spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,429 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the WordSegmenter."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class WordSegmenterApproach(AnnotatorApproach):
|
|
20
|
+
"""Trains a WordSegmenter which tokenizes non-english or non-whitespace
|
|
21
|
+
separated texts.
|
|
22
|
+
|
|
23
|
+
Many languages are not whitespace separated and their sentences are a concatenation
|
|
24
|
+
of many symbols, like Korean, Japanese or Chinese. Without understanding the
|
|
25
|
+
language, splitting the words into their corresponding tokens is impossible. The
|
|
26
|
+
WordSegmenter is trained to understand these languages and split them into
|
|
27
|
+
semantically correct parts.
|
|
28
|
+
|
|
29
|
+
This annotator is based on the paper Chinese Word Segmentation as Character Tagging
|
|
30
|
+
[1]. Word segmentation is treated as a tagging problem. Each character is be tagged
|
|
31
|
+
as on of four different labels: LL (left boundary), RR (right boundary), MM (middle)
|
|
32
|
+
and LR (word by itself). The label depends on the position of the word in the
|
|
33
|
+
sentence. LL tagged words will combine with the word on the right. Likewise, RR
|
|
34
|
+
tagged words combine with words on the left. MM tagged words are treated as the
|
|
35
|
+
middle of the word and combine with either side. LR tagged words are words by
|
|
36
|
+
themselves.
|
|
37
|
+
|
|
38
|
+
Example (from [1], Example 3(a) (raw), 3(b) (tagged), 3(c) (translation)):
|
|
39
|
+
- 上海 计划 到 本 世纪 末 实现 人均 国内 生产 总值 五千 美元
|
|
40
|
+
- 上/LL 海/RR 计/LL 划/RR 到/LR 本/LR 世/LL 纪/RR 末/LR 实/LL 现/RR 人/LL 均/RR
|
|
41
|
+
国/LL 内/RR 生/LL 产/RR 总/LL值/RR 五/LL 千/RR 美/LL 元/RR
|
|
42
|
+
- Shanghai plans to reach the goal of 5,000 dollars in per capita GDP by the end
|
|
43
|
+
of the century.
|
|
44
|
+
|
|
45
|
+
For instantiated/pretrained models, see :class:`.WordSegmenterModel`.
|
|
46
|
+
|
|
47
|
+
To train your own model, a training dataset consisting of `Part-Of-Speech
|
|
48
|
+
tags <https://en.wikipedia.org/wiki/Part-of-speech_tagging>`__ is required.
|
|
49
|
+
The data has to be loaded into a dataframe, where the column is an
|
|
50
|
+
Annotation of type ``POS``. This can be set with :meth:`.setPosColumn`.
|
|
51
|
+
|
|
52
|
+
**Tip**:
|
|
53
|
+
The helper class :class:`.POS` might be useful to read training data into
|
|
54
|
+
data frames.
|
|
55
|
+
|
|
56
|
+
For extended examples of usage, see the `Examples
|
|
57
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/chinese/word_segmentation>`__.
|
|
58
|
+
|
|
59
|
+
References
|
|
60
|
+
----------
|
|
61
|
+
|
|
62
|
+
`[1] <https://aclanthology.org/O03-4002.pdf>`__ Xue, Nianwen. “Chinese Word
|
|
63
|
+
Segmentation as Character Tagging.” International Journal of Computational
|
|
64
|
+
Linguistics & Chinese Language Processing, Volume 8, Number 1, February 2003:
|
|
65
|
+
Special Issue on Word Formation and Chinese Language Processing, 2003, pp. 29-48.
|
|
66
|
+
ACLWeb, https://aclanthology.org/O03-4002.
|
|
67
|
+
|
|
68
|
+
====================== ======================
|
|
69
|
+
Input Annotation types Output Annotation type
|
|
70
|
+
====================== ======================
|
|
71
|
+
``DOCUMENT`` ``TOKEN``
|
|
72
|
+
====================== ======================
|
|
73
|
+
|
|
74
|
+
Parameters
|
|
75
|
+
----------
|
|
76
|
+
posCol
|
|
77
|
+
column of Array of POS tags that match tokens
|
|
78
|
+
nIterations
|
|
79
|
+
Number of iterations in training, converges to better accuracy, by
|
|
80
|
+
default 5
|
|
81
|
+
frequencyThreshold
|
|
82
|
+
How many times at least a tag on a word to be marked as frequent, by
|
|
83
|
+
default 5
|
|
84
|
+
ambiguityThreshold
|
|
85
|
+
How much percentage of total amount of words are covered to be marked as
|
|
86
|
+
frequent, by default 0.97
|
|
87
|
+
enableRegexTokenizer
|
|
88
|
+
Whether to use RegexTokenizer before segmentation. Useful for multilingual text
|
|
89
|
+
toLowercase
|
|
90
|
+
Indicates whether to convert all characters to lowercase before tokenizing. Used only when enableRegexTokenizer is true
|
|
91
|
+
pattern
|
|
92
|
+
regex pattern used for tokenizing. Used only when enableRegexTokenizer is true
|
|
93
|
+
|
|
94
|
+
Examples
|
|
95
|
+
--------
|
|
96
|
+
In this example, ``"chinese_train.utf8"`` is in the form of::
|
|
97
|
+
|
|
98
|
+
十|LL 四|RR 不|LL 是|RR 四|LL 十|RR
|
|
99
|
+
|
|
100
|
+
and is loaded with the `POS` class to create a dataframe of ``POS`` type
|
|
101
|
+
Annotations.
|
|
102
|
+
|
|
103
|
+
>>> import sparknlp
|
|
104
|
+
>>> from sparknlp.base import *
|
|
105
|
+
>>> from sparknlp.annotator import *
|
|
106
|
+
>>> from pyspark.ml import Pipeline
|
|
107
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
108
|
+
... .setInputCol("text") \\
|
|
109
|
+
... .setOutputCol("document")
|
|
110
|
+
>>> wordSegmenter = WordSegmenterApproach() \\
|
|
111
|
+
... .setInputCols(["document"]) \\
|
|
112
|
+
... .setOutputCol("token") \\
|
|
113
|
+
... .setPosColumn("tags") \\
|
|
114
|
+
... .setNIterations(5)
|
|
115
|
+
>>> pipeline = Pipeline().setStages([
|
|
116
|
+
... documentAssembler,
|
|
117
|
+
... wordSegmenter
|
|
118
|
+
... ])
|
|
119
|
+
>>> trainingDataSet = POS().readDataset(
|
|
120
|
+
... spark,
|
|
121
|
+
... "src/test/resources/word-segmenter/chinese_train.utf8"
|
|
122
|
+
... )
|
|
123
|
+
>>> pipelineModel = pipeline.fit(trainingDataSet)
|
|
124
|
+
"""
|
|
125
|
+
name = "WordSegmenterApproach"
|
|
126
|
+
|
|
127
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
128
|
+
|
|
129
|
+
outputAnnotatorType = AnnotatorType.TOKEN
|
|
130
|
+
|
|
131
|
+
posCol = Param(Params._dummy(),
|
|
132
|
+
"posCol",
|
|
133
|
+
"column of Array of POS tags that match tokens",
|
|
134
|
+
typeConverter=TypeConverters.toString)
|
|
135
|
+
|
|
136
|
+
nIterations = Param(Params._dummy(),
|
|
137
|
+
"nIterations",
|
|
138
|
+
"Number of iterations in training, converges to better accuracy",
|
|
139
|
+
typeConverter=TypeConverters.toInt)
|
|
140
|
+
|
|
141
|
+
frequencyThreshold = Param(Params._dummy(),
|
|
142
|
+
"frequencyThreshold",
|
|
143
|
+
"How many times at least a tag on a word to be marked as frequent",
|
|
144
|
+
typeConverter=TypeConverters.toInt)
|
|
145
|
+
|
|
146
|
+
ambiguityThreshold = Param(Params._dummy(),
|
|
147
|
+
"ambiguityThreshold",
|
|
148
|
+
"How much percentage of total amount of words are covered to be marked as frequent",
|
|
149
|
+
typeConverter=TypeConverters.toFloat)
|
|
150
|
+
|
|
151
|
+
enableRegexTokenizer = Param(Params._dummy(),
|
|
152
|
+
"enableRegexTokenizer",
|
|
153
|
+
"Whether to use RegexTokenizer before segmentation. Useful for multilingual text",
|
|
154
|
+
typeConverter=TypeConverters.toBoolean)
|
|
155
|
+
|
|
156
|
+
toLowercase = Param(Params._dummy(),
|
|
157
|
+
"toLowercase",
|
|
158
|
+
"Indicates whether to convert all characters to lowercase before tokenizing.",
|
|
159
|
+
typeConverter=TypeConverters.toBoolean)
|
|
160
|
+
|
|
161
|
+
pattern = Param(Params._dummy(),
|
|
162
|
+
"pattern",
|
|
163
|
+
"regex pattern used for tokenizing. Defaults \\s+",
|
|
164
|
+
typeConverter=TypeConverters.toString)
|
|
165
|
+
|
|
166
|
+
@keyword_only
|
|
167
|
+
def __init__(self):
|
|
168
|
+
super(WordSegmenterApproach, self).__init__(
|
|
169
|
+
classname="com.johnsnowlabs.nlp.annotators.ws.WordSegmenterApproach")
|
|
170
|
+
self._setDefault(
|
|
171
|
+
nIterations=5, frequencyThreshold=5, ambiguityThreshold=0.97,
|
|
172
|
+
enableRegexTokenizer=False, toLowercase=False, pattern="\\s+"
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
def setPosColumn(self, value):
|
|
176
|
+
"""Sets column name for array of POS tags that match tokens.
|
|
177
|
+
|
|
178
|
+
Parameters
|
|
179
|
+
----------
|
|
180
|
+
value : str
|
|
181
|
+
Name of the column
|
|
182
|
+
"""
|
|
183
|
+
return self._set(posCol=value)
|
|
184
|
+
|
|
185
|
+
def setNIterations(self, value):
|
|
186
|
+
"""Sets number of iterations in training, converges to better accuracy,
|
|
187
|
+
by default 5.
|
|
188
|
+
|
|
189
|
+
Parameters
|
|
190
|
+
----------
|
|
191
|
+
value : int
|
|
192
|
+
Number of iterations
|
|
193
|
+
"""
|
|
194
|
+
return self._set(nIterations=value)
|
|
195
|
+
|
|
196
|
+
def setFrequencyThreshold(self, value):
|
|
197
|
+
"""Sets how many times at least a tag on a word to be marked as
|
|
198
|
+
frequent, by default 5.
|
|
199
|
+
|
|
200
|
+
Parameters
|
|
201
|
+
----------
|
|
202
|
+
value : int
|
|
203
|
+
Frequency threshold to be marked as frequent
|
|
204
|
+
"""
|
|
205
|
+
return self._set(frequencyThreshold=value)
|
|
206
|
+
|
|
207
|
+
def setAmbiguityThreshold(self, value):
|
|
208
|
+
"""Sets the percentage of total amount of words are covered to be
|
|
209
|
+
marked as frequent, by default 0.97.
|
|
210
|
+
|
|
211
|
+
Parameters
|
|
212
|
+
----------
|
|
213
|
+
value : float
|
|
214
|
+
Percentage of total amount of words are covered to be
|
|
215
|
+
marked as frequent
|
|
216
|
+
"""
|
|
217
|
+
return self._set(ambiguityThreshold=value)
|
|
218
|
+
|
|
219
|
+
def getNIterations(self):
|
|
220
|
+
"""Gets number of iterations in training, converges to better accuracy.
|
|
221
|
+
|
|
222
|
+
Returns
|
|
223
|
+
-------
|
|
224
|
+
int
|
|
225
|
+
Number of iterations
|
|
226
|
+
"""
|
|
227
|
+
return self.getOrDefault(self.nIterations)
|
|
228
|
+
|
|
229
|
+
def getFrequencyThreshold(self):
|
|
230
|
+
"""Sets How many times at least a tag on a word to be marked as
|
|
231
|
+
frequent.
|
|
232
|
+
|
|
233
|
+
Returns
|
|
234
|
+
-------
|
|
235
|
+
int
|
|
236
|
+
Frequency threshold to be marked as frequent
|
|
237
|
+
"""
|
|
238
|
+
return self.getOrDefault(self.frequencyThreshold)
|
|
239
|
+
|
|
240
|
+
def getAmbiguityThreshold(self):
|
|
241
|
+
"""Sets How much percentage of total amount of words are covered to be
|
|
242
|
+
marked as frequent.
|
|
243
|
+
|
|
244
|
+
Returns
|
|
245
|
+
-------
|
|
246
|
+
float
|
|
247
|
+
Percentage of total amount of words are covered to be
|
|
248
|
+
marked as frequent
|
|
249
|
+
"""
|
|
250
|
+
return self.getOrDefault(self.ambiguityThreshold)
|
|
251
|
+
|
|
252
|
+
def setEnableRegexTokenizer(self, value):
|
|
253
|
+
"""Sets whether to to use RegexTokenizer before segmentation.
|
|
254
|
+
Useful for multilingual text
|
|
255
|
+
|
|
256
|
+
Parameters
|
|
257
|
+
----------
|
|
258
|
+
value : bool
|
|
259
|
+
Whether to use RegexTokenizer before segmentation
|
|
260
|
+
"""
|
|
261
|
+
return self._set(enableRegexTokenizer=value)
|
|
262
|
+
|
|
263
|
+
def setToLowercase(self, value):
|
|
264
|
+
"""Sets whether to convert all characters to lowercase before
|
|
265
|
+
tokenizing, by default False.
|
|
266
|
+
|
|
267
|
+
Parameters
|
|
268
|
+
----------
|
|
269
|
+
value : bool
|
|
270
|
+
Whether to convert all characters to lowercase before tokenizing
|
|
271
|
+
"""
|
|
272
|
+
return self._set(toLowercase=value)
|
|
273
|
+
|
|
274
|
+
def setPattern(self, value):
|
|
275
|
+
"""Sets the regex pattern used for tokenizing, by default ``\\s+``.
|
|
276
|
+
|
|
277
|
+
Parameters
|
|
278
|
+
----------
|
|
279
|
+
value : str
|
|
280
|
+
Regex pattern used for tokenizing
|
|
281
|
+
"""
|
|
282
|
+
return self._set(pattern=value)
|
|
283
|
+
|
|
284
|
+
def _create_model(self, java_model):
|
|
285
|
+
return WordSegmenterModel(java_model=java_model)
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
class WordSegmenterModel(AnnotatorModel):
|
|
289
|
+
"""WordSegmenter which tokenizes non-english or non-whitespace separated
|
|
290
|
+
texts.
|
|
291
|
+
|
|
292
|
+
Many languages are not whitespace separated and their sentences are a
|
|
293
|
+
concatenation of many symbols, like Korean, Japanese or Chinese. Without
|
|
294
|
+
understanding the language, splitting the words into their corresponding
|
|
295
|
+
tokens is impossible. The WordSegmenter is trained to understand these
|
|
296
|
+
languages and plit them into semantically correct parts.
|
|
297
|
+
|
|
298
|
+
This is the instantiated model of the :class:`.WordSegmenterApproach`. For
|
|
299
|
+
training your own model, please see the documentation of that class.
|
|
300
|
+
|
|
301
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
302
|
+
object:
|
|
303
|
+
|
|
304
|
+
>>> wordSegmenter = WordSegmenterModel.pretrained() \\
|
|
305
|
+
... .setInputCols(["document"]) \\
|
|
306
|
+
... .setOutputCol("words_segmented")
|
|
307
|
+
|
|
308
|
+
The default model is ``"wordseg_pku"``, default language is ``"zh"``, if no
|
|
309
|
+
values are provided. For available pretrained models please see the `Models
|
|
310
|
+
Hub <https://sparknlp.org/models?task=Word+Segmentation>`__.
|
|
311
|
+
|
|
312
|
+
For extended examples of usage, see the `Examples
|
|
313
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/jupyter/annotation/chinese/word_segmentation/words_segmenter_demo.ipynb>`__.
|
|
314
|
+
|
|
315
|
+
====================== ======================
|
|
316
|
+
Input Annotation types Output Annotation type
|
|
317
|
+
====================== ======================
|
|
318
|
+
``DOCUMENT`` ``TOKEN``
|
|
319
|
+
====================== ======================
|
|
320
|
+
|
|
321
|
+
Parameters
|
|
322
|
+
----------
|
|
323
|
+
None
|
|
324
|
+
|
|
325
|
+
Examples
|
|
326
|
+
--------
|
|
327
|
+
>>> import sparknlp
|
|
328
|
+
>>> from sparknlp.base import *
|
|
329
|
+
>>> from sparknlp.annotator import *
|
|
330
|
+
>>> from pyspark.ml import Pipeline
|
|
331
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
332
|
+
... .setInputCol("text") \\
|
|
333
|
+
... .setOutputCol("document")
|
|
334
|
+
>>> wordSegmenter = WordSegmenterModel.pretrained() \\
|
|
335
|
+
... .setInputCols(["document"]) \\
|
|
336
|
+
... .setOutputCol("token")
|
|
337
|
+
>>> pipeline = Pipeline().setStages([
|
|
338
|
+
... documentAssembler,
|
|
339
|
+
... wordSegmenter
|
|
340
|
+
... ])
|
|
341
|
+
>>> data = spark.createDataFrame([["然而,這樣的處理也衍生了一些問題。"]]).toDF("text")
|
|
342
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
343
|
+
>>> result.select("token.result").show(truncate=False)
|
|
344
|
+
+--------------------------------------------------------+
|
|
345
|
+
|result |
|
|
346
|
+
+--------------------------------------------------------+
|
|
347
|
+
|[然而, ,, 這樣, 的, 處理, 也, 衍生, 了, 一些, 問題, 。 ]|
|
|
348
|
+
+--------------------------------------------------------+
|
|
349
|
+
"""
|
|
350
|
+
name = "WordSegmenterModel"
|
|
351
|
+
|
|
352
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
353
|
+
|
|
354
|
+
outputAnnotatorType = AnnotatorType.TOKEN
|
|
355
|
+
|
|
356
|
+
enableRegexTokenizer = Param(Params._dummy(),
|
|
357
|
+
"enableRegexTokenizer",
|
|
358
|
+
"Whether to use RegexTokenizer before segmentation. Useful for multilingual text",
|
|
359
|
+
typeConverter=TypeConverters.toBoolean)
|
|
360
|
+
|
|
361
|
+
toLowercase = Param(Params._dummy(),
|
|
362
|
+
"toLowercase",
|
|
363
|
+
"Indicates whether to convert all characters to lowercase before tokenizing.",
|
|
364
|
+
typeConverter=TypeConverters.toBoolean)
|
|
365
|
+
|
|
366
|
+
pattern = Param(Params._dummy(),
|
|
367
|
+
"pattern",
|
|
368
|
+
"regex pattern used for tokenizing. Defaults \\s+",
|
|
369
|
+
typeConverter=TypeConverters.toString)
|
|
370
|
+
|
|
371
|
+
def setEnableRegexTokenizer(self, value):
|
|
372
|
+
"""Sets whether to to use RegexTokenizer before segmentation.
|
|
373
|
+
Useful for multilingual text
|
|
374
|
+
|
|
375
|
+
Parameters
|
|
376
|
+
----------
|
|
377
|
+
value : bool
|
|
378
|
+
Whether to use RegexTokenizer before segmentation
|
|
379
|
+
"""
|
|
380
|
+
return self._set(enableRegexTokenizer=value)
|
|
381
|
+
|
|
382
|
+
def setToLowercase(self, value):
|
|
383
|
+
"""Sets whether to convert all characters to lowercase before
|
|
384
|
+
tokenizing, by default False.
|
|
385
|
+
|
|
386
|
+
Parameters
|
|
387
|
+
----------
|
|
388
|
+
value : bool
|
|
389
|
+
Whether to convert all characters to lowercase before tokenizing
|
|
390
|
+
"""
|
|
391
|
+
return self._set(toLowercase=value)
|
|
392
|
+
|
|
393
|
+
def setPattern(self, value):
|
|
394
|
+
"""Sets the regex pattern used for tokenizing, by default ``\\s+``.
|
|
395
|
+
|
|
396
|
+
Parameters
|
|
397
|
+
----------
|
|
398
|
+
value : str
|
|
399
|
+
Regex pattern used for tokenizing
|
|
400
|
+
"""
|
|
401
|
+
return self._set(pattern=value)
|
|
402
|
+
|
|
403
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.ws.WordSegmenterModel", java_model=None):
|
|
404
|
+
super(WordSegmenterModel, self).__init__(
|
|
405
|
+
classname=classname,
|
|
406
|
+
java_model=java_model
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
@staticmethod
|
|
410
|
+
def pretrained(name="wordseg_pku", lang="zh", remote_loc=None):
|
|
411
|
+
"""Downloads and loads a pretrained model.
|
|
412
|
+
|
|
413
|
+
Parameters
|
|
414
|
+
----------
|
|
415
|
+
name : str, optional
|
|
416
|
+
Name of the pretrained model, by default "wordseg_pku"
|
|
417
|
+
lang : str, optional
|
|
418
|
+
Language of the pretrained model, by default "en"
|
|
419
|
+
remote_loc : str, optional
|
|
420
|
+
Optional remote address of the resource, by default None. Will use
|
|
421
|
+
Spark NLPs repositories otherwise.
|
|
422
|
+
|
|
423
|
+
Returns
|
|
424
|
+
-------
|
|
425
|
+
WordSegmenterModel
|
|
426
|
+
The restored model
|
|
427
|
+
"""
|
|
428
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
429
|
+
return ResourceDownloader.downloadModel(WordSegmenterModel, name, lang, remote_loc)
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Module of base Spark NLP annotators."""
|
|
15
|
+
from sparknlp.base.doc2_chunk import *
|
|
16
|
+
from sparknlp.base.document_assembler import *
|
|
17
|
+
from sparknlp.base.multi_document_assembler import *
|
|
18
|
+
from sparknlp.base.embeddings_finisher import *
|
|
19
|
+
from sparknlp.base.finisher import *
|
|
20
|
+
from sparknlp.base.gguf_ranking_finisher import *
|
|
21
|
+
from sparknlp.base.graph_finisher import *
|
|
22
|
+
from sparknlp.base.has_recursive_fit import *
|
|
23
|
+
from sparknlp.base.has_recursive_transform import *
|
|
24
|
+
from sparknlp.base.light_pipeline import *
|
|
25
|
+
from sparknlp.base.recursive_pipeline import *
|
|
26
|
+
from sparknlp.base.token_assembler import *
|
|
27
|
+
from sparknlp.base.image_assembler import *
|
|
28
|
+
from sparknlp.base.audio_assembler import *
|
|
29
|
+
from sparknlp.base.table_assembler import *
|
|
30
|
+
from sparknlp.base.prompt_assembler import *
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the AudioAssembler."""
|
|
15
|
+
|
|
16
|
+
from pyspark import keyword_only
|
|
17
|
+
from pyspark.ml.param import TypeConverters, Params, Param
|
|
18
|
+
|
|
19
|
+
from sparknlp.common import AnnotatorType
|
|
20
|
+
from sparknlp.internal import AnnotatorTransformer
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class AudioAssembler(AnnotatorTransformer):
|
|
24
|
+
"""Prepares Floats or Doubles from a processed audio file(s)
|
|
25
|
+
This component is needed to process audio.
|
|
26
|
+
|
|
27
|
+
====================== ======================
|
|
28
|
+
Input Annotation types Output Annotation type
|
|
29
|
+
====================== ======================
|
|
30
|
+
``NONE`` ``AUDIO``
|
|
31
|
+
====================== ======================
|
|
32
|
+
|
|
33
|
+
Parameters
|
|
34
|
+
----------
|
|
35
|
+
inputCol
|
|
36
|
+
Input column name
|
|
37
|
+
outputCol
|
|
38
|
+
Output column name
|
|
39
|
+
|
|
40
|
+
Examples
|
|
41
|
+
--------
|
|
42
|
+
>>> import sparknlp
|
|
43
|
+
>>> from sparknlp.base import *
|
|
44
|
+
>>> from pyspark.ml import Pipeline
|
|
45
|
+
>>> data = spark.read.option("inferSchema", value = True)\
|
|
46
|
+
.parquet("./tmp/librispeech_asr_dummy_clean_audio_array_parquet")\
|
|
47
|
+
.select($"float_array".cast("array<float>").as("audio_content"))
|
|
48
|
+
>>> audioAssembler = AudioAssembler().setInputCol("audio_content").setOutputCol("audio_assembler")
|
|
49
|
+
>>> result = audioAssembler.transform(data)
|
|
50
|
+
>>> result.select("audio_assembler").show()
|
|
51
|
+
>>> result.select("audio_assembler").printSchema()
|
|
52
|
+
root
|
|
53
|
+
|-- audio_content: array (nullable = true)
|
|
54
|
+
| |-- element: float (containsNull = true)
|
|
55
|
+
"""
|
|
56
|
+
|
|
57
|
+
inputCol = Param(Params._dummy(), "inputCol", "input column name", typeConverter=TypeConverters.toString)
|
|
58
|
+
outputCol = Param(Params._dummy(), "outputCol", "output column name", typeConverter=TypeConverters.toString)
|
|
59
|
+
name = 'AudioAssembler'
|
|
60
|
+
|
|
61
|
+
outputAnnotatorType = AnnotatorType.AUDIO
|
|
62
|
+
|
|
63
|
+
@keyword_only
|
|
64
|
+
def __init__(self):
|
|
65
|
+
super(AudioAssembler, self).__init__(classname="com.johnsnowlabs.nlp.AudioAssembler")
|
|
66
|
+
self._setDefault(outputCol="audio_assembler", inputCol='audio')
|
|
67
|
+
|
|
68
|
+
@keyword_only
|
|
69
|
+
def setParams(self):
|
|
70
|
+
kwargs = self._input_kwargs
|
|
71
|
+
return self._set(**kwargs)
|
|
72
|
+
|
|
73
|
+
def setInputCol(self, value):
|
|
74
|
+
"""Sets input column name.
|
|
75
|
+
|
|
76
|
+
Parameters
|
|
77
|
+
----------
|
|
78
|
+
value : str
|
|
79
|
+
Name of the input column that has audio in format of Array[Float] or Array[Double]
|
|
80
|
+
"""
|
|
81
|
+
return self._set(inputCol=value)
|
|
82
|
+
|
|
83
|
+
def setOutputCol(self, value):
|
|
84
|
+
"""Sets output column name.
|
|
85
|
+
|
|
86
|
+
Parameters
|
|
87
|
+
----------
|
|
88
|
+
value : str
|
|
89
|
+
Name of the Output Column
|
|
90
|
+
"""
|
|
91
|
+
return self._set(outputCol=value)
|
|
92
|
+
|
|
93
|
+
def getOutputCol(self):
|
|
94
|
+
"""Gets output column name of annotations."""
|
|
95
|
+
return self.getOrDefault(self.outputCol)
|