tpu-inference 0.12.0.dev20251222__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. tests/__init__.py +13 -0
  2. tests/core/__init__.py +13 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +67 -0
  6. tests/core/test_dp_scheduler.py +724 -0
  7. tests/core/test_init.py +63 -0
  8. tests/distributed/__init__.py +13 -0
  9. tests/distributed/test_distributed_utils.py +120 -0
  10. tests/distributed/test_tpu_connector.py +478 -0
  11. tests/e2e/__init__.py +13 -0
  12. tests/e2e/test_async_scheduler.py +211 -0
  13. tests/e2e/test_data_parallel.py +393 -0
  14. tests/e2e/test_local_disagg.py +257 -0
  15. tests/e2e/test_model_loader.py +268 -0
  16. tests/e2e/test_multi_modal_inference.py +111 -0
  17. tests/e2e/test_pipeline_parallel.py +265 -0
  18. tests/e2e/test_runai_model_streamer_loader.py +104 -0
  19. tests/e2e/test_sampling_params.py +269 -0
  20. tests/e2e/test_speculative_decoding.py +291 -0
  21. tests/e2e/test_structured_decoding.py +46 -0
  22. tests/executors/__init__.py +13 -0
  23. tests/executors/test_ray_distributed_executor.py +199 -0
  24. tests/experimental/__init__.py +13 -0
  25. tests/experimental/test_llama3_jax_stashed.py +208 -0
  26. tests/kernels/__init__.py +13 -0
  27. tests/kernels/collectives/__init__.py +13 -0
  28. tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
  29. tests/kernels/fused_moe_v1_test.py +388 -0
  30. tests/kernels/gmm_test.py +205 -0
  31. tests/kernels/mla_v1_test.py +498 -0
  32. tests/kernels/quantized_matmul_kernel_test.py +159 -0
  33. tests/kernels/ragged_kv_cache_update_v2_test.py +248 -0
  34. tests/kernels/ragged_paged_attention_kernel_v2_test.py +414 -0
  35. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +565 -0
  36. tests/kernels/ragged_paged_attention_kernel_v3_test.py +520 -0
  37. tests/layers/__init__.py +13 -0
  38. tests/layers/common/__init__.py +13 -0
  39. tests/layers/common/test_attention_interface.py +156 -0
  40. tests/layers/common/test_quantization.py +149 -0
  41. tests/layers/jax/__init__.py +13 -0
  42. tests/layers/jax/attention/__init__.py +13 -0
  43. tests/layers/jax/attention/test_common_attention.py +103 -0
  44. tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
  45. tests/layers/jax/attention/test_llama4_attention.py +135 -0
  46. tests/layers/jax/moe/__init__.py +13 -0
  47. tests/layers/jax/moe/test_deepseek_moe.py +235 -0
  48. tests/layers/jax/sample/__init__.py +13 -0
  49. tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
  50. tests/layers/jax/sample/test_sampling.py +115 -0
  51. tests/layers/jax/sample/test_sampling_metadata.py +254 -0
  52. tests/layers/jax/test_layers.py +155 -0
  53. tests/layers/jax/test_qwix.py +969 -0
  54. tests/layers/jax/test_rope.py +93 -0
  55. tests/layers/jax/test_sharding.py +159 -0
  56. tests/layers/jax/test_transformer_block.py +152 -0
  57. tests/layers/vllm/__init__.py +13 -0
  58. tests/layers/vllm/test_attention.py +363 -0
  59. tests/layers/vllm/test_awq.py +405 -0
  60. tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
  61. tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +403 -0
  62. tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +426 -0
  63. tests/layers/vllm/test_fp8.py +17 -0
  64. tests/layers/vllm/test_mxfp4.py +297 -0
  65. tests/layers/vllm/test_unquantized.py +621 -0
  66. tests/layers/vllm/utils.py +72 -0
  67. tests/lora/__init__.py +13 -0
  68. tests/lora/conftest.py +46 -0
  69. tests/lora/test_bgmv.py +57 -0
  70. tests/lora/test_layers.py +666 -0
  71. tests/lora/test_lora.py +147 -0
  72. tests/lora/test_lora_perf.py +67 -0
  73. tests/lora/utils.py +88 -0
  74. tests/models/__init__.py +13 -0
  75. tests/models/common/__init__.py +13 -0
  76. tests/models/common/test_model_loader.py +455 -0
  77. tests/models/jax/__init__.py +13 -0
  78. tests/models/jax/test_deepseek_v3.py +401 -0
  79. tests/models/jax/test_llama3.py +184 -0
  80. tests/models/jax/test_llama4.py +298 -0
  81. tests/models/jax/test_llama_eagle3.py +197 -0
  82. tests/models/jax/test_llama_guard_4.py +242 -0
  83. tests/models/jax/test_qwen2.py +172 -0
  84. tests/models/jax/test_qwen2_5_vl.py +606 -0
  85. tests/models/jax/test_qwen3.py +169 -0
  86. tests/models/jax/test_weight_loading.py +180 -0
  87. tests/models/jax/utils/__init__.py +13 -0
  88. tests/models/jax/utils/test_multi_modal_utils.py +212 -0
  89. tests/platforms/__init__.py +13 -0
  90. tests/platforms/test_tpu_platform.py +54 -0
  91. tests/runner/__init__.py +13 -0
  92. tests/runner/test_block_table.py +395 -0
  93. tests/runner/test_input_batch.py +226 -0
  94. tests/runner/test_kv_cache.py +220 -0
  95. tests/runner/test_kv_cache_manager.py +498 -0
  96. tests/runner/test_multimodal_manager.py +429 -0
  97. tests/runner/test_persistent_batch_manager.py +84 -0
  98. tests/runner/test_speculative_decoding_manager.py +368 -0
  99. tests/runner/test_structured_decoding_manager.py +220 -0
  100. tests/runner/test_tpu_runner.py +202 -0
  101. tests/runner/test_tpu_runner_dp.py +1033 -0
  102. tests/runner/test_tpu_runner_mesh.py +200 -0
  103. tests/runner/test_utils.py +411 -0
  104. tests/spec_decode/__init__.py +13 -0
  105. tests/spec_decode/test_eagle3.py +311 -0
  106. tests/test_base.py +215 -0
  107. tests/test_envs.py +280 -0
  108. tests/test_tpu_info.py +134 -0
  109. tests/test_utils.py +193 -0
  110. tests/worker/__init__.py +13 -0
  111. tests/worker/tpu_worker_test.py +414 -0
  112. tpu_inference/__init__.py +67 -0
  113. tpu_inference/core/__init__.py +13 -0
  114. tpu_inference/core/core_tpu.py +786 -0
  115. tpu_inference/core/disagg_executor.py +118 -0
  116. tpu_inference/core/disagg_utils.py +49 -0
  117. tpu_inference/core/sched/__init__.py +13 -0
  118. tpu_inference/core/sched/dp_scheduler.py +814 -0
  119. tpu_inference/distributed/__init__.py +13 -0
  120. tpu_inference/distributed/jax_parallel_state.py +81 -0
  121. tpu_inference/distributed/tpu_connector.py +732 -0
  122. tpu_inference/distributed/utils.py +112 -0
  123. tpu_inference/env_override.py +9 -0
  124. tpu_inference/envs.py +191 -0
  125. tpu_inference/executors/__init__.py +13 -0
  126. tpu_inference/executors/ray_distributed_executor.py +399 -0
  127. tpu_inference/experimental/__init__.py +13 -0
  128. tpu_inference/experimental/llama3_jax_stashed.py +272 -0
  129. tpu_inference/kernels/__init__.py +13 -0
  130. tpu_inference/kernels/collectives/__init__.py +13 -0
  131. tpu_inference/kernels/collectives/all_gather_matmul.py +741 -0
  132. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +65 -0
  133. tpu_inference/kernels/collectives/util.py +47 -0
  134. tpu_inference/kernels/flash_attention/__init__.py +13 -0
  135. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  136. tpu_inference/kernels/fused_moe/__init__.py +13 -0
  137. tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
  138. tpu_inference/kernels/fused_moe/v1/kernel.py +1612 -0
  139. tpu_inference/kernels/megablox/__init__.py +13 -0
  140. tpu_inference/kernels/megablox/common.py +54 -0
  141. tpu_inference/kernels/megablox/gmm.py +646 -0
  142. tpu_inference/kernels/mla/__init__.py +13 -0
  143. tpu_inference/kernels/mla/v1/__init__.py +13 -0
  144. tpu_inference/kernels/mla/v1/kernel.py +1340 -0
  145. tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
  146. tpu_inference/kernels/quantized_matmul/kernel.py +456 -0
  147. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  148. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  149. tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
  150. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
  151. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +876 -0
  152. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +288 -0
  153. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  154. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
  155. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1594 -0
  156. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1586 -0
  157. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4460 -0
  158. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +548 -0
  159. tpu_inference/kernels/ragged_paged_attention/v3/util.py +65 -0
  160. tpu_inference/layers/__init__.py +13 -0
  161. tpu_inference/layers/common/__init__.py +13 -0
  162. tpu_inference/layers/common/attention_interface.py +403 -0
  163. tpu_inference/layers/common/attention_metadata.py +48 -0
  164. tpu_inference/layers/common/binary_search.py +295 -0
  165. tpu_inference/layers/common/quant_methods.py +23 -0
  166. tpu_inference/layers/common/quantization.py +270 -0
  167. tpu_inference/layers/common/sharding.py +600 -0
  168. tpu_inference/layers/jax/__init__.py +13 -0
  169. tpu_inference/layers/jax/attention/__init__.py +13 -0
  170. tpu_inference/layers/jax/attention/attention.py +268 -0
  171. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +547 -0
  172. tpu_inference/layers/jax/attention/gpt_oss_attention.py +275 -0
  173. tpu_inference/layers/jax/attention/llama4_attention.py +167 -0
  174. tpu_inference/layers/jax/base.py +165 -0
  175. tpu_inference/layers/jax/constants.py +101 -0
  176. tpu_inference/layers/jax/layers.py +315 -0
  177. tpu_inference/layers/jax/misc.py +30 -0
  178. tpu_inference/layers/jax/moe/__init__.py +13 -0
  179. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +615 -0
  180. tpu_inference/layers/jax/moe/gpt_oss_moe.py +199 -0
  181. tpu_inference/layers/jax/moe/moe.py +249 -0
  182. tpu_inference/layers/jax/pp_utils.py +53 -0
  183. tpu_inference/layers/jax/rope.py +294 -0
  184. tpu_inference/layers/jax/rope_interface.py +228 -0
  185. tpu_inference/layers/jax/sample/__init__.py +13 -0
  186. tpu_inference/layers/jax/sample/rejection_sampler.py +528 -0
  187. tpu_inference/layers/jax/sample/sampling.py +110 -0
  188. tpu_inference/layers/jax/sample/sampling_metadata.py +90 -0
  189. tpu_inference/layers/jax/transformer_block.py +121 -0
  190. tpu_inference/layers/vllm/__init__.py +13 -0
  191. tpu_inference/layers/vllm/attention.py +221 -0
  192. tpu_inference/layers/vllm/fused_moe.py +502 -0
  193. tpu_inference/layers/vllm/linear_common.py +221 -0
  194. tpu_inference/layers/vllm/quantization/__init__.py +55 -0
  195. tpu_inference/layers/vllm/quantization/awq.py +221 -0
  196. tpu_inference/layers/vllm/quantization/common.py +124 -0
  197. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
  198. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +135 -0
  199. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +266 -0
  200. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
  201. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +222 -0
  202. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +150 -0
  203. tpu_inference/layers/vllm/quantization/fp8.py +118 -0
  204. tpu_inference/layers/vllm/quantization/mxfp4.py +396 -0
  205. tpu_inference/layers/vllm/quantization/unquantized.py +416 -0
  206. tpu_inference/layers/vllm/sharding.py +244 -0
  207. tpu_inference/logger.py +10 -0
  208. tpu_inference/lora/__init__.py +13 -0
  209. tpu_inference/lora/torch_lora_ops.py +98 -0
  210. tpu_inference/lora/torch_punica_tpu.py +310 -0
  211. tpu_inference/models/__init__.py +13 -0
  212. tpu_inference/models/common/__init__.py +13 -0
  213. tpu_inference/models/common/model_loader.py +520 -0
  214. tpu_inference/models/jax/__init__.py +13 -0
  215. tpu_inference/models/jax/deepseek_v3.py +978 -0
  216. tpu_inference/models/jax/gpt_oss.py +508 -0
  217. tpu_inference/models/jax/jax_intermediate_tensor.py +93 -0
  218. tpu_inference/models/jax/llama3.py +436 -0
  219. tpu_inference/models/jax/llama4.py +643 -0
  220. tpu_inference/models/jax/llama_eagle3.py +350 -0
  221. tpu_inference/models/jax/llama_guard_4.py +375 -0
  222. tpu_inference/models/jax/qwen2.py +390 -0
  223. tpu_inference/models/jax/qwen2_5_vl.py +1232 -0
  224. tpu_inference/models/jax/qwen3.py +318 -0
  225. tpu_inference/models/jax/utils/__init__.py +13 -0
  226. tpu_inference/models/jax/utils/file_utils.py +110 -0
  227. tpu_inference/models/jax/utils/multi_modal_utils.py +177 -0
  228. tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
  229. tpu_inference/models/jax/utils/qwix/qwix_utils.py +713 -0
  230. tpu_inference/models/jax/utils/weight_utils.py +621 -0
  231. tpu_inference/models/vllm/__init__.py +13 -0
  232. tpu_inference/models/vllm/vllm_model_wrapper.py +307 -0
  233. tpu_inference/models/vllm/vllm_model_wrapper_context.py +59 -0
  234. tpu_inference/platforms/__init__.py +16 -0
  235. tpu_inference/platforms/tpu_platform.py +258 -0
  236. tpu_inference/runner/__init__.py +13 -0
  237. tpu_inference/runner/block_table.py +122 -0
  238. tpu_inference/runner/compilation_manager.py +890 -0
  239. tpu_inference/runner/input_batch.py +435 -0
  240. tpu_inference/runner/kv_cache.py +166 -0
  241. tpu_inference/runner/kv_cache_manager.py +508 -0
  242. tpu_inference/runner/lora_utils.py +106 -0
  243. tpu_inference/runner/multimodal_manager.py +231 -0
  244. tpu_inference/runner/persistent_batch_manager.py +296 -0
  245. tpu_inference/runner/speculative_decoding_manager.py +262 -0
  246. tpu_inference/runner/structured_decoding_manager.py +101 -0
  247. tpu_inference/runner/tpu_runner.py +1768 -0
  248. tpu_inference/runner/utils.py +426 -0
  249. tpu_inference/spec_decode/__init__.py +13 -0
  250. tpu_inference/spec_decode/jax/__init__.py +13 -0
  251. tpu_inference/spec_decode/jax/eagle3.py +430 -0
  252. tpu_inference/tpu_info.py +92 -0
  253. tpu_inference/utils.py +345 -0
  254. tpu_inference/worker/__init__.py +13 -0
  255. tpu_inference/worker/tpu_worker.py +468 -0
  256. tpu_inference-0.12.0.dev20251222.dist-info/METADATA +106 -0
  257. tpu_inference-0.12.0.dev20251222.dist-info/RECORD +260 -0
  258. tpu_inference-0.12.0.dev20251222.dist-info/WHEEL +5 -0
  259. tpu_inference-0.12.0.dev20251222.dist-info/licenses/LICENSE +201 -0
  260. tpu_inference-0.12.0.dev20251222.dist-info/top_level.txt +2 -0
@@ -0,0 +1,297 @@
1
+ # Copyright 2025 Google LLC
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import tempfile
16
+
17
+ import jax
18
+ import jax.numpy as jnp
19
+ import pytest
20
+ import torch
21
+ import torchax
22
+ from jax._src import test_util as jtu
23
+ from jax.sharding import PartitionSpec
24
+ from torchax.ops.mappings import j2t, t2j
25
+ from vllm.config import ParallelConfig, set_current_vllm_config
26
+ from vllm.distributed.parallel_state import (ensure_model_parallel_initialized,
27
+ init_distributed_environment)
28
+ from vllm.engine.arg_utils import EngineArgs
29
+ from vllm.forward_context import set_forward_context
30
+ from vllm.model_executor.layers.fused_moe.layer import FusedMoE
31
+
32
+ from tpu_inference.layers.vllm.quantization import get_tpu_quantization_config
33
+ from tpu_inference.layers.vllm.quantization.mxfp4 import (VllmMxfp4Config,
34
+ VllmMxfp4MoEMethod)
35
+
36
+ from . import utils as test_utils
37
+
38
+ P = PartitionSpec
39
+ MODELS = ["openai/gpt-oss-20b"]
40
+ MXFP4_BLOCK_SIZE = 32
41
+
42
+ if not jtu.is_device_tpu_at_least(version=7):
43
+ pytest.skip(allow_module_level=True, reason="Expected TPUv7+")
44
+
45
+
46
+ def quantize_to_mxfp4(weight: torch.tensor):
47
+ # Utilize JAX because native support for e2m1 makes it easier to work with.
48
+ weight = t2j(weight)
49
+ e2m1_finfo = jnp.finfo(jnp.float4_e2m1fn)
50
+ dtype_min = float(e2m1_finfo.min)
51
+ dtype_max = float(e2m1_finfo.max)
52
+
53
+ # Do a subchannel quantization where block size is 32.
54
+ weight_shape = weight.shape
55
+ weight_block = weight.reshape(weight_shape[:-1] + (-1, MXFP4_BLOCK_SIZE))
56
+ abs_max = jnp.max(jnp.abs(weight_block), axis=-1, keepdims=True)
57
+ scale = abs_max / dtype_max
58
+
59
+ weight_q = jnp.clip(weight_block / scale, dtype_min, dtype_max)
60
+ weight_q = weight_q.astype(jnp.float4_e2m1fn).reshape(weight_shape[:-1] +
61
+ (-1, 2))
62
+ weight_packed = jax.lax.bitcast_convert_type(weight_q, jnp.uint8)
63
+
64
+ # We convert scale into e8m0 manually because there is no hardware support.
65
+ e8m0_finfo = jnp.finfo(jnp.float8_e8m0fnu)
66
+ _, scale_exp = jnp.frexp(scale.squeeze(axis=-1))
67
+ # Subtract by one sinced e8m0 has no decimal
68
+ scale_exp -= 1
69
+ scale_exp = (scale_exp - e8m0_finfo.minexp).astype(jnp.uint8)
70
+
71
+ return j2t(weight_packed), j2t(scale_exp)
72
+
73
+
74
+ @pytest.fixture(autouse=True)
75
+ def setup_environment():
76
+ # This is a fake config used for init dist env.
77
+ # RowParallelLinear needs dist env to be initialized.
78
+ engine_args = EngineArgs(
79
+ model=MODELS[0],
80
+ max_model_len=64,
81
+ max_num_batched_tokens=64,
82
+ max_num_seqs=4,
83
+ load_format='dummy',
84
+ )
85
+
86
+ vllm_config = engine_args.create_engine_config()
87
+
88
+ with set_current_vllm_config(vllm_config):
89
+ temp_file = tempfile.mkstemp()[1]
90
+ init_distributed_environment(
91
+ 1,
92
+ 0,
93
+ local_rank=0,
94
+ distributed_init_method=f"file://{temp_file}",
95
+ backend="gloo")
96
+ ensure_model_parallel_initialized(1, 1)
97
+
98
+
99
+ @pytest.mark.parametrize("model", MODELS)
100
+ @pytest.mark.parametrize("mesh", [
101
+ test_utils.get_spmd_mesh(1),
102
+ test_utils.get_spmd_mesh(jax.local_device_count())
103
+ ])
104
+ def test_quant_override(model, mesh):
105
+
106
+ engine_args = EngineArgs(
107
+ model=model,
108
+ max_model_len=64,
109
+ max_num_batched_tokens=64,
110
+ max_num_seqs=4,
111
+ load_format='dummy',
112
+ )
113
+ vllm_config = engine_args.create_engine_config()
114
+ vllm_config.model_config.dtype = torch.bfloat16
115
+
116
+ quant_config = get_tpu_quantization_config(vllm_config, mesh)
117
+ assert isinstance(quant_config, VllmMxfp4Config)
118
+ assert quant_config.vllm_config == vllm_config
119
+ assert quant_config.mesh == mesh
120
+
121
+
122
+ @pytest.mark.parametrize(
123
+ "mesh", [test_utils.get_spmd_mesh(1),
124
+ test_utils.get_spmd_mesh(2)])
125
+ @pytest.mark.parametrize("num_tokens", [8])
126
+ @pytest.mark.parametrize("intermediate_size", [1024])
127
+ @pytest.mark.parametrize("hidden_size", [128])
128
+ @pytest.mark.parametrize("num_experts", [8])
129
+ @pytest.mark.parametrize("topk", [2])
130
+ @pytest.mark.parametrize("use_ep", [True, False])
131
+ def test_mxfp4_fused_moe(mesh, num_tokens, intermediate_size, hidden_size,
132
+ num_experts, topk, use_ep):
133
+ torch.manual_seed(42)
134
+ dtype = torch.bfloat16
135
+
136
+ a = torch.randn((num_tokens, hidden_size), dtype=dtype) / 10
137
+ w1 = torch.randn(
138
+ (num_experts, 2 * intermediate_size, hidden_size), dtype=dtype) / 10
139
+ w2 = torch.randn(
140
+ (num_experts, hidden_size, intermediate_size), dtype=dtype) / 10
141
+ w1_weight, w1_weight_scale = quantize_to_mxfp4(w1)
142
+ w2_weight, w2_weight_scale = quantize_to_mxfp4(w2)
143
+
144
+ w1_bias = torch.randn(
145
+ (num_experts, 2 * intermediate_size), dtype=dtype) / 10
146
+ w2_bias = torch.randn((num_experts, hidden_size), dtype=dtype) / 10
147
+ score = torch.randn((num_tokens, num_experts), dtype=dtype)
148
+
149
+ engine_args = EngineArgs(
150
+ model=MODELS[0],
151
+ max_model_len=64,
152
+ max_num_batched_tokens=64,
153
+ max_num_seqs=4,
154
+ load_format='dummy',
155
+ )
156
+ vllm_config = engine_args.create_engine_config()
157
+ vllm_config.model_config.dtype = dtype
158
+
159
+ quant_config = get_tpu_quantization_config(vllm_config, mesh)
160
+ with set_current_vllm_config(vllm_config):
161
+ vllm_fused_moe = FusedMoE(
162
+ num_experts=num_experts,
163
+ top_k=topk,
164
+ hidden_size=hidden_size,
165
+ intermediate_size=intermediate_size,
166
+ reduce_results=False,
167
+ renormalize=False,
168
+ tp_size=1,
169
+ dp_size=1,
170
+ quant_config=quant_config,
171
+ has_bias=True,
172
+ )
173
+ vllm_fused_moe.moe_parallel_config.use_ep = use_ep
174
+ vllm_fused_moe.w13_weight.data = w1_weight
175
+ vllm_fused_moe.w2_weight.data = w2_weight
176
+ vllm_fused_moe.w13_weight_scale.data = w1_weight_scale
177
+ vllm_fused_moe.w2_weight_scale.data = w2_weight_scale
178
+ vllm_fused_moe.w13_bias.data = w1_bias
179
+ vllm_fused_moe.w2_bias.data = w2_bias
180
+
181
+ expected = test_utils.ref_moe(a, score, w1, w2, w1_bias, w2_bias,
182
+ vllm_fused_moe.top_k,
183
+ vllm_fused_moe.renormalize,
184
+ vllm_fused_moe.activation)
185
+
186
+ with torchax.default_env(), set_forward_context(None, vllm_config):
187
+ assert isinstance(vllm_fused_moe.quant_method, VllmMxfp4MoEMethod)
188
+
189
+ jax_a = a.to('jax')
190
+ score = score.to('jax')
191
+
192
+ vllm_fused_moe.quant_method.process_weights_after_loading(
193
+ vllm_fused_moe)
194
+
195
+ actual = vllm_fused_moe(jax_a, score)
196
+
197
+ torch.testing.assert_close(expected,
198
+ actual,
199
+ check_device=False,
200
+ atol=1e-1,
201
+ rtol=1e-1)
202
+
203
+
204
+ @pytest.mark.parametrize(
205
+ "mesh", [test_utils.get_spmd_mesh(1),
206
+ test_utils.get_spmd_mesh(2)])
207
+ @pytest.mark.parametrize("num_tokens", [8])
208
+ @pytest.mark.parametrize("intermediate_size", [512])
209
+ @pytest.mark.parametrize("hidden_size", [1024])
210
+ @pytest.mark.parametrize("num_experts", [8])
211
+ @pytest.mark.parametrize("topk", [2])
212
+ def test_mxfp4_fused_moe_use_kernel(mesh, num_tokens, intermediate_size,
213
+ hidden_size, num_experts, topk):
214
+
215
+ torch.manual_seed(42)
216
+ dtype = torch.bfloat16
217
+
218
+ a = torch.randn((num_tokens, hidden_size), dtype=dtype) / 10
219
+ w1 = torch.randn(
220
+ (num_experts, 2 * intermediate_size, hidden_size), dtype=dtype) / 10
221
+ w2 = torch.randn(
222
+ (num_experts, hidden_size, intermediate_size), dtype=dtype) / 10
223
+ w1_weight, w1_weight_scale = quantize_to_mxfp4(w1)
224
+ w2_weight, w2_weight_scale = quantize_to_mxfp4(w2)
225
+
226
+ w1_bias = torch.randn(
227
+ (num_experts, 2 * intermediate_size), dtype=dtype) / 10
228
+ w2_bias = torch.randn((num_experts, hidden_size), dtype=dtype) / 10
229
+ score = torch.randn((num_tokens, num_experts), dtype=dtype)
230
+
231
+ engine_args = EngineArgs(
232
+ model=MODELS[0],
233
+ max_model_len=64,
234
+ max_num_batched_tokens=64,
235
+ max_num_seqs=4,
236
+ load_format='dummy',
237
+ )
238
+ vllm_config = engine_args.create_engine_config()
239
+ vllm_config.model_config.dtype = dtype
240
+ vllm_config.parallel_config = ParallelConfig(
241
+ tensor_parallel_size=mesh.devices.size)
242
+
243
+ quant_config = get_tpu_quantization_config(vllm_config, mesh)
244
+ with set_current_vllm_config(vllm_config):
245
+ vllm_fused_moe = FusedMoE(
246
+ num_experts=num_experts,
247
+ top_k=topk,
248
+ hidden_size=hidden_size,
249
+ intermediate_size=intermediate_size,
250
+ reduce_results=False,
251
+ renormalize=False,
252
+ tp_size=1,
253
+ dp_size=1,
254
+ quant_config=quant_config,
255
+ has_bias=True,
256
+ )
257
+ vllm_fused_moe.moe_parallel_config.use_ep = True
258
+
259
+ vllm_fused_moe.w13_weight.data = w1_weight
260
+ vllm_fused_moe.w2_weight.data = w2_weight
261
+ vllm_fused_moe.w13_weight_scale.data = w1_weight_scale
262
+ vllm_fused_moe.w2_weight_scale.data = w2_weight_scale
263
+ vllm_fused_moe.w13_bias.data = w1_bias
264
+ vllm_fused_moe.w2_bias.data = w2_bias
265
+
266
+ expected = test_utils.ref_moe(a, score, w1, w2, w1_bias, w2_bias,
267
+ vllm_fused_moe.top_k,
268
+ vllm_fused_moe.renormalize,
269
+ vllm_fused_moe.activation)
270
+
271
+ with torchax.default_env(), set_forward_context(None, vllm_config):
272
+ assert isinstance(vllm_fused_moe.quant_method, VllmMxfp4MoEMethod)
273
+
274
+ jax_a = a.to('jax')
275
+ score = score.to('jax')
276
+
277
+ vllm_fused_moe.quant_method.use_kernel = True
278
+ vllm_fused_moe.quant_method.process_weights_after_loading(
279
+ vllm_fused_moe)
280
+ vllm_fused_moe.quant_method.block_size = {
281
+ "bt": 32,
282
+ "bf": 512,
283
+ "bd1": 1024,
284
+ "bd2": 1024,
285
+ "btc": 32,
286
+ "bfc": 512,
287
+ "bd1c": 1024,
288
+ "bd2c": 1024,
289
+ }
290
+
291
+ actual = vllm_fused_moe(jax_a, score)
292
+
293
+ torch.testing.assert_close(expected,
294
+ actual,
295
+ check_device=False,
296
+ atol=2e-1,
297
+ rtol=2e-1)