tpu-inference 0.12.0.dev20251222__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +67 -0
- tests/core/test_dp_scheduler.py +724 -0
- tests/core/test_init.py +63 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +393 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +291 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +388 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +498 -0
- tests/kernels/quantized_matmul_kernel_test.py +159 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/layers/jax/test_qwix.py +969 -0
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +405 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +297 -0
- tests/layers/vllm/test_unquantized.py +621 -0
- tests/layers/vllm/utils.py +72 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +46 -0
- tests/lora/test_bgmv.py +57 -0
- tests/lora/test_layers.py +666 -0
- tests/lora/test_lora.py +147 -0
- tests/lora/test_lora_perf.py +67 -0
- tests/lora/utils.py +88 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +606 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +202 -0
- tests/runner/test_tpu_runner_dp.py +1033 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +215 -0
- tests/test_envs.py +280 -0
- tests/test_tpu_info.py +134 -0
- tests/test_utils.py +193 -0
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +67 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +49 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +814 -0
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +81 -0
- tpu_inference/distributed/tpu_connector.py +732 -0
- tpu_inference/distributed/utils.py +112 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +191 -0
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +399 -0
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +272 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +1340 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +403 -0
- tpu_inference/layers/common/attention_metadata.py +48 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +23 -0
- tpu_inference/layers/common/quantization.py +270 -0
- tpu_inference/layers/common/sharding.py +600 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +268 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
- tpu_inference/layers/jax/base.py +165 -0
- tpu_inference/layers/jax/constants.py +101 -0
- tpu_inference/layers/jax/layers.py +315 -0
- tpu_inference/layers/jax/misc.py +30 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
- tpu_inference/layers/jax/moe/moe.py +249 -0
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +294 -0
- tpu_inference/layers/jax/rope_interface.py +228 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
- tpu_inference/layers/jax/sample/sampling.py +110 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
- tpu_inference/layers/jax/transformer_block.py +121 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +502 -0
- tpu_inference/layers/vllm/linear_common.py +221 -0
- tpu_inference/layers/vllm/quantization/__init__.py +55 -0
- tpu_inference/layers/vllm/quantization/awq.py +221 -0
- tpu_inference/layers/vllm/quantization/common.py +124 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
- tpu_inference/layers/vllm/quantization/fp8.py +118 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
- tpu_inference/layers/vllm/sharding.py +244 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +98 -0
- tpu_inference/lora/torch_punica_tpu.py +310 -0
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +520 -0
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +978 -0
- tpu_inference/models/jax/gpt_oss.py +508 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
- tpu_inference/models/jax/llama3.py +436 -0
- tpu_inference/models/jax/llama4.py +643 -0
- tpu_inference/models/jax/llama_eagle3.py +350 -0
- tpu_inference/models/jax/llama_guard_4.py +375 -0
- tpu_inference/models/jax/qwen2.py +390 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
- tpu_inference/models/jax/qwen3.py +318 -0
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +110 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
- tpu_inference/models/jax/utils/weight_utils.py +621 -0
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
- tpu_inference/platforms/__init__.py +16 -0
- tpu_inference/platforms/tpu_platform.py +258 -0
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +890 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +166 -0
- tpu_inference/runner/kv_cache_manager.py +508 -0
- tpu_inference/runner/lora_utils.py +106 -0
- tpu_inference/runner/multimodal_manager.py +231 -0
- tpu_inference/runner/persistent_batch_manager.py +296 -0
- tpu_inference/runner/speculative_decoding_manager.py +262 -0
- tpu_inference/runner/structured_decoding_manager.py +101 -0
- tpu_inference/runner/tpu_runner.py +1768 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +430 -0
- tpu_inference/tpu_info.py +92 -0
- tpu_inference/utils.py +345 -0
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +468 -0
- tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
- tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
- tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
- tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,291 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
|
|
17
|
+
import random
|
|
18
|
+
import string
|
|
19
|
+
import time
|
|
20
|
+
|
|
21
|
+
import pytest
|
|
22
|
+
from vllm import LLM, SamplingParams
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_ngram_test_prompts():
|
|
26
|
+
num_prompts = 100
|
|
27
|
+
prompts = []
|
|
28
|
+
|
|
29
|
+
for _ in range(num_prompts):
|
|
30
|
+
w = random.choice(list(string.ascii_lowercase))
|
|
31
|
+
prompts.append(
|
|
32
|
+
f"Keep repeating: {w} {w} {w} {w} {w} {w} {w} {w} {w} {w}")
|
|
33
|
+
|
|
34
|
+
return prompts
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def get_eagle3_test_prompts():
|
|
38
|
+
num_prompts = 100
|
|
39
|
+
prompts = []
|
|
40
|
+
|
|
41
|
+
for _ in range(num_prompts):
|
|
42
|
+
prompts.append(
|
|
43
|
+
"Predict the continuation of this sequence: 1 2 3 4 5 6 7 8")
|
|
44
|
+
|
|
45
|
+
return prompts
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def get_test_prompts(speculative_config: dict):
|
|
49
|
+
if speculative_config['method'] == 'ngram':
|
|
50
|
+
return get_ngram_test_prompts()
|
|
51
|
+
elif speculative_config['method'] == 'eagle3':
|
|
52
|
+
return get_eagle3_test_prompts()
|
|
53
|
+
else:
|
|
54
|
+
raise NotImplementedError(
|
|
55
|
+
f"{speculative_config['method']} is not supported yet.")
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
@pytest.fixture
|
|
59
|
+
def sampling_config():
|
|
60
|
+
return SamplingParams(temperature=0,
|
|
61
|
+
max_tokens=32,
|
|
62
|
+
ignore_eos=True,
|
|
63
|
+
repetition_penalty=1,
|
|
64
|
+
frequency_penalty=0,
|
|
65
|
+
presence_penalty=0,
|
|
66
|
+
min_p=0,
|
|
67
|
+
logprobs=None)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
@pytest.fixture
|
|
71
|
+
def model_name():
|
|
72
|
+
return "Qwen/Qwen2.5-0.5B-Instruct"
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
# TODO(pooyam): run vLLM engine with InProcClient (`VLLM_ENABLE_V1_MULTIPROCESSING = 0`) mode to avoid TPU contention among processes.
|
|
76
|
+
def _test_correctness_helper(
|
|
77
|
+
monkeypatch: pytest.MonkeyPatch,
|
|
78
|
+
sampling_config: SamplingParams,
|
|
79
|
+
model_name: str,
|
|
80
|
+
speculative_config: dict,
|
|
81
|
+
):
|
|
82
|
+
'''
|
|
83
|
+
Helper function to test ngram correctness.
|
|
84
|
+
Compare the outputs of a original LLM and a speculative LLM
|
|
85
|
+
should be the same when using ngram speculative decoding.
|
|
86
|
+
'''
|
|
87
|
+
with monkeypatch.context():
|
|
88
|
+
test_prompts = get_test_prompts(speculative_config)
|
|
89
|
+
|
|
90
|
+
ref_llm = LLM(model=model_name, max_model_len=1024, max_num_seqs=4)
|
|
91
|
+
ref_outputs = ref_llm.generate(test_prompts, sampling_config)
|
|
92
|
+
|
|
93
|
+
del ref_llm
|
|
94
|
+
|
|
95
|
+
# Waiting for TPUs to be released.
|
|
96
|
+
time.sleep(10)
|
|
97
|
+
|
|
98
|
+
spec_llm = LLM(model=model_name,
|
|
99
|
+
speculative_config=speculative_config,
|
|
100
|
+
max_model_len=1024,
|
|
101
|
+
max_num_seqs=4)
|
|
102
|
+
spec_outputs = spec_llm.generate(test_prompts, sampling_config)
|
|
103
|
+
|
|
104
|
+
matches = 0
|
|
105
|
+
misses = 0
|
|
106
|
+
for ref_output, spec_output in zip(ref_outputs, spec_outputs):
|
|
107
|
+
if ref_output.outputs[0].text == spec_output.outputs[0].text:
|
|
108
|
+
matches += 1
|
|
109
|
+
else:
|
|
110
|
+
misses += 1
|
|
111
|
+
print(f"ref_output: {ref_output.outputs[0].text}")
|
|
112
|
+
print(f"spec_output: {spec_output.outputs[0].text}")
|
|
113
|
+
|
|
114
|
+
assert misses == 0
|
|
115
|
+
del spec_llm
|
|
116
|
+
|
|
117
|
+
# Waiting for TPUs to be released.
|
|
118
|
+
time.sleep(10)
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
def test_ngram_correctness_greedy(
|
|
122
|
+
monkeypatch: pytest.MonkeyPatch,
|
|
123
|
+
sampling_config: SamplingParams,
|
|
124
|
+
model_name: str,
|
|
125
|
+
):
|
|
126
|
+
'''
|
|
127
|
+
Compare the outputs of a original LLM and a speculative LLM
|
|
128
|
+
should be the same when using ngram speculative decoding with greedy sampling.
|
|
129
|
+
'''
|
|
130
|
+
_test_correctness_helper(
|
|
131
|
+
monkeypatch, sampling_config, model_name, {
|
|
132
|
+
"method": "ngram",
|
|
133
|
+
"prompt_lookup_max": 5,
|
|
134
|
+
"prompt_lookup_min": 3,
|
|
135
|
+
"num_speculative_tokens": 3,
|
|
136
|
+
})
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def test_ngram_correctness_random(
|
|
140
|
+
monkeypatch: pytest.MonkeyPatch,
|
|
141
|
+
sampling_config: SamplingParams,
|
|
142
|
+
model_name: str,
|
|
143
|
+
):
|
|
144
|
+
'''
|
|
145
|
+
Compare the outputs of a original LLM and a speculative LLM
|
|
146
|
+
should be the same when using ngram speculative decoding with random sampling.
|
|
147
|
+
'''
|
|
148
|
+
# Modify sampling config for random sampling
|
|
149
|
+
sampling_config.temperature = 0.01
|
|
150
|
+
sampling_config.top_p = 0.9
|
|
151
|
+
sampling_config.top_k = 5
|
|
152
|
+
|
|
153
|
+
_test_correctness_helper(
|
|
154
|
+
monkeypatch, sampling_config, model_name, {
|
|
155
|
+
"method": "ngram",
|
|
156
|
+
"prompt_lookup_max": 5,
|
|
157
|
+
"prompt_lookup_min": 3,
|
|
158
|
+
"num_speculative_tokens": 3,
|
|
159
|
+
})
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def _test_performance_helper(
|
|
163
|
+
monkeypatch: pytest.MonkeyPatch,
|
|
164
|
+
sampling_config: SamplingParams,
|
|
165
|
+
speculative_config: dict,
|
|
166
|
+
min_speedup: float,
|
|
167
|
+
):
|
|
168
|
+
'''
|
|
169
|
+
Helper function to test speculative decoding performance.
|
|
170
|
+
Compares timing between reference LLM and speculative LLM using Llama 3 8B.
|
|
171
|
+
'''
|
|
172
|
+
model_name = "meta-llama/Llama-3.1-8B-Instruct"
|
|
173
|
+
|
|
174
|
+
with monkeypatch.context():
|
|
175
|
+
# Use a smaller set of prompts for performance testing
|
|
176
|
+
test_prompts = get_test_prompts(speculative_config)
|
|
177
|
+
|
|
178
|
+
# Test reference LLM timing
|
|
179
|
+
ref_llm = LLM(model=model_name,
|
|
180
|
+
max_model_len=1024,
|
|
181
|
+
max_num_seqs=1,
|
|
182
|
+
enable_prefix_caching=False)
|
|
183
|
+
|
|
184
|
+
start_time = time.time()
|
|
185
|
+
_ = ref_llm.generate(test_prompts, sampling_config)
|
|
186
|
+
ref_time = time.time() - start_time
|
|
187
|
+
|
|
188
|
+
del ref_llm
|
|
189
|
+
|
|
190
|
+
# Waiting for TPUs to be released
|
|
191
|
+
time.sleep(10)
|
|
192
|
+
|
|
193
|
+
# Test speculative LLM timing with max_num_seqs=1
|
|
194
|
+
spec_llm = LLM(model=model_name,
|
|
195
|
+
speculative_config=speculative_config,
|
|
196
|
+
max_model_len=1024,
|
|
197
|
+
max_num_seqs=1,
|
|
198
|
+
enable_prefix_caching=False)
|
|
199
|
+
|
|
200
|
+
start_time = time.time()
|
|
201
|
+
_ = spec_llm.generate(test_prompts, sampling_config)
|
|
202
|
+
spec_time = time.time() - start_time
|
|
203
|
+
|
|
204
|
+
del spec_llm
|
|
205
|
+
# Waiting for TPUs to be released
|
|
206
|
+
time.sleep(10)
|
|
207
|
+
|
|
208
|
+
speedup = ref_time / spec_time
|
|
209
|
+
print(f"Reference LLM time: {ref_time:.2f}s")
|
|
210
|
+
print(f"Speculative LLM time: {spec_time:.2f}s")
|
|
211
|
+
print(f"Speedup: {speedup:.2f}x")
|
|
212
|
+
|
|
213
|
+
# TODO(pooyam): Make this tighter once we have better performance.
|
|
214
|
+
assert speedup >= min_speedup, f"Expected at least {min_speedup}x speedup for {speculative_config['method']}, got {speedup:.2f}x"
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
def test_ngram_performance_greedy(
|
|
218
|
+
monkeypatch: pytest.MonkeyPatch,
|
|
219
|
+
sampling_config: SamplingParams,
|
|
220
|
+
):
|
|
221
|
+
'''
|
|
222
|
+
Test that speculative decoding provides significant performance improvement.
|
|
223
|
+
Compares timing between reference LLM and speculative LLM using Llama 3 8B.
|
|
224
|
+
Expects spec_llm to be at least 3.x faster than ref_llm.
|
|
225
|
+
'''
|
|
226
|
+
_test_performance_helper(
|
|
227
|
+
monkeypatch, sampling_config, {
|
|
228
|
+
"method": "ngram",
|
|
229
|
+
"prompt_lookup_max": 2,
|
|
230
|
+
"prompt_lookup_min": 2,
|
|
231
|
+
"num_speculative_tokens": 4,
|
|
232
|
+
}, 3.0)
|
|
233
|
+
|
|
234
|
+
|
|
235
|
+
def test_ngram_performance_random(
|
|
236
|
+
monkeypatch: pytest.MonkeyPatch,
|
|
237
|
+
sampling_config: SamplingParams,
|
|
238
|
+
):
|
|
239
|
+
'''
|
|
240
|
+
Test that speculative decoding provides significant performance improvement.
|
|
241
|
+
Compares timing between reference LLM and speculative LLM using Llama 3 8B.
|
|
242
|
+
Expects spec_llm to be at least 3.x faster than ref_llm.
|
|
243
|
+
'''
|
|
244
|
+
sampling_config.temperature = 0.01
|
|
245
|
+
sampling_config.top_p = 0.9
|
|
246
|
+
sampling_config.top_k = 5
|
|
247
|
+
|
|
248
|
+
_test_performance_helper(
|
|
249
|
+
monkeypatch, sampling_config, {
|
|
250
|
+
"method": "ngram",
|
|
251
|
+
"prompt_lookup_max": 2,
|
|
252
|
+
"prompt_lookup_min": 2,
|
|
253
|
+
"num_speculative_tokens": 4,
|
|
254
|
+
}, 3.0)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
def test_eagle3_correctness(
|
|
258
|
+
monkeypatch: pytest.MonkeyPatch,
|
|
259
|
+
sampling_config: SamplingParams,
|
|
260
|
+
):
|
|
261
|
+
'''
|
|
262
|
+
Compare the outputs of a original LLM and a speculative LLM
|
|
263
|
+
should be the same when using eagle-3 speculative decoding.
|
|
264
|
+
'''
|
|
265
|
+
model_name = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
|
266
|
+
|
|
267
|
+
_test_correctness_helper(
|
|
268
|
+
monkeypatch, sampling_config, model_name, {
|
|
269
|
+
'model': "unkmaster/EAGLE3-LLaMA3.1-Instruct-8B",
|
|
270
|
+
"num_speculative_tokens": 3,
|
|
271
|
+
"method": "eagle3",
|
|
272
|
+
"draft_tensor_parallel_size": 1
|
|
273
|
+
})
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
def test_eagle3_performance(
|
|
277
|
+
monkeypatch: pytest.MonkeyPatch,
|
|
278
|
+
sampling_config: SamplingParams,
|
|
279
|
+
):
|
|
280
|
+
'''
|
|
281
|
+
Test that speculative decoding provides significant performance improvement.
|
|
282
|
+
Compares timing between reference LLM and speculative LLM using Llama 3 8B.
|
|
283
|
+
Expects spec_llm to be at least 1.8 faster than ref_llm.
|
|
284
|
+
'''
|
|
285
|
+
_test_performance_helper(
|
|
286
|
+
monkeypatch, sampling_config, {
|
|
287
|
+
"method": "eagle3",
|
|
288
|
+
"model": "unkmaster/EAGLE3-LLaMA3.1-Instruct-8B",
|
|
289
|
+
"num_speculative_tokens": 2,
|
|
290
|
+
"draft_tensor_parallel_size": 1
|
|
291
|
+
}, 1.8)
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
# This file contains end-to-end tests for structured decoding.
|
|
16
|
+
#
|
|
17
|
+
# Structured decoding allows constraining the model's output to follow a
|
|
18
|
+
# specific format, such as choosing from a predefined set of options or
|
|
19
|
+
# following a JSON schema. This is useful for classification tasks,
|
|
20
|
+
# structured data extraction, and ensuring outputs conform to expected formats.
|
|
21
|
+
|
|
22
|
+
# The tests in this file verify that:
|
|
23
|
+
# 1. Choice-based structured decoding correctly constrains output to valid options
|
|
24
|
+
# 2. The model produces deterministic results when given structured constraints
|
|
25
|
+
|
|
26
|
+
from __future__ import annotations
|
|
27
|
+
|
|
28
|
+
from vllm import LLM, SamplingParams
|
|
29
|
+
from vllm.sampling_params import StructuredOutputsParams
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def test_structured_decoding():
|
|
33
|
+
llm = LLM(model='meta-llama/Llama-3.2-1B-Instruct',
|
|
34
|
+
max_model_len=1024,
|
|
35
|
+
max_num_seqs=1,
|
|
36
|
+
enable_prefix_caching=False)
|
|
37
|
+
|
|
38
|
+
choices = ['Positive', 'Negative']
|
|
39
|
+
structured_outputs_params = StructuredOutputsParams(choice=choices)
|
|
40
|
+
sampling_params = SamplingParams(
|
|
41
|
+
structured_outputs=structured_outputs_params)
|
|
42
|
+
outputs = llm.generate(
|
|
43
|
+
prompts="Classify this sentiment: tpu-inference is wonderful!",
|
|
44
|
+
sampling_params=sampling_params,
|
|
45
|
+
)
|
|
46
|
+
assert outputs[0].outputs[0].text in choices
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
@@ -0,0 +1,199 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import unittest
|
|
16
|
+
from unittest.mock import MagicMock, patch
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
# Mock VllmConfig and its nested configs to avoid dependencies on the actual
|
|
20
|
+
# classes, which can be complex to instantiate for testing.
|
|
21
|
+
class MockVllmConfig:
|
|
22
|
+
|
|
23
|
+
def __init__(self):
|
|
24
|
+
self.parallel_config = MagicMock()
|
|
25
|
+
self.parallel_config.world_size = 4
|
|
26
|
+
self.parallel_config.tensor_parallel_size = 2
|
|
27
|
+
self.parallel_config.pipeline_parallel_size = 1
|
|
28
|
+
self.parallel_config.ray_workers_use_nsight = False
|
|
29
|
+
self.parallel_config.placement_group = None
|
|
30
|
+
self.parallel_config.max_parallel_loading_workers = None
|
|
31
|
+
|
|
32
|
+
self.sharding_config = MagicMock()
|
|
33
|
+
self.sharding_config.total_devices = 2
|
|
34
|
+
|
|
35
|
+
self.model_config = MagicMock()
|
|
36
|
+
self.cache_config = MagicMock()
|
|
37
|
+
self.lora_config = MagicMock()
|
|
38
|
+
self.load_config = MagicMock()
|
|
39
|
+
self.scheduler_config = MagicMock()
|
|
40
|
+
self.speculative_config = MagicMock()
|
|
41
|
+
self.prompt_adapter_config = MagicMock()
|
|
42
|
+
self.observability_config = MagicMock()
|
|
43
|
+
self.device_config = MagicMock()
|
|
44
|
+
self.ec_transfer_config = MagicMock()
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
@patch(
|
|
48
|
+
"vllm.v1.executor.ray_distributed_executor.RayDistributedExecutor.__init__",
|
|
49
|
+
lambda x, y: None)
|
|
50
|
+
@patch("tpu_inference.executors.ray_distributed_executor.envs")
|
|
51
|
+
@patch("tpu_inference.executors.ray_distributed_executor.ray")
|
|
52
|
+
@patch("tpu_inference.executors.ray_distributed_executor.current_platform")
|
|
53
|
+
@patch("tpu_inference.executors.ray_distributed_executor.get_ip",
|
|
54
|
+
return_value="127.0.0.1")
|
|
55
|
+
@patch("tpu_inference.executors.ray_distributed_executor.get_open_port",
|
|
56
|
+
return_value=12345)
|
|
57
|
+
@patch(
|
|
58
|
+
"tpu_inference.executors.ray_distributed_executor.available_resources_per_node"
|
|
59
|
+
)
|
|
60
|
+
@patch("tpu_inference.executors.ray_distributed_executor._wait_until_pg_ready")
|
|
61
|
+
class TestTpuRayDistributedExecutor(unittest.TestCase):
|
|
62
|
+
|
|
63
|
+
def setUp(self):
|
|
64
|
+
# Import the class under test inside the test method to ensure
|
|
65
|
+
# patches are applied.
|
|
66
|
+
from tpu_inference.executors.ray_distributed_executor import \
|
|
67
|
+
RayDistributedExecutor
|
|
68
|
+
self.RayDistributedExecutor = RayDistributedExecutor
|
|
69
|
+
|
|
70
|
+
self.vllm_config = MockVllmConfig()
|
|
71
|
+
# Reset placement group for each test as it might be modified.
|
|
72
|
+
self.vllm_config.parallel_config.placement_group = None
|
|
73
|
+
self.vllm_config.kv_transfer_config = None
|
|
74
|
+
|
|
75
|
+
def test_init_executor_basic_flow(self, mock_wait_until_pg_ready,
|
|
76
|
+
mock_avail_resources, mock_get_port,
|
|
77
|
+
mock_get_ip, mock_platform, mock_ray,
|
|
78
|
+
mock_envs):
|
|
79
|
+
# --- Setup mocks ---
|
|
80
|
+
mock_envs.VLLM_USE_RAY_COMPILED_DAG = True
|
|
81
|
+
mock_envs.VLLM_USE_RAY_SPMD_WORKER = True
|
|
82
|
+
mock_envs.VLLM_RAY_BUNDLE_INDICES = ""
|
|
83
|
+
|
|
84
|
+
mock_platform.ray_device_key = "TPU"
|
|
85
|
+
mock_platform.device_name = "tpu"
|
|
86
|
+
mock_platform.device_control_env_var = "TPU_VISIBLE_CHIPS"
|
|
87
|
+
mock_platform.additional_env_vars = []
|
|
88
|
+
|
|
89
|
+
mock_ray.is_initialized.return_value = False
|
|
90
|
+
mock_ray.nodes.return_value = [{"Resources": {"TPU": 4}}]
|
|
91
|
+
mock_ray.get_runtime_context.return_value.get_node_id.return_value = "node_1"
|
|
92
|
+
mock_avail_resources.return_value = {"node_1": {"TPU": 4}}
|
|
93
|
+
|
|
94
|
+
mock_wait_until_pg_ready.return_value = None
|
|
95
|
+
|
|
96
|
+
mock_placement_group = MagicMock()
|
|
97
|
+
mock_placement_group.bundle_specs = [{"TPU": 1}] * 4
|
|
98
|
+
mock_ray.util.placement_group.return_value = mock_placement_group
|
|
99
|
+
|
|
100
|
+
mock_worker = MagicMock()
|
|
101
|
+
mock_worker.get_node_and_gpu_ids.remote.return_value = [("node_1",
|
|
102
|
+
[0, 1, 2, 3])]
|
|
103
|
+
mock_ray.remote.return_value.remote.return_value = mock_worker
|
|
104
|
+
|
|
105
|
+
# Simulate remote calls on the worker
|
|
106
|
+
mock_ray.get.side_effect = [
|
|
107
|
+
["127.0.0.1"] * 4, # worker_ips
|
|
108
|
+
*[("node_1", [i]) for i in range(4)] # worker_node_and_tpu_ids
|
|
109
|
+
]
|
|
110
|
+
|
|
111
|
+
executor = self.RayDistributedExecutor(self.vllm_config)
|
|
112
|
+
# Members of the parent class
|
|
113
|
+
executor.uses_ray = True
|
|
114
|
+
executor.vllm_config = self.vllm_config
|
|
115
|
+
executor.parallel_config = self.vllm_config.parallel_config
|
|
116
|
+
executor.collective_rpc = MagicMock()
|
|
117
|
+
executor.collective_rpc.return_value = None
|
|
118
|
+
|
|
119
|
+
# --- Initialization ---
|
|
120
|
+
executor._init_executor()
|
|
121
|
+
|
|
122
|
+
# --- Assertions ---
|
|
123
|
+
mock_ray.init.assert_called_once()
|
|
124
|
+
self.assertIsNotNone(executor.parallel_config.placement_group)
|
|
125
|
+
self.assertEqual(len(executor.workers), 4)
|
|
126
|
+
|
|
127
|
+
def test_initialize_ray_cluster_no_tpu_on_driver_raises_error(
|
|
128
|
+
self, mock_wait_until_pg_ready, mock_avail_resources,
|
|
129
|
+
mock_get_port, mock_get_ip, mock_platform, mock_ray, mock_envs):
|
|
130
|
+
# --- Setup Mocks ---
|
|
131
|
+
mock_platform.ray_device_key = "TPU"
|
|
132
|
+
mock_platform.device_name = "tpu"
|
|
133
|
+
|
|
134
|
+
mock_ray.is_initialized.return_value = False
|
|
135
|
+
mock_ray.nodes.return_value = [{"Resources": {"TPU": 4}}]
|
|
136
|
+
mock_ray.get_runtime_context.return_value.get_node_id.return_value = "driver_node"
|
|
137
|
+
# Simulate no TPUs on the driver node
|
|
138
|
+
mock_avail_resources.return_value = {
|
|
139
|
+
"driver_node": {
|
|
140
|
+
"CPU": 8
|
|
141
|
+
},
|
|
142
|
+
"worker_node": {
|
|
143
|
+
"TPU": 4
|
|
144
|
+
}
|
|
145
|
+
}
|
|
146
|
+
|
|
147
|
+
executor = self.RayDistributedExecutor(self.vllm_config)
|
|
148
|
+
executor.vllm_config = self.vllm_config
|
|
149
|
+
executor.parallel_config = self.vllm_config.parallel_config
|
|
150
|
+
|
|
151
|
+
# --- Test and Assert ---
|
|
152
|
+
with self.assertRaisesRegex(ValueError,
|
|
153
|
+
"Current node has no TPU available"):
|
|
154
|
+
executor._initialize_ray_cluster()
|
|
155
|
+
|
|
156
|
+
def test_init_workers_ray_sorts_correctly(self, mock_wait_until_pg_ready,
|
|
157
|
+
mock_avail_resources,
|
|
158
|
+
mock_get_port, mock_get_ip,
|
|
159
|
+
mock_platform, mock_ray,
|
|
160
|
+
mock_envs):
|
|
161
|
+
# --- Setup Mocks ---
|
|
162
|
+
mock_envs.VLLM_RAY_BUNDLE_INDICES = ""
|
|
163
|
+
mock_platform.ray_device_key = "TPU"
|
|
164
|
+
mock_get_ip.return_value = "10.0.0.1" # Driver IP
|
|
165
|
+
|
|
166
|
+
mock_pg = MagicMock()
|
|
167
|
+
mock_pg.bundle_specs = [{"TPU": 1}] * 4
|
|
168
|
+
|
|
169
|
+
mock_workers = [MagicMock() for _ in range(4)]
|
|
170
|
+
mock_ray.remote.return_value.return_value.remote.side_effect = mock_workers
|
|
171
|
+
|
|
172
|
+
# Simulate IPs for workers created with ranks 0, 1, 2, 3
|
|
173
|
+
worker_ips = ["10.0.0.2", "10.0.0.3", "10.0.0.1", "10.0.0.4"]
|
|
174
|
+
mock_ray.get.side_effect = [
|
|
175
|
+
worker_ips, # worker_ips
|
|
176
|
+
*[('node_1', ['0', '1', '2', '3']),
|
|
177
|
+
('node_2', ['4', '5', '6', '7']),
|
|
178
|
+
('node_3', ['8', '9', '10', '11']),
|
|
179
|
+
('node_4', ['12', '13', '14', '15'])] # worker_node_and_tpu_ids
|
|
180
|
+
]
|
|
181
|
+
|
|
182
|
+
executor = self.RayDistributedExecutor(self.vllm_config)
|
|
183
|
+
executor.use_ray_spmd_worker = True
|
|
184
|
+
executor.parallel_config = self.vllm_config.parallel_config
|
|
185
|
+
executor.vllm_config = self.vllm_config
|
|
186
|
+
executor.parallel_config.ray_workers_use_nsight = False
|
|
187
|
+
executor.collective_rpc = MagicMock()
|
|
188
|
+
executor.collective_rpc.return_value = None
|
|
189
|
+
|
|
190
|
+
# --- Call method under test ---
|
|
191
|
+
executor._init_workers_ray(mock_pg)
|
|
192
|
+
|
|
193
|
+
# --- Assertions ---
|
|
194
|
+
# Expected sorted order of workers: driver, then by IP
|
|
195
|
+
# Original workers: 0 (10.0.0.2), 1 (10.0.0.3), 2 (10.0.0.1), 3 (10.0.0.2)
|
|
196
|
+
# Sorted workers: 2 (driver), 0, 3 (same IP), 1
|
|
197
|
+
self.assertEqual(executor.workers, [
|
|
198
|
+
mock_workers[2], mock_workers[0], mock_workers[1], mock_workers[3]
|
|
199
|
+
])
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|