 -0
  145. tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
  146. tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
  147. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  148. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  149. tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
  150. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
  151. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
  152. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
  153. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  154. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
  155. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
  156. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
  157. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
  158. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
  159. tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
  160. tpu_inference/layers/__init__.py +13 -0
  161. tpu_inference/layers/common/__init__.py +13 -0
  162. tpu_inference/layers/common/attention_interface.py +403 -0
  163. tpu_inference/layers/common/attention_metadata.py +48 -0
  164. tpu_inference/layers/common/binary_search.py +295 -0
  165. tpu_inference/layers/common/quant_methods.py +23 -0
  166. tpu_inference/layers/common/quantization.py +270 -0
  167. tpu_inference/layers/common/sharding.py +600 -0
  168. tpu_inference/layers/jax/__init__.py +13 -0
  169. tpu_inference/layers/jax/attention/__init__.py +13 -0
  170. tpu_inference/layers/jax/attention/attention.py +268 -0
  171. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
  172. tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
  173. tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
  174. tpu_inference/layers/jax/base.py +165 -0
  175. tpu_inference/layers/jax/constants.py +101 -0
  176. tpu_inference/layers/jax/layers.py +315 -0
  177. tpu_inference/layers/jax/misc.py +30 -0
  178. tpu_inference/layers/jax/moe/__init__.py +13 -0
  179. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
  180. tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
  181. tpu_inference/layers/jax/moe/moe.py +249 -0
  182. tpu_inference/layers/jax/pp_utils.py +53 -0
  183. tpu_inference/layers/jax/rope.py +294 -0
  184. tpu_inference/layers/jax/rope_interface.py +228 -0
  185. tpu_inference/layers/jax/sample/__init__.py +13 -0
  186. tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
  187. tpu_inference/layers/jax/sample/sampling.py +110 -0
  188. tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
  189. tpu_inference/layers/jax/transformer_block.py +121 -0
  190. tpu_inference/layers/vllm/__init__.py +13 -0
  191. tpu_inference/layers/vllm/attention.py +221 -0
  192. tpu_inference/layers/vllm/fused_moe.py +502 -0
  193. tpu_inference/layers/vllm/linear_common.py +221 -0
  194. tpu_inference/layers/vllm/quantization/__init__.py +55 -0
  195. tpu_inference/layers/vllm/quantization/awq.py +221 -0
  196. tpu_inference/layers/vllm/quantization/common.py +124 -0
  197. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
  198. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
  199. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
  200. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
  201. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
  202. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
  203. tpu_inference/layers/vllm/quantization/fp8.py +118 -0
  204. tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
  205. tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
  206. tpu_inference/layers/vllm/sharding.py +244 -0
  207. tpu_inference/logger.py +10 -0
  208. tpu_inference/lora/__init__.py +13 -0
  209. tpu_inference/lora/torch_lora_ops.py +98 -0
  210. tpu_inference/lora/torch_punica_tpu.py +310 -0
  211. tpu_inference/models/__init__.py +13 -0
  212. tpu_inference/models/common/__init__.py +13 -0
  213. tpu_inference/models/common/model_loader.py +520 -0
  214. tpu_inference/models/jax/__init__.py +13 -0
  215. tpu_inference/models/jax/deepseek_v3.py +978 -0
  216. tpu_inference/models/jax/gpt_oss.py +508 -0
  217. tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
  218. tpu_inference/models/jax/llama3.py +436 -0
  219. tpu_inference/models/jax/llama4.py +643 -0
  220. tpu_inference/models/jax/llama_eagle3.py +350 -0
  221. tpu_inference/models/jax/llama_guard_4.py +375 -0
  222. tpu_inference/models/jax/qwen2.py +390 -0
  223. tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
  224. tpu_inference/models/jax/qwen3.py +318 -0
  225. tpu_inference/models/jax/utils/__init__.py +13 -0
  226. tpu_inference/models/jax/utils/file_utils.py +110 -0
  227. tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
  228. tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
  229. tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
  230. tpu_inference/models/jax/utils/weight_utils.py +621 -0
  231. tpu_inference/models/vllm/__init__.py +13 -0
  232. tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
  233. tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
  234. tpu_inference/platforms/__init__.py +16 -0
  235. tpu_inference/platforms/tpu_platform.py +258 -0
  236. tpu_inference/runner/__init__.py +13 -0
  237. tpu_inference/runner/block_table.py +122 -0
  238. tpu_inference/runner/compilation_manager.py +890 -0
  239. tpu_inference/runner/input_batch.py +435 -0
  240. tpu_inference/runner/kv_cache.py +166 -0
  241. tpu_inference/runner/kv_cache_manager.py +508 -0
  242. tpu_inference/runner/lora_utils.py +106 -0
  243. tpu_inference/runner/multimodal_manager.py +231 -0
  244. tpu_inference/runner/persistent_batch_manager.py +296 -0
  245. tpu_inference/runner/speculative_decoding_manager.py +262 -0
  246. tpu_inference/runner/structured_decoding_manager.py +101 -0
  247. tpu_inference/runner/tpu_runner.py +1768 -0
  248. tpu_inference/runner/utils.py +426 -0
  249. tpu_inference/spec_decode/__init__.py +13 -0
  250. tpu_inference/spec_decode/jax/__init__.py +13 -0
  251. tpu_inference/spec_decode/jax/eagle3.py +430 -0
  252. tpu_inference/tpu_info.py +92 -0
  253. tpu_inference/utils.py +345 -0
  254. tpu_inference/worker/__init__.py +13 -0
  255. tpu_inference/worker/tpu_worker.py +468 -0
  256. tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
  257. tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
  258. tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
  259. tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
  260. tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
@@ -0,0 +1,565 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import jax
16
+ import jax.numpy as jnp
17
+ import numpy as np
18
+ from absl.testing import absltest, parameterized
19
+ from jax._src import dtypes
20
+ from jax._src import test_util as jtu
21
+
22
+ from tpu_inference.kernels.ragged_paged_attention.v3.kernel_hd64 import (
23
+ ragged_paged_attention_hd64, ref_ragged_paged_attention_hd64)
24
+ from tpu_inference.kernels.ragged_paged_attention.v3.util import (
25
+ align_to, cdiv, get_dtype_packing)
26
+
27
+ jax.config.parse_flags_with_absl()
28
+
29
+
30
+ @jtu.with_config(jax_numpy_dtype_promotion="standard")
31
+ class RaggedPagedAttentionHeadDim64KernelTest(jtu.JaxTestCase):
32
+
33
+ def _test_ragged_paged_attention_hd64(
34
+ self,
35
+ seq_lens, # List[(q_len, kv_len)]
36
+ num_heads, # [num_q_heads, num_kv_heads]
37
+ head_dim,
38
+ page_size,
39
+ q_dtype,
40
+ kv_dtype,
41
+ num_pages,
42
+ *,
43
+ num_kv_pages_per_block=8,
44
+ num_queries_per_block=64,
45
+ vmem_limit_bytes=100 * 1024 * 1024,
46
+ max_num_batched_tokens=512,
47
+ max_num_seq=8,
48
+ sliding_window: int | None = None,
49
+ soft_cap: float | None = None,
50
+ q_scale: float | None = None,
51
+ k_scale: float | None = None,
52
+ v_scale: float | None = None,
53
+ use_attention_sink: bool = False,
54
+ ):
55
+ assert head_dim == 64
56
+ rng = np.random.default_rng(1234)
57
+
58
+ def gen_random(shape, dtype):
59
+ return jnp.array(rng.random(size=shape,
60
+ dtype=np.float32)).astype(dtype)
61
+
62
+ if not jtu.is_device_tpu_at_least(version=4):
63
+ self.skipTest("Expect TPUv4+")
64
+ cu_q_lens = [0]
65
+ kv_lens = []
66
+ seq_lens = sorted(seq_lens, key=lambda x: x[0])
67
+ num_decoding_seqs = sum(q_len for q_len, _ in seq_lens if q_len == 1)
68
+ for q_len, kv_len in seq_lens:
69
+ assert q_len <= kv_len
70
+ cu_q_lens.append(cu_q_lens[-1] + q_len)
71
+ kv_lens.append(kv_len)
72
+
73
+ max_num_batched_tokens = max(align_to(cu_q_lens[-1], 128),
74
+ max_num_batched_tokens)
75
+ max_num_seq = max(align_to(len(seq_lens), 8), max_num_seq)
76
+ max_kv_len = max(kv_lens)
77
+ pages_per_seq = cdiv(max_kv_len, page_size)
78
+ num_q_heads, num_kv_heads = num_heads
79
+
80
+ q = gen_random((max_num_batched_tokens, num_q_heads, head_dim),
81
+ q_dtype)
82
+ k = gen_random((max_num_batched_tokens, num_kv_heads, head_dim),
83
+ kv_dtype)
84
+ v = gen_random((max_num_batched_tokens, num_kv_heads, head_dim),
85
+ kv_dtype)
86
+ attention_sink = gen_random(
87
+ (num_q_heads), jnp.float32) * 10**2 if use_attention_sink else None
88
+
89
+ page_cnt = 0
90
+ page_indices_list = []
91
+ kv_pages_list = []
92
+ kv_packing = get_dtype_packing(kv_dtype)
93
+ padded_head_dim = align_to(head_dim, 128)
94
+ padded_num_kv_heads = align_to(num_kv_heads, kv_packing)
95
+ for kv_len in kv_lens:
96
+ kv = gen_random(
97
+ (
98
+ kv_len,
99
+ padded_num_kv_heads // kv_packing,
100
+ kv_packing,
101
+ padded_head_dim,
102
+ ),
103
+ kv_dtype,
104
+ )
105
+ kv = jnp.pad(
106
+ kv,
107
+ (
108
+ (
109
+ 0,
110
+ cdiv(kv_len, page_size) * page_size - kv_len,
111
+ ),
112
+ (0, 0),
113
+ (0, 0),
114
+ (0, 0),
115
+ ),
116
+ constant_values=jnp.nan,
117
+ ).reshape(
118
+ -1,
119
+ page_size,
120
+ padded_num_kv_heads // kv_packing,
121
+ kv_packing,
122
+ padded_head_dim,
123
+ )
124
+ indices = page_cnt + jnp.arange(kv.shape[0], dtype=jnp.int32)
125
+ indices = jnp.pad(
126
+ indices,
127
+ ((0, pages_per_seq - indices.shape[0]), ),
128
+ constant_values=jnp.nan,
129
+ )
130
+ page_indices_list.append(indices)
131
+ page_cnt += kv.shape[0]
132
+ kv_pages_list.append(kv)
133
+
134
+ kv_cache = jnp.concatenate(kv_pages_list, axis=0)
135
+ kv_cache = jnp.pad(
136
+ kv_cache,
137
+ ((0, num_pages - kv_cache.shape[0]), (0, 0), (0, 0), (0, 0),
138
+ (0, 0)),
139
+ constant_values=jnp.nan,
140
+ )
141
+ page_indices = jnp.stack(page_indices_list, axis=0)
142
+ page_indices = jnp.pad(
143
+ page_indices,
144
+ ((0, max_num_seq - page_indices.shape[0]), (0, 0)),
145
+ constant_values=jnp.nan,
146
+ )
147
+ page_indices = page_indices.reshape(-1)
148
+
149
+ cu_q_lens = jnp.array(cu_q_lens, dtype=jnp.int32)
150
+ cu_q_lens = jnp.pad(cu_q_lens,
151
+ (0, max_num_seq + 1 - cu_q_lens.shape[0]))
152
+ kv_lens = jnp.array(kv_lens, dtype=jnp.int32)
153
+ kv_lens = jnp.pad(kv_lens, (0, max_num_seq - kv_lens.shape[0]))
154
+ distribution = jnp.array(
155
+ [num_decoding_seqs, num_decoding_seqs,
156
+ len(seq_lens)],
157
+ dtype=jnp.int32)
158
+
159
+ args = (
160
+ q,
161
+ k,
162
+ v,
163
+ kv_cache,
164
+ kv_lens,
165
+ page_indices,
166
+ cu_q_lens,
167
+ distribution,
168
+ attention_sink,
169
+ )
170
+
171
+ kwargs = {
172
+ "sliding_window": sliding_window,
173
+ "soft_cap": soft_cap,
174
+ "q_scale": q_scale,
175
+ "k_scale": k_scale,
176
+ "v_scale": v_scale,
177
+ }
178
+
179
+ expected, expected_kv_cache = ref_ragged_paged_attention_hd64(
180
+ *args,
181
+ **kwargs,
182
+ )
183
+
184
+ output, updated_kv_cache = ragged_paged_attention_hd64(
185
+ *args,
186
+ **kwargs,
187
+ num_kv_pages_per_block=num_kv_pages_per_block,
188
+ num_queries_per_block=num_queries_per_block,
189
+ vmem_limit_bytes=vmem_limit_bytes,
190
+ )
191
+ output = output[:cu_q_lens[distribution[-1]]]
192
+
193
+ dtype_bits = (dtypes.bit_width(jnp.dtype(kv_dtype)) if hasattr(
194
+ dtypes, "bit_width") else dtypes.itemsize_bits(
195
+ jnp.dtype(kv_dtype)))
196
+ tols = {
197
+ 32: 0.15,
198
+ 16: 0.2,
199
+ 8: 0.2,
200
+ 4: 0.2,
201
+ }
202
+ tol = tols[dtype_bits]
203
+ self.assertAllClose(output, expected, atol=tol, rtol=tol)
204
+ mask = ~jnp.isnan(expected_kv_cache)
205
+ self.assertArraysEqual(updated_kv_cache[mask], expected_kv_cache[mask])
206
+ self.assertEqual(output.shape[-1], head_dim)
207
+
208
+ @parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
209
+ def test_ragged_paged_attention_basic(self, dtype):
210
+ seq_lens = [(192, 328), (128, 180), (64, 255)]
211
+ num_heads = (32, 8)
212
+ head_dim = 64
213
+ page_size = 16
214
+ num_pages = 1000
215
+
216
+ self._test_ragged_paged_attention_hd64(
217
+ seq_lens,
218
+ num_heads,
219
+ head_dim,
220
+ page_size,
221
+ dtype,
222
+ dtype,
223
+ num_pages,
224
+ )
225
+
226
+ # TODO: support integer (int8, int4) and fp4 kv cache
227
+ @parameterized.product(
228
+ q_dtype=[jnp.bfloat16],
229
+ kv_dtype=[jnp.float8_e5m2, jnp.float8_e4m3fn],
230
+ kv_scales=[(0.5, 0.5), (None, None)],
231
+ )
232
+ def test_ragged_paged_attention_quantized_kv_cache(self, q_dtype, kv_dtype,
233
+ kv_scales):
234
+ if not jtu.is_device_tpu_at_least(version=5):
235
+ self.skipTest("Expect TPUv5+")
236
+ seq_lens = [(192, 328), (128, 180), (64, 255)]
237
+ num_heads = (32, 8)
238
+ head_dim = 64
239
+ page_size = 16
240
+ num_pages = 1000
241
+ k_scale, v_scale = kv_scales
242
+
243
+ self._test_ragged_paged_attention_hd64(
244
+ seq_lens,
245
+ num_heads,
246
+ head_dim,
247
+ page_size,
248
+ q_dtype,
249
+ kv_dtype,
250
+ num_pages,
251
+ k_scale=k_scale,
252
+ v_scale=v_scale,
253
+ )
254
+
255
+ @parameterized.product(
256
+ q_dtype=[jnp.bfloat16],
257
+ kv_dtype=[jnp.float8_e5m2, jnp.float8_e4m3fn],
258
+ q_scale=[0.5],
259
+ kv_scales=[(0.5, 0.5), (None, None)],
260
+ )
261
+ def test_ragged_paged_attention_quantized_attention(
262
+ self, q_dtype, kv_dtype, q_scale, kv_scales):
263
+ if not jtu.is_device_tpu_at_least(version=5):
264
+ self.skipTest("Expect TPUv5+")
265
+ seq_lens = [(192, 328), (128, 180), (64, 255)]
266
+ num_heads = (32, 8)
267
+ head_dim = 64
268
+ page_size = 16
269
+ num_pages = 1000
270
+ k_scale, v_scale = kv_scales
271
+
272
+ self._test_ragged_paged_attention_hd64(
273
+ seq_lens,
274
+ num_heads,
275
+ head_dim,
276
+ page_size,
277
+ q_dtype,
278
+ kv_dtype,
279
+ num_pages,
280
+ q_scale=q_scale,
281
+ k_scale=k_scale,
282
+ v_scale=v_scale,
283
+ )
284
+
285
+ @parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
286
+ def test_ragged_paged_attention_decode_only(self, dtype):
287
+ seq_lens = [
288
+ (1, 18),
289
+ (1, 129),
290
+ (1, 597),
291
+ (1, 122),
292
+ (1, 64),
293
+ (1, 322),
294
+ (1, 463),
295
+ (1, 181),
296
+ (1, 1107),
297
+ (1, 123),
298
+ (1, 31),
299
+ (1, 18),
300
+ (1, 1229),
301
+ (1, 229),
302
+ (1, 87),
303
+ (1, 1328),
304
+ ]
305
+ num_heads = (32, 8)
306
+ head_dim = 64
307
+ page_size = 16
308
+ num_pages = 1000
309
+
310
+ self._test_ragged_paged_attention_hd64(
311
+ seq_lens,
312
+ num_heads,
313
+ head_dim,
314
+ page_size,
315
+ dtype,
316
+ dtype,
317
+ num_pages,
318
+ )
319
+
320
+ @parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
321
+ def test_ragged_paged_attention_prefill_only(self, dtype):
322
+ seq_lens = [
323
+ (5, 18),
324
+ (15, 129),
325
+ (120, 597),
326
+ (100, 122),
327
+ (21, 64),
328
+ (32, 322),
329
+ (251, 463),
330
+ (40, 181),
331
+ (64, 1107),
332
+ (99, 123),
333
+ (10, 31),
334
+ (5, 18),
335
+ (3, 1229),
336
+ (120, 229),
337
+ (9, 87),
338
+ (2, 1328),
339
+ ]
340
+ num_heads = (32, 8)
341
+ head_dim = 64
342
+ page_size = 16
343
+ num_pages = 1000
344
+
345
+ self._test_ragged_paged_attention_hd64(
346
+ seq_lens,
347
+ num_heads,
348
+ head_dim,
349
+ page_size,
350
+ dtype,
351
+ dtype,
352
+ num_pages,
353
+ )
354
+
355
+ @parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
356
+ def test_ragged_paged_attention_mixed(self, dtype):
357
+ seq_lens = [
358
+ (5, 18),
359
+ (1, 129),
360
+ (120, 597),
361
+ (1, 122),
362
+ (1, 64),
363
+ (32, 322),
364
+ (251, 463),
365
+ (1, 181),
366
+ (1, 1107),
367
+ (99, 123),
368
+ (1, 31),
369
+ (5, 18),
370
+ (3, 1229),
371
+ (117, 229),
372
+ (1, 87),
373
+ (1, 1328),
374
+ ]
375
+ num_heads = (32, 8)
376
+ head_dim = 64
377
+ page_size = 16
378
+ num_pages = 1000
379
+
380
+ self._test_ragged_paged_attention_hd64(
381
+ seq_lens,
382
+ num_heads,
383
+ head_dim,
384
+ page_size,
385
+ dtype,
386
+ dtype,
387
+ num_pages,
388
+ )
389
+
390
+ @parameterized.product(
391
+ num_seqs=[1, 17],
392
+ num_heads=[(32, 8), (12, 2), (5, 1), (3, 3)],
393
+ head_dim=[64],
394
+ dtype=[jnp.float32, jnp.bfloat16],
395
+ # num_kv_pages_per_block=[8, 16],
396
+ # num_queries_per_block=[16, 32],
397
+ )
398
+ def test_ragged_paged_attention_complex(
399
+ self,
400
+ num_seqs,
401
+ num_heads,
402
+ head_dim,
403
+ dtype,
404
+ # num_kv_pages_per_block,
405
+ # num_queries_per_block,
406
+ ):
407
+ rng = np.random.default_rng(1234)
408
+ q_lens = rng.integers(1, 100, num_seqs)
409
+ kv_lens = q_lens + rng.integers(0, 50, num_seqs)
410
+ seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
411
+ page_size = 16
412
+ num_pages = 1000
413
+
414
+ self._test_ragged_paged_attention_hd64(
415
+ seq_lens,
416
+ num_heads,
417
+ head_dim,
418
+ page_size,
419
+ dtype,
420
+ dtype,
421
+ num_pages,
422
+ # num_kv_pages_per_block=num_kv_pages_per_block,
423
+ # num_queries_per_block=num_queries_per_block,
424
+ )
425
+
426
+ @parameterized.product(sliding_window=[None, 5, 128], )
427
+ def test_ragged_paged_attention_sliding_window(
428
+ self,
429
+ sliding_window: int | None,
430
+ ):
431
+ num_seqs = 5
432
+ num_heads = (4, 4)
433
+ dtype = jnp.float32
434
+ rng = np.random.default_rng(1234)
435
+ q_lens = rng.integers(1, 100, num_seqs)
436
+ kv_lens = q_lens + rng.integers(0, 50, num_seqs)
437
+ seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
438
+ head_dim = 64
439
+ page_size = 16
440
+ num_pages = 1000
441
+
442
+ self._test_ragged_paged_attention_hd64(
443
+ seq_lens,
444
+ num_heads,
445
+ head_dim,
446
+ page_size,
447
+ dtype,
448
+ dtype,
449
+ num_pages,
450
+ sliding_window=sliding_window,
451
+ )
452
+
453
+ @parameterized.product(
454
+ sliding_window=[5, 128],
455
+ num_heads=[(4, 4), (8, 4), (64, 8)],
456
+ )
457
+ def test_ragged_paged_attention_sliding_window_with_attention_sink_hd64(
458
+ self,
459
+ sliding_window: int | None,
460
+ num_heads: tuple[int, int],
461
+ ):
462
+ num_seqs = 5
463
+ dtype = jnp.float32
464
+ rng = np.random.default_rng(1234)
465
+ q_lens = rng.integers(1, 100, num_seqs)
466
+ kv_lens = q_lens + rng.integers(0, 50, num_seqs)
467
+ seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
468
+ head_dim = 64
469
+ page_size = 16
470
+ num_pages = 1000
471
+
472
+ self._test_ragged_paged_attention_hd64(
473
+ seq_lens,
474
+ num_heads,
475
+ head_dim,
476
+ page_size,
477
+ dtype,
478
+ dtype,
479
+ num_pages,
480
+ sliding_window=sliding_window,
481
+ use_attention_sink=True,
482
+ )
483
+
484
+ @parameterized.product(soft_cap=[None, 50.0], )
485
+ def test_ragged_paged_attention_logit_soft_capping(
486
+ self,
487
+ soft_cap: float | None,
488
+ ):
489
+ num_heads = (16, 2)
490
+ num_seqs = 2
491
+ dtype = jnp.float32
492
+ rng = np.random.default_rng(1234)
493
+ q_lens = rng.integers(1, 100, num_seqs)
494
+ kv_lens = q_lens + rng.integers(0, 50, num_seqs)
495
+ seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
496
+ head_dim = 64
497
+ page_size = 16
498
+ num_pages = 1000
499
+
500
+ self._test_ragged_paged_attention_hd64(
501
+ seq_lens,
502
+ num_heads,
503
+ head_dim,
504
+ page_size,
505
+ dtype,
506
+ dtype,
507
+ num_pages,
508
+ soft_cap=soft_cap,
509
+ )
510
+
511
+ def test_ragged_paged_attention_sliding_window_should_be_positive(self):
512
+ dtype = jnp.float32
513
+ seq_lens = [(192, 328), (128, 180), (64, 255)]
514
+ num_heads = (32, 8)
515
+ head_dim = 64
516
+ page_size = 16
517
+ num_pages = 1000
518
+
519
+ with self.assertRaisesRegex(ValueError, "must be positive"):
520
+ self._test_ragged_paged_attention_hd64(
521
+ seq_lens,
522
+ num_heads,
523
+ head_dim,
524
+ page_size,
525
+ dtype,
526
+ dtype,
527
+ num_pages,
528
+ sliding_window=0,
529
+ )
530
+
531
+ with self.assertRaisesRegex(ValueError, "must be positive"):
532
+ self._test_ragged_paged_attention_hd64(
533
+ seq_lens,
534
+ num_heads,
535
+ head_dim,
536
+ page_size,
537
+ dtype,
538
+ dtype,
539
+ num_pages,
540
+ sliding_window=-1,
541
+ )
542
+
543
+ def test_ragged_paged_attention_soft_cap_cannot_be_zero(self):
544
+ dtype = jnp.float32
545
+ seq_lens = [(192, 328), (128, 180), (64, 255)]
546
+ num_heads = (32, 8)
547
+ head_dim = 64
548
+ page_size = 16
549
+ num_pages = 1000
550
+
551
+ with self.assertRaisesRegex(ValueError, "must not be 0.0"):
552
+ self._test_ragged_paged_attention_hd64(
553
+ seq_lens,
554
+ num_heads,
555
+ head_dim,
556
+ page_size,
557
+ dtype,
558
+ dtype,
559
+ num_pages,
560
+ soft_cap=0.0,
561
+ )
562
+
563
+
564
+ if __name__ == "__main__":
565
+ absltest.main(testLoader=jtu.JaxTestLoader())