spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (329) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. com/johnsnowlabs/nlp/__init__.py +4 -2
  4. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  5. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  6. {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  7. sparknlp/__init__.py +281 -27
  8. sparknlp/annotation.py +137 -6
  9. sparknlp/annotation_audio.py +61 -0
  10. sparknlp/annotation_image.py +82 -0
  11. sparknlp/annotator/__init__.py +93 -0
  12. sparknlp/annotator/audio/__init__.py +16 -0
  13. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  14. sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
  15. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  16. sparknlp/annotator/chunk2_doc.py +85 -0
  17. sparknlp/annotator/chunker.py +137 -0
  18. sparknlp/annotator/classifier_dl/__init__.py +61 -0
  19. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  20. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
  21. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
  22. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
  23. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  24. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  25. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  26. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
  27. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
  28. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
  29. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  30. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  31. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
  32. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
  33. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  34. sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
  35. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
  36. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
  37. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
  38. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  39. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
  40. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
  41. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
  42. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  43. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  44. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
  45. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
  46. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
  47. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  48. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  49. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  50. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
  51. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  52. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
  53. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
  54. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
  55. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  56. sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
  57. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
  60. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
  61. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
  62. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  63. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
  64. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
  65. sparknlp/annotator/cleaners/__init__.py +15 -0
  66. sparknlp/annotator/cleaners/cleaner.py +202 -0
  67. sparknlp/annotator/cleaners/extractor.py +191 -0
  68. sparknlp/annotator/coref/__init__.py +1 -0
  69. sparknlp/annotator/coref/spanbert_coref.py +221 -0
  70. sparknlp/annotator/cv/__init__.py +29 -0
  71. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  72. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  73. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  74. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  75. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  76. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  77. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  78. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  79. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  80. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  81. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  82. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  83. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  84. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  85. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  86. sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
  87. sparknlp/annotator/dataframe_optimizer.py +216 -0
  88. sparknlp/annotator/date2_chunk.py +88 -0
  89. sparknlp/annotator/dependency/__init__.py +17 -0
  90. sparknlp/annotator/dependency/dependency_parser.py +294 -0
  91. sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
  92. sparknlp/annotator/document_character_text_splitter.py +228 -0
  93. sparknlp/annotator/document_normalizer.py +235 -0
  94. sparknlp/annotator/document_token_splitter.py +175 -0
  95. sparknlp/annotator/document_token_splitter_test.py +85 -0
  96. sparknlp/annotator/embeddings/__init__.py +45 -0
  97. sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
  98. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  99. sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
  100. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
  101. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  102. sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
  103. sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
  104. sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
  105. sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
  106. sparknlp/annotator/embeddings/doc2vec.py +352 -0
  107. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  108. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  109. sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
  110. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  111. sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
  112. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  113. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  114. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  115. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  116. sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
  117. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
  118. sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
  119. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  120. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  121. sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
  122. sparknlp/annotator/embeddings/word2vec.py +353 -0
  123. sparknlp/annotator/embeddings/word_embeddings.py +385 -0
  124. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
  125. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
  126. sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
  127. sparknlp/annotator/er/__init__.py +16 -0
  128. sparknlp/annotator/er/entity_ruler.py +267 -0
  129. sparknlp/annotator/graph_extraction.py +368 -0
  130. sparknlp/annotator/keyword_extraction/__init__.py +16 -0
  131. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
  132. sparknlp/annotator/ld_dl/__init__.py +16 -0
  133. sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
  134. sparknlp/annotator/lemmatizer.py +250 -0
  135. sparknlp/annotator/matcher/__init__.py +20 -0
  136. sparknlp/annotator/matcher/big_text_matcher.py +272 -0
  137. sparknlp/annotator/matcher/date_matcher.py +303 -0
  138. sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
  139. sparknlp/annotator/matcher/regex_matcher.py +221 -0
  140. sparknlp/annotator/matcher/text_matcher.py +290 -0
  141. sparknlp/annotator/n_gram_generator.py +141 -0
  142. sparknlp/annotator/ner/__init__.py +21 -0
  143. sparknlp/annotator/ner/ner_approach.py +94 -0
  144. sparknlp/annotator/ner/ner_converter.py +148 -0
  145. sparknlp/annotator/ner/ner_crf.py +397 -0
  146. sparknlp/annotator/ner/ner_dl.py +591 -0
  147. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  148. sparknlp/annotator/ner/ner_overwriter.py +166 -0
  149. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  150. sparknlp/annotator/normalizer.py +230 -0
  151. sparknlp/annotator/openai/__init__.py +16 -0
  152. sparknlp/annotator/openai/openai_completion.py +349 -0
  153. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  154. sparknlp/annotator/param/__init__.py +17 -0
  155. sparknlp/annotator/param/classifier_encoder.py +98 -0
  156. sparknlp/annotator/param/evaluation_dl_params.py +130 -0
  157. sparknlp/annotator/pos/__init__.py +16 -0
  158. sparknlp/annotator/pos/perceptron.py +263 -0
  159. sparknlp/annotator/sentence/__init__.py +17 -0
  160. sparknlp/annotator/sentence/sentence_detector.py +290 -0
  161. sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
  162. sparknlp/annotator/sentiment/__init__.py +17 -0
  163. sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
  164. sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
  165. sparknlp/annotator/seq2seq/__init__.py +35 -0
  166. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  167. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  168. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  169. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  170. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  171. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  172. sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
  173. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  174. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  175. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  176. sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
  177. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  178. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  179. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  180. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  181. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  182. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  183. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  184. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  185. sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
  186. sparknlp/annotator/similarity/__init__.py +0 -0
  187. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  188. sparknlp/annotator/spell_check/__init__.py +18 -0
  189. sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
  190. sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
  191. sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
  192. sparknlp/annotator/stemmer.py +79 -0
  193. sparknlp/annotator/stop_words_cleaner.py +190 -0
  194. sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
  195. sparknlp/annotator/token/__init__.py +19 -0
  196. sparknlp/annotator/token/chunk_tokenizer.py +118 -0
  197. sparknlp/annotator/token/recursive_tokenizer.py +205 -0
  198. sparknlp/annotator/token/regex_tokenizer.py +208 -0
  199. sparknlp/annotator/token/tokenizer.py +561 -0
  200. sparknlp/annotator/token2_chunk.py +76 -0
  201. sparknlp/annotator/ws/__init__.py +16 -0
  202. sparknlp/annotator/ws/word_segmenter.py +429 -0
  203. sparknlp/base/__init__.py +30 -0
  204. sparknlp/base/audio_assembler.py +95 -0
  205. sparknlp/base/doc2_chunk.py +169 -0
  206. sparknlp/base/document_assembler.py +164 -0
  207. sparknlp/base/embeddings_finisher.py +201 -0
  208. sparknlp/base/finisher.py +217 -0
  209. sparknlp/base/gguf_ranking_finisher.py +234 -0
  210. sparknlp/base/graph_finisher.py +125 -0
  211. sparknlp/base/has_recursive_fit.py +24 -0
  212. sparknlp/base/has_recursive_transform.py +22 -0
  213. sparknlp/base/image_assembler.py +172 -0
  214. sparknlp/base/light_pipeline.py +429 -0
  215. sparknlp/base/multi_document_assembler.py +164 -0
  216. sparknlp/base/prompt_assembler.py +207 -0
  217. sparknlp/base/recursive_pipeline.py +107 -0
  218. sparknlp/base/table_assembler.py +145 -0
  219. sparknlp/base/token_assembler.py +124 -0
  220. sparknlp/common/__init__.py +26 -0
  221. sparknlp/common/annotator_approach.py +41 -0
  222. sparknlp/common/annotator_model.py +47 -0
  223. sparknlp/common/annotator_properties.py +114 -0
  224. sparknlp/common/annotator_type.py +38 -0
  225. sparknlp/common/completion_post_processing.py +37 -0
  226. sparknlp/common/coverage_result.py +22 -0
  227. sparknlp/common/match_strategy.py +33 -0
  228. sparknlp/common/properties.py +1298 -0
  229. sparknlp/common/read_as.py +33 -0
  230. sparknlp/common/recursive_annotator_approach.py +35 -0
  231. sparknlp/common/storage.py +149 -0
  232. sparknlp/common/utils.py +39 -0
  233. sparknlp/functions.py +315 -5
  234. sparknlp/internal/__init__.py +1199 -0
  235. sparknlp/internal/annotator_java_ml.py +32 -0
  236. sparknlp/internal/annotator_transformer.py +37 -0
  237. sparknlp/internal/extended_java_wrapper.py +63 -0
  238. sparknlp/internal/params_getters_setters.py +71 -0
  239. sparknlp/internal/recursive.py +70 -0
  240. sparknlp/logging/__init__.py +15 -0
  241. sparknlp/logging/comet.py +467 -0
  242. sparknlp/partition/__init__.py +16 -0
  243. sparknlp/partition/partition.py +244 -0
  244. sparknlp/partition/partition_properties.py +902 -0
  245. sparknlp/partition/partition_transformer.py +200 -0
  246. sparknlp/pretrained/__init__.py +17 -0
  247. sparknlp/pretrained/pretrained_pipeline.py +158 -0
  248. sparknlp/pretrained/resource_downloader.py +216 -0
  249. sparknlp/pretrained/utils.py +35 -0
  250. sparknlp/reader/__init__.py +15 -0
  251. sparknlp/reader/enums.py +19 -0
  252. sparknlp/reader/pdf_to_text.py +190 -0
  253. sparknlp/reader/reader2doc.py +124 -0
  254. sparknlp/reader/reader2image.py +136 -0
  255. sparknlp/reader/reader2table.py +44 -0
  256. sparknlp/reader/reader_assembler.py +159 -0
  257. sparknlp/reader/sparknlp_reader.py +461 -0
  258. sparknlp/training/__init__.py +20 -0
  259. sparknlp/training/_tf_graph_builders/__init__.py +0 -0
  260. sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
  261. sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
  262. sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
  263. sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
  264. sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
  265. sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
  266. sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
  267. sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
  268. sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
  269. sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
  270. sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
  271. sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
  272. sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
  273. sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
  274. sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
  275. sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
  276. sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
  277. sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
  278. sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
  279. sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
  280. sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
  281. sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
  282. sparknlp/training/conll.py +150 -0
  283. sparknlp/training/conllu.py +103 -0
  284. sparknlp/training/pos.py +103 -0
  285. sparknlp/training/pub_tator.py +76 -0
  286. sparknlp/training/spacy_to_annotation.py +57 -0
  287. sparknlp/training/tfgraphs.py +5 -0
  288. sparknlp/upload_to_hub.py +149 -0
  289. sparknlp/util.py +51 -5
  290. com/__init__.pyc +0 -0
  291. com/__pycache__/__init__.cpython-36.pyc +0 -0
  292. com/johnsnowlabs/__init__.pyc +0 -0
  293. com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
  294. com/johnsnowlabs/nlp/__init__.pyc +0 -0
  295. com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
  296. spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
  297. spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
  298. sparknlp/__init__.pyc +0 -0
  299. sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
  300. sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
  301. sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
  302. sparknlp/__pycache__/base.cpython-36.pyc +0 -0
  303. sparknlp/__pycache__/common.cpython-36.pyc +0 -0
  304. sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
  305. sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
  306. sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
  307. sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
  308. sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
  309. sparknlp/__pycache__/training.cpython-36.pyc +0 -0
  310. sparknlp/__pycache__/util.cpython-36.pyc +0 -0
  311. sparknlp/annotation.pyc +0 -0
  312. sparknlp/annotator.py +0 -3006
  313. sparknlp/annotator.pyc +0 -0
  314. sparknlp/base.py +0 -347
  315. sparknlp/base.pyc +0 -0
  316. sparknlp/common.py +0 -193
  317. sparknlp/common.pyc +0 -0
  318. sparknlp/embeddings.py +0 -40
  319. sparknlp/embeddings.pyc +0 -0
  320. sparknlp/internal.py +0 -288
  321. sparknlp/internal.pyc +0 -0
  322. sparknlp/pretrained.py +0 -123
  323. sparknlp/pretrained.pyc +0 -0
  324. sparknlp/storage.py +0 -32
  325. sparknlp/storage.pyc +0 -0
  326. sparknlp/training.py +0 -62
  327. sparknlp/training.pyc +0 -0
  328. sparknlp/util.pyc +0 -0
  329. {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,425 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the T5Transformer."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class T5Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
20
+ """T5: the Text-To-Text Transfer Transformer
21
+
22
+ T5 reconsiders all NLP tasks into a unified text-to-text-format where the
23
+ input and output are always text strings, in contrast to BERT-style models
24
+ that can only output either a class label or a span of the input. The
25
+ text-to-text framework is able to use the same model, loss function, and
26
+ hyper-parameters on any NLP task, including machine translation, document
27
+ summarization, question answering, and classification tasks (e.g., sentiment
28
+ analysis). T5 can even apply to regression tasks by training it to predict
29
+ the string representation of a number instead of the number itself.
30
+
31
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
32
+ object:
33
+
34
+ >>> t5 = T5Transformer.pretrained() \\
35
+ ... .setTask("summarize:") \\
36
+ ... .setInputCols(["document"]) \\
37
+ ... .setOutputCol("summaries")
38
+
39
+
40
+ The default model is ``"t5_small"``, if no name is provided. For available
41
+ pretrained models please see the `Models Hub
42
+ <https://sparknlp.org/models?q=t5>`__.
43
+
44
+ For extended examples of usage, see the `Examples
45
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/question-answering/Question_Answering_and_Summarization_with_T5.ipynb>`__.
46
+
47
+ ====================== ======================
48
+ Input Annotation types Output Annotation type
49
+ ====================== ======================
50
+ ``DOCUMENT`` ``DOCUMENT``
51
+ ====================== ======================
52
+
53
+ Parameters
54
+ ----------
55
+ configProtoBytes
56
+ ConfigProto from tensorflow, serialized into byte array.
57
+ task
58
+ Transformer's task, e.g. ``summarize:``
59
+ minOutputLength
60
+ Minimum length of the sequence to be generated
61
+ maxOutputLength
62
+ Maximum length of output text
63
+ doSample
64
+ Whether or not to use sampling; use greedy decoding otherwise
65
+ temperature
66
+ The value used to module the next token probabilities
67
+ topK
68
+ The number of highest probability vocabulary tokens to keep for
69
+ top-k-filtering
70
+ topP
71
+ Top cumulative probability for vocabulary tokens
72
+
73
+ If set to float < 1, only the most probable tokens with probabilities
74
+ that add up to ``topP`` or higher are kept for generation.
75
+ repetitionPenalty
76
+ The parameter for repetition penalty. 1.0 means no penalty.
77
+ noRepeatNgramSize
78
+ If set to int > 0, all ngrams of that size can only occur once
79
+ ignoreTokenIds
80
+ A list of token ids which are ignored in the decoder's output
81
+
82
+ Notes
83
+ -----
84
+ This is a very computationally expensive module especially on larger
85
+ sequence. The use of an accelerator such as GPU is recommended.
86
+
87
+ References
88
+ ----------
89
+ - `Exploring Transfer Learning with T5: the Text-To-Text Transfer
90
+ Transformer
91
+ <https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html>`__
92
+ - `Exploring the Limits of Transfer Learning with a Unified Text-to-Text
93
+ Transformer <https://arxiv.org/abs/1910.10683>`__
94
+ - https://github.com/google-research/text-to-text-transfer-transformer
95
+
96
+ **Paper Abstract:**
97
+
98
+ *Transfer learning, where a model is first pre-trained on a data-rich task
99
+ before being fine-tuned on a downstream task, has emerged as a powerful
100
+ technique in natural language processing (NLP). The effectiveness of
101
+ transfer learning has given rise to a diversity of approaches, methodology,
102
+ and practice. In this paper, we explore the landscape of transfer learning
103
+ techniques for NLP by introducing a unified framework that converts all
104
+ text-based language problems into a text-to-text format. Our systematic
105
+ study compares pre-training objectives, architectures, unlabeled data sets,
106
+ transfer approaches, and other factors on dozens of language understanding
107
+ tasks. By combining the insights from our exploration with scale and our new
108
+ Colossal Clean Crawled Corpus, we achieve state-of-the-art results on many
109
+ benchmarks covering summarization, question answering, text classification,
110
+ and more. To facilitate future work on transfer learning for NLP, we release
111
+ our data set, pre-trained models, and code.*
112
+
113
+ Examples
114
+ --------
115
+ >>> import sparknlp
116
+ >>> from sparknlp.base import *
117
+ >>> from sparknlp.annotator import *
118
+ >>> from pyspark.ml import Pipeline
119
+ >>> documentAssembler = DocumentAssembler() \\
120
+ ... .setInputCol("text") \\
121
+ ... .setOutputCol("documents")
122
+ >>> t5 = T5Transformer.pretrained("t5_small") \\
123
+ ... .setTask("summarize:") \\
124
+ ... .setInputCols(["documents"]) \\
125
+ ... .setMaxOutputLength(200) \\
126
+ ... .setOutputCol("summaries")
127
+ >>> pipeline = Pipeline().setStages([documentAssembler, t5])
128
+ >>> data = spark.createDataFrame([[
129
+ ... "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a " +
130
+ ... "downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness" +
131
+ ... " of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this " +
132
+ ... "paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework " +
133
+ ... "that converts all text-based language problems into a text-to-text format. Our systematic study compares " +
134
+ ... "pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens " +
135
+ ... "of language understanding tasks. By combining the insights from our exploration with scale and our new " +
136
+ ... "Colossal Clean Crawled Corpus, we achieve state-of-the-art results on many benchmarks covering " +
137
+ ... "summarization, question answering, text classification, and more. To facilitate future work on transfer " +
138
+ ... "learning for NLP, we release our data set, pre-trained models, and code."
139
+ ... ]]).toDF("text")
140
+ >>> result = pipeline.fit(data).transform(data)
141
+ >>> result.select("summaries.result").show(truncate=False)
142
+ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
143
+ |result |
144
+ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
145
+ |[transfer learning has emerged as a powerful technique in natural language processing (NLP) the effectiveness of transfer learning has given rise to a diversity of approaches, methodologies, and practice .]|
146
+ --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
147
+ """
148
+
149
+ name = "T5Transformer"
150
+
151
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
152
+
153
+ outputAnnotatorType = AnnotatorType.DOCUMENT
154
+
155
+ configProtoBytes = Param(Params._dummy(),
156
+ "configProtoBytes",
157
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
158
+ TypeConverters.toListInt)
159
+
160
+ task = Param(Params._dummy(), "task", "Transformer's task, e.g. summarize>", typeConverter=TypeConverters.toString)
161
+
162
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
163
+ typeConverter=TypeConverters.toInt)
164
+
165
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
166
+ typeConverter=TypeConverters.toInt)
167
+
168
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
169
+ typeConverter=TypeConverters.toBoolean)
170
+
171
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
172
+ typeConverter=TypeConverters.toFloat)
173
+
174
+ topK = Param(Params._dummy(), "topK",
175
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
176
+ typeConverter=TypeConverters.toInt)
177
+
178
+ topP = Param(Params._dummy(), "topP",
179
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
180
+ typeConverter=TypeConverters.toFloat)
181
+
182
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
183
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
184
+ typeConverter=TypeConverters.toFloat)
185
+
186
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
187
+ "If set to int > 0, all ngrams of that size can only occur once",
188
+ typeConverter=TypeConverters.toInt)
189
+
190
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
191
+ "A list of token ids which are ignored in the decoder's output",
192
+ typeConverter=TypeConverters.toListInt)
193
+
194
+ useCache = Param(Params._dummy(), "useCache", "Cache internal state of the model to improve performance",
195
+ typeConverter=TypeConverters.toBoolean)
196
+
197
+ stopAtEos = Param(
198
+ Params._dummy(),
199
+ "stopAtEos",
200
+ "Stop text generation when the end-of-sentence token is encountered.",
201
+ typeConverter=TypeConverters.toBoolean
202
+ )
203
+
204
+ maxNewTokens = Param(
205
+ Params._dummy(),
206
+ "maxNewTokens",
207
+ "Maximum number of new tokens to be generated",
208
+ typeConverter=TypeConverters.toInt
209
+ )
210
+
211
+ def setIgnoreTokenIds(self, value):
212
+ """A list of token ids which are ignored in the decoder's output.
213
+
214
+ Parameters
215
+ ----------
216
+ value : List[int]
217
+ The words to be filtered out
218
+ """
219
+ return self._set(ignoreTokenIds=value)
220
+
221
+ def setConfigProtoBytes(self, b):
222
+ """Sets configProto from tensorflow, serialized into byte array.
223
+
224
+ Parameters
225
+ ----------
226
+ b : List[int]
227
+ ConfigProto from tensorflow, serialized into byte array
228
+ """
229
+ return self._set(configProtoBytes=b)
230
+
231
+ def setTask(self, value):
232
+ """Sets the transformer's task, e.g. ``summarize:``.
233
+
234
+ Parameters
235
+ ----------
236
+ value : str
237
+ The transformer's task
238
+ """
239
+ return self._set(task=value)
240
+
241
+ def setMinOutputLength(self, value):
242
+ """Sets minimum length of the sequence to be generated.
243
+
244
+ Parameters
245
+ ----------
246
+ value : int
247
+ Minimum length of the sequence to be generated
248
+ """
249
+ return self._set(minOutputLength=value)
250
+
251
+ def setMaxOutputLength(self, value):
252
+ """Sets maximum length of output text.
253
+
254
+ Parameters
255
+ ----------
256
+ value : int
257
+ Maximum length of output text
258
+ """
259
+ return self._set(maxOutputLength=value)
260
+
261
+ def setStopAtEos(self, b):
262
+ """Stop text generation when the end-of-sentence token is encountered.
263
+
264
+ Parameters
265
+ ----------
266
+ b : bool
267
+ whether to stop at end-of-sentence token or not
268
+ """
269
+ return self._set(stopAtEos=b)
270
+
271
+ def setMaxNewTokens(self, value):
272
+ """Sets the maximum number of new tokens to be generated
273
+
274
+ Parameters
275
+ ----------
276
+ value : int
277
+ the maximum number of new tokens to be generated
278
+ """
279
+ return self._set(maxNewTokens=value)
280
+
281
+ def setDoSample(self, value):
282
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
283
+
284
+ Parameters
285
+ ----------
286
+ value : bool
287
+ Whether or not to use sampling; use greedy decoding otherwise
288
+ """
289
+ return self._set(doSample=value)
290
+
291
+ def setTemperature(self, value):
292
+ """Sets the value used to module the next token probabilities.
293
+
294
+ Parameters
295
+ ----------
296
+ value : float
297
+ The value used to module the next token probabilities
298
+ """
299
+ return self._set(temperature=value)
300
+
301
+ def setTopK(self, value):
302
+ """Sets the number of highest probability vocabulary tokens to keep for
303
+ top-k-filtering.
304
+
305
+ Parameters
306
+ ----------
307
+ value : int
308
+ Number of highest probability vocabulary tokens to keep
309
+ """
310
+ return self._set(topK=value)
311
+
312
+ def setTopP(self, value):
313
+ """Sets the top cumulative probability for vocabulary tokens.
314
+
315
+ If set to float < 1, only the most probable tokens with probabilities
316
+ that add up to ``topP`` or higher are kept for generation.
317
+
318
+ Parameters
319
+ ----------
320
+ value : float
321
+ Cumulative probability for vocabulary tokens
322
+ """
323
+ return self._set(topP=value)
324
+
325
+ def setRepetitionPenalty(self, value):
326
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
327
+
328
+ Parameters
329
+ ----------
330
+ value : float
331
+ The repetition penalty
332
+
333
+ References
334
+ ----------
335
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
336
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
337
+ """
338
+ return self._set(repetitionPenalty=value)
339
+
340
+ def setNoRepeatNgramSize(self, value):
341
+ """Sets size of n-grams that can only occur once.
342
+
343
+ If set to int > 0, all ngrams of that size can only occur once.
344
+
345
+ Parameters
346
+ ----------
347
+ value : int
348
+ N-gram size can only occur once
349
+ """
350
+ return self._set(noRepeatNgramSize=value)
351
+
352
+ def setUseCache(self, value):
353
+ """Cache internal state of the model to improve performance
354
+
355
+ Parameters
356
+ ----------
357
+ value : bool
358
+ Whether or not to use cache
359
+ """
360
+ return self._set(useCache=value)
361
+
362
+ @keyword_only
363
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.T5Transformer", java_model=None):
364
+ super(T5Transformer, self).__init__(
365
+ classname=classname,
366
+ java_model=java_model
367
+ )
368
+ self._setDefault(
369
+ task="",
370
+ minOutputLength=0,
371
+ maxOutputLength=20,
372
+ doSample=False,
373
+ temperature=1.0,
374
+ topK=50,
375
+ topP=1.0,
376
+ repetitionPenalty=1.0,
377
+ noRepeatNgramSize=0,
378
+ ignoreTokenIds=[],
379
+ batchSize=1,
380
+ stopAtEos=True,
381
+ maxNewTokens=512,
382
+ useCache=False
383
+ )
384
+
385
+ @staticmethod
386
+ def loadSavedModel(folder, spark_session):
387
+ """Loads a locally saved model.
388
+
389
+ Parameters
390
+ ----------
391
+ folder : str
392
+ Folder of the saved model
393
+ spark_session : pyspark.sql.SparkSession
394
+ The current SparkSession
395
+
396
+ Returns
397
+ -------
398
+ T5Transformer
399
+ The restored model
400
+ """
401
+ from sparknlp.internal import _T5Loader
402
+ jModel = _T5Loader(folder, spark_session._jsparkSession)._java_obj
403
+ return T5Transformer(java_model=jModel)
404
+
405
+ @staticmethod
406
+ def pretrained(name="t5_small", lang="en", remote_loc=None):
407
+ """Downloads and loads a pretrained model.
408
+
409
+ Parameters
410
+ ----------
411
+ name : str, optional
412
+ Name of the pretrained model, by default "t5_small"
413
+ lang : str, optional
414
+ Language of the pretrained model, by default "en"
415
+ remote_loc : str, optional
416
+ Optional remote address of the resource, by default None. Will use
417
+ Spark NLPs repositories otherwise.
418
+
419
+ Returns
420
+ -------
421
+ T5Transformer
422
+ The restored model
423
+ """
424
+ from sparknlp.pretrained import ResourceDownloader
425
+ return ResourceDownloader.downloadModel(T5Transformer, name, lang, remote_loc)
File without changes