spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for SnowFlakeEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class SnowFlakeEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using SnowFlake.
|
|
26
|
+
|
|
27
|
+
snowflake-arctic-embed is a suite of text embedding models that focuses on creating
|
|
28
|
+
high-quality retrieval models optimized for performance.
|
|
29
|
+
|
|
30
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
31
|
+
object:
|
|
32
|
+
|
|
33
|
+
>>> embeddings = SnowFlakeEmbeddings.pretrained() \\
|
|
34
|
+
... .setInputCols(["document"]) \\
|
|
35
|
+
... .setOutputCol("SnowFlake_embeddings")
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
The default model is ``"snowflake_artic_m"``, if no name is provided.
|
|
39
|
+
|
|
40
|
+
For available pretrained models please see the
|
|
41
|
+
`Models Hub <https://sparknlp.org/models?q=SnowFlake>`__.
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
**References**
|
|
51
|
+
|
|
52
|
+
`Arctic-Embed: Scalable, Efficient, and Accurate Text Embedding Models <https://arxiv.org/abs/2405.05374>`__
|
|
53
|
+
`Snowflake Arctic-Embed Models <https://github.com/Snowflake-Labs/arctic-embed>`__
|
|
54
|
+
|
|
55
|
+
**Paper abstract**
|
|
56
|
+
|
|
57
|
+
*The models are trained by leveraging existing open-source text representation models, such
|
|
58
|
+
as bert-base-uncased, and are trained in a multi-stage pipeline to optimize their retrieval
|
|
59
|
+
performance. First, the models are trained with large batches of query-document pairs where
|
|
60
|
+
negatives are derived in-batch—pretraining leverages about 400m samples of a mix of public
|
|
61
|
+
datasets and proprietary web search data. Following pretraining models are further optimized
|
|
62
|
+
with long training on a smaller dataset (about 1m samples) of triplets of query, positive
|
|
63
|
+
document, and negative document derived from hard harmful mining. Mining of the negatives and
|
|
64
|
+
data curation is crucial to retrieval accuracy. A detailed technical report will be available
|
|
65
|
+
shortly. *
|
|
66
|
+
|
|
67
|
+
Parameters
|
|
68
|
+
----------
|
|
69
|
+
batchSize
|
|
70
|
+
Size of every batch , by default 8
|
|
71
|
+
dimension
|
|
72
|
+
Number of embedding dimensions, by default 768
|
|
73
|
+
caseSensitive
|
|
74
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
75
|
+
maxSentenceLength
|
|
76
|
+
Max sentence length to process, by default 512
|
|
77
|
+
configProtoBytes
|
|
78
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
Examples
|
|
82
|
+
--------
|
|
83
|
+
>>> import sparknlp
|
|
84
|
+
>>> from sparknlp.base import *
|
|
85
|
+
>>> from sparknlp.annotator import *
|
|
86
|
+
>>> from pyspark.ml import Pipeline
|
|
87
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
88
|
+
... .setInputCol("text") \\
|
|
89
|
+
... .setOutputCol("document")
|
|
90
|
+
>>> embeddings = SnowFlakeEmbeddings.pretrained() \\
|
|
91
|
+
... .setInputCols(["document"]) \\
|
|
92
|
+
... .setOutputCol("embeddings")
|
|
93
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
94
|
+
... .setInputCols("embeddings") \\
|
|
95
|
+
... .setOutputCols("finished_embeddings") \\
|
|
96
|
+
... .setOutputAsVector(True)
|
|
97
|
+
>>> pipeline = Pipeline().setStages([
|
|
98
|
+
... documentAssembler,
|
|
99
|
+
... embeddings,
|
|
100
|
+
... embeddingsFinisher
|
|
101
|
+
... ])
|
|
102
|
+
>>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
|
|
103
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
104
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
105
|
+
+--------------------------------------------------------------------------------+
|
|
106
|
+
| result|
|
|
107
|
+
+--------------------------------------------------------------------------------+
|
|
108
|
+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|
|
109
|
+
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
|
|
110
|
+
+--------------------------------------------------------------------------------+
|
|
111
|
+
"""
|
|
112
|
+
|
|
113
|
+
name = "SnowFlakeEmbeddings"
|
|
114
|
+
|
|
115
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
116
|
+
|
|
117
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
118
|
+
poolingStrategy = Param(Params._dummy(),
|
|
119
|
+
"poolingStrategy",
|
|
120
|
+
"Pooling strategy to use for sentence embeddings",
|
|
121
|
+
TypeConverters.toString)
|
|
122
|
+
|
|
123
|
+
def setPoolingStrategy(self, value):
|
|
124
|
+
"""Pooling strategy to use for sentence embeddings.
|
|
125
|
+
|
|
126
|
+
Available pooling strategies for sentence embeddings are:
|
|
127
|
+
- `"cls"`: leading `[CLS]` token
|
|
128
|
+
- `"cls_avg"`: leading `[CLS]` token + mean of all other tokens
|
|
129
|
+
- `"last"`: embeddings of the last token in the sequence
|
|
130
|
+
- `"avg"`: mean of all tokens
|
|
131
|
+
- `"max"`: max of all embedding features of the entire token sequence
|
|
132
|
+
- `"int"`: An integer number, which represents the index of the token to use as the
|
|
133
|
+
embedding
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
value : str
|
|
138
|
+
Pooling strategy to use for sentence embeddings
|
|
139
|
+
"""
|
|
140
|
+
|
|
141
|
+
valid_strategies = {"cls", "cls_avg", "last", "avg", "max"}
|
|
142
|
+
if value in valid_strategies or value.isdigit():
|
|
143
|
+
return self._set(poolingStrategy=value)
|
|
144
|
+
else:
|
|
145
|
+
raise ValueError(f"Invalid pooling strategy: {value}. "
|
|
146
|
+
f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.")
|
|
147
|
+
|
|
148
|
+
@keyword_only
|
|
149
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.SnowFlakeEmbeddings", java_model=None):
|
|
150
|
+
super(SnowFlakeEmbeddings, self).__init__(
|
|
151
|
+
classname=classname,
|
|
152
|
+
java_model=java_model
|
|
153
|
+
)
|
|
154
|
+
self._setDefault(
|
|
155
|
+
dimension=1024,
|
|
156
|
+
batchSize=8,
|
|
157
|
+
maxSentenceLength=512,
|
|
158
|
+
caseSensitive=False,
|
|
159
|
+
poolingStrategy="cls"
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
@staticmethod
|
|
163
|
+
def loadSavedModel(folder, spark_session):
|
|
164
|
+
"""Loads a locally saved model.
|
|
165
|
+
|
|
166
|
+
Parameters
|
|
167
|
+
----------
|
|
168
|
+
folder : str
|
|
169
|
+
Folder of the saved model
|
|
170
|
+
spark_session : pyspark.sql.SparkSession
|
|
171
|
+
The current SparkSession
|
|
172
|
+
|
|
173
|
+
Returns
|
|
174
|
+
-------
|
|
175
|
+
SnowFlakeEmbeddings
|
|
176
|
+
The restored model
|
|
177
|
+
"""
|
|
178
|
+
from sparknlp.internal import _SnowFlakeEmbeddingsLoader
|
|
179
|
+
jModel = _SnowFlakeEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
|
|
180
|
+
return SnowFlakeEmbeddings(java_model=jModel)
|
|
181
|
+
|
|
182
|
+
@staticmethod
|
|
183
|
+
def pretrained(name="snowflake_artic_m", lang="en", remote_loc=None):
|
|
184
|
+
"""Downloads and loads a pretrained model.
|
|
185
|
+
|
|
186
|
+
Parameters
|
|
187
|
+
----------
|
|
188
|
+
name : str, optional
|
|
189
|
+
Name of the pretrained model, by default "snowflake_artic_m"
|
|
190
|
+
lang : str, optional
|
|
191
|
+
Language of the pretrained model, by default "en"
|
|
192
|
+
remote_loc : str, optional
|
|
193
|
+
Optional remote address of the resource, by default None. Will use
|
|
194
|
+
Spark NLPs repositories otherwise.
|
|
195
|
+
|
|
196
|
+
Returns
|
|
197
|
+
-------
|
|
198
|
+
SnowFlakeEmbeddings
|
|
199
|
+
The restored model
|
|
200
|
+
"""
|
|
201
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
202
|
+
return ResourceDownloader.downloadModel(SnowFlakeEmbeddings, name, lang, remote_loc)
|
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for UAEEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class UAEEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using Universal AnglE Embedding (UAE).
|
|
26
|
+
|
|
27
|
+
UAE is a novel angle-optimized text embedding model, designed to improve semantic textual
|
|
28
|
+
similarity tasks, which are crucial for Large Language Model (LLM) applications. By
|
|
29
|
+
introducing angle optimization in a complex space, AnglE effectively mitigates saturation of
|
|
30
|
+
the cosine similarity function.
|
|
31
|
+
|
|
32
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
33
|
+
object:
|
|
34
|
+
|
|
35
|
+
>>> embeddings = UAEEmbeddings.pretrained() \\
|
|
36
|
+
... .setInputCols(["document"]) \\
|
|
37
|
+
... .setOutputCol("UAE_embeddings")
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
The default model is ``"uae_large_v1"``, if no name is provided.
|
|
41
|
+
|
|
42
|
+
For available pretrained models please see the
|
|
43
|
+
`Models Hub <https://sparknlp.org/models?q=UAE>`__.
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
====================== ======================
|
|
47
|
+
Input Annotation types Output Annotation type
|
|
48
|
+
====================== ======================
|
|
49
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
50
|
+
====================== ======================
|
|
51
|
+
|
|
52
|
+
Parameters
|
|
53
|
+
----------
|
|
54
|
+
batchSize
|
|
55
|
+
Size of every batch , by default 8
|
|
56
|
+
dimension
|
|
57
|
+
Number of embedding dimensions, by default 768
|
|
58
|
+
caseSensitive
|
|
59
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
60
|
+
maxSentenceLength
|
|
61
|
+
Max sentence length to process, by default 512
|
|
62
|
+
configProtoBytes
|
|
63
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
64
|
+
|
|
65
|
+
References
|
|
66
|
+
----------
|
|
67
|
+
|
|
68
|
+
`AnglE-optimized Text Embeddings <https://arxiv.org/abs/2309.12871>`__
|
|
69
|
+
`UAE Github Repository <https://github.com/baochi0212/uae-embedding>`__
|
|
70
|
+
|
|
71
|
+
**Paper abstract**
|
|
72
|
+
|
|
73
|
+
*High-quality text embedding is pivotal in improving semantic textual similarity (STS) tasks,
|
|
74
|
+
which are crucial components in Large Language Model (LLM) applications. However, a common
|
|
75
|
+
challenge existing text embedding models face is the problem of vanishing gradients, primarily
|
|
76
|
+
due to their reliance on the cosine function in the optimization objective, which has
|
|
77
|
+
saturation zones. To address this issue, this paper proposes a novel angle-optimized text
|
|
78
|
+
embedding model called AnglE. The core idea of AnglE is to introduce angle optimization in a
|
|
79
|
+
complex space. This novel approach effectively mitigates the adverse effects of the saturation
|
|
80
|
+
zone in the cosine function, which can impede gradient and hinder optimization processes. To
|
|
81
|
+
set up a comprehensive STS evaluation, we experimented on existing short-text STS datasets and
|
|
82
|
+
a newly collected long-text STS dataset from GitHub Issues. Furthermore, we examine
|
|
83
|
+
domain-specific STS scenarios with limited labeled data and explore how AnglE works with
|
|
84
|
+
LLM-annotated data. Extensive experiments were conducted on various tasks including short-text
|
|
85
|
+
STS, long-text STS, and domain-specific STS tasks. The results show that AnglE outperforms the
|
|
86
|
+
state-of-the-art (SOTA) STS models that ignore the cosine saturation zone. These findings
|
|
87
|
+
demonstrate the ability of AnglE to generate high-quality text embeddings and the usefulness
|
|
88
|
+
of angle optimization in STS.*
|
|
89
|
+
|
|
90
|
+
Examples
|
|
91
|
+
--------
|
|
92
|
+
>>> import sparknlp
|
|
93
|
+
>>> from sparknlp.base import *
|
|
94
|
+
>>> from sparknlp.annotator import *
|
|
95
|
+
>>> from pyspark.ml import Pipeline
|
|
96
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
97
|
+
... .setInputCol("text") \\
|
|
98
|
+
... .setOutputCol("document")
|
|
99
|
+
>>> embeddings = UAEEmbeddings.pretrained() \\
|
|
100
|
+
... .setInputCols(["document"]) \\
|
|
101
|
+
... .setOutputCol("embeddings")
|
|
102
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
103
|
+
... .setInputCols("embeddings") \\
|
|
104
|
+
... .setOutputCols("finished_embeddings") \\
|
|
105
|
+
... .setOutputAsVector(True)
|
|
106
|
+
>>> pipeline = Pipeline().setStages([
|
|
107
|
+
... documentAssembler,
|
|
108
|
+
... embeddings,
|
|
109
|
+
... embeddingsFinisher
|
|
110
|
+
... ])
|
|
111
|
+
>>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
|
|
112
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
113
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
114
|
+
+--------------------------------------------------------------------------------+
|
|
115
|
+
| result|
|
|
116
|
+
+--------------------------------------------------------------------------------+
|
|
117
|
+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|
|
118
|
+
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
|
|
119
|
+
+--------------------------------------------------------------------------------+
|
|
120
|
+
"""
|
|
121
|
+
|
|
122
|
+
name = "UAEEmbeddings"
|
|
123
|
+
|
|
124
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
125
|
+
|
|
126
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
127
|
+
poolingStrategy = Param(Params._dummy(),
|
|
128
|
+
"poolingStrategy",
|
|
129
|
+
"Pooling strategy to use for sentence embeddings",
|
|
130
|
+
TypeConverters.toString)
|
|
131
|
+
|
|
132
|
+
def setPoolingStrategy(self, value):
|
|
133
|
+
"""Pooling strategy to use for sentence embeddings.
|
|
134
|
+
|
|
135
|
+
Available pooling strategies for sentence embeddings are:
|
|
136
|
+
- `"cls"`: leading `[CLS]` token
|
|
137
|
+
- `"cls_avg"`: leading `[CLS]` token + mean of all other tokens
|
|
138
|
+
- `"last"`: embeddings of the last token in the sequence
|
|
139
|
+
- `"avg"`: mean of all tokens
|
|
140
|
+
- `"max"`: max of all embedding features of the entire token sequence
|
|
141
|
+
- `"int"`: An integer number, which represents the index of the token to use as the
|
|
142
|
+
embedding
|
|
143
|
+
|
|
144
|
+
Parameters
|
|
145
|
+
----------
|
|
146
|
+
value : str
|
|
147
|
+
Pooling strategy to use for sentence embeddings
|
|
148
|
+
"""
|
|
149
|
+
|
|
150
|
+
valid_strategies = {"cls", "cls_avg", "last", "avg", "max"}
|
|
151
|
+
if value in valid_strategies or value.isdigit():
|
|
152
|
+
return self._set(poolingStrategy=value)
|
|
153
|
+
else:
|
|
154
|
+
raise ValueError(f"Invalid pooling strategy: {value}. "
|
|
155
|
+
f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.")
|
|
156
|
+
|
|
157
|
+
@keyword_only
|
|
158
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.UAEEmbeddings", java_model=None):
|
|
159
|
+
super(UAEEmbeddings, self).__init__(
|
|
160
|
+
classname=classname,
|
|
161
|
+
java_model=java_model
|
|
162
|
+
)
|
|
163
|
+
self._setDefault(
|
|
164
|
+
dimension=1024,
|
|
165
|
+
batchSize=8,
|
|
166
|
+
maxSentenceLength=512,
|
|
167
|
+
caseSensitive=False,
|
|
168
|
+
poolingStrategy="cls"
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
@staticmethod
|
|
172
|
+
def loadSavedModel(folder, spark_session):
|
|
173
|
+
"""Loads a locally saved model.
|
|
174
|
+
|
|
175
|
+
Parameters
|
|
176
|
+
----------
|
|
177
|
+
folder : str
|
|
178
|
+
Folder of the saved model
|
|
179
|
+
spark_session : pyspark.sql.SparkSession
|
|
180
|
+
The current SparkSession
|
|
181
|
+
|
|
182
|
+
Returns
|
|
183
|
+
-------
|
|
184
|
+
UAEEmbeddings
|
|
185
|
+
The restored model
|
|
186
|
+
"""
|
|
187
|
+
from sparknlp.internal import _UAEEmbeddingsLoader
|
|
188
|
+
jModel = _UAEEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
|
|
189
|
+
return UAEEmbeddings(java_model=jModel)
|
|
190
|
+
|
|
191
|
+
@staticmethod
|
|
192
|
+
def pretrained(name="uae_large_v1", lang="en", remote_loc=None):
|
|
193
|
+
"""Downloads and loads a pretrained model.
|
|
194
|
+
|
|
195
|
+
Parameters
|
|
196
|
+
----------
|
|
197
|
+
name : str, optional
|
|
198
|
+
Name of the pretrained model, by default "UAE_small"
|
|
199
|
+
lang : str, optional
|
|
200
|
+
Language of the pretrained model, by default "en"
|
|
201
|
+
remote_loc : str, optional
|
|
202
|
+
Optional remote address of the resource, by default None. Will use
|
|
203
|
+
Spark NLPs repositories otherwise.
|
|
204
|
+
|
|
205
|
+
Returns
|
|
206
|
+
-------
|
|
207
|
+
UAEEmbeddings
|
|
208
|
+
The restored model
|
|
209
|
+
"""
|
|
210
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
211
|
+
return ResourceDownloader.downloadModel(UAEEmbeddings, name, lang, remote_loc)
|
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the UniversalSentenceEncoder."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class UniversalSentenceEncoder(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasStorageRef,
|
|
22
|
+
HasBatchedAnnotate,
|
|
23
|
+
HasEngine):
|
|
24
|
+
"""The Universal Sentence Encoder encodes text into high dimensional vectors
|
|
25
|
+
that can be used for text classification, semantic similarity, clustering
|
|
26
|
+
and other natural language tasks.
|
|
27
|
+
|
|
28
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
29
|
+
object:
|
|
30
|
+
|
|
31
|
+
>>> useEmbeddings = UniversalSentenceEncoder.pretrained() \\
|
|
32
|
+
... .setInputCols(["sentence"]) \\
|
|
33
|
+
... .setOutputCol("sentence_embeddings")
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
The default model is ``"tfhub_use"``, if no name is provided. For available
|
|
37
|
+
pretrained models please see the `Models Hub
|
|
38
|
+
<https://sparknlp.org/models?task=Embeddings>`__.
|
|
39
|
+
|
|
40
|
+
For extended examples of usage, see the `Examples
|
|
41
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/ClassifierDL_Train_multi_class_news_category_classifier.ipynb>`__.
|
|
42
|
+
|
|
43
|
+
====================== =======================
|
|
44
|
+
Input Annotation types Output Annotation type
|
|
45
|
+
====================== =======================
|
|
46
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
47
|
+
====================== =======================
|
|
48
|
+
|
|
49
|
+
Parameters
|
|
50
|
+
----------
|
|
51
|
+
dimension
|
|
52
|
+
Number of embedding dimensions
|
|
53
|
+
loadSP
|
|
54
|
+
Whether to load SentencePiece ops file which is required only by
|
|
55
|
+
multi-lingual models, by default False
|
|
56
|
+
configProtoBytes
|
|
57
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
58
|
+
|
|
59
|
+
References
|
|
60
|
+
----------
|
|
61
|
+
`Universal Sentence Encoder <https://arxiv.org/abs/1803.11175>`__
|
|
62
|
+
|
|
63
|
+
https://tfhub.dev/google/universal-sentence-encoder/2
|
|
64
|
+
|
|
65
|
+
**Paper abstract:**
|
|
66
|
+
|
|
67
|
+
*We present models for encoding sentences into embedding vectors that
|
|
68
|
+
specifically target transfer learning to other NLP tasks. The models are
|
|
69
|
+
efficient and result in accurate performance on diverse transfer tasks. Two
|
|
70
|
+
variants of the encoding models allow for trade-offs between accuracy and
|
|
71
|
+
compute resources. For both variants, we investigate and report the
|
|
72
|
+
relationship between model complexity, resource consumption, the
|
|
73
|
+
availability of transfer task training data, and task performance.
|
|
74
|
+
Comparisons are made with baselines that use word level transfer learning
|
|
75
|
+
via pretrained word embeddings as well as baselines do not use any transfer
|
|
76
|
+
learning. We find that transfer learning using sentence embeddings tends to
|
|
77
|
+
outperform word level transfer. With transfer learning via sentence
|
|
78
|
+
embeddings, we observe surprisingly good performance with minimal amounts of
|
|
79
|
+
supervised training data for a transfer task. We obtain encouraging results
|
|
80
|
+
on Word Embedding Association Tests (WEAT) targeted at detecting model bias.
|
|
81
|
+
Our pre-trained sentence encoding models are made freely available for
|
|
82
|
+
download and on TF Hub.*
|
|
83
|
+
|
|
84
|
+
Examples
|
|
85
|
+
--------
|
|
86
|
+
>>> import sparknlp
|
|
87
|
+
>>> from sparknlp.base import *
|
|
88
|
+
>>> from sparknlp.annotator import *
|
|
89
|
+
>>> from pyspark.ml import Pipeline
|
|
90
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
91
|
+
... .setInputCol("text") \\
|
|
92
|
+
... .setOutputCol("document")
|
|
93
|
+
>>> sentence = SentenceDetector() \\
|
|
94
|
+
... .setInputCols(["document"]) \\
|
|
95
|
+
... .setOutputCol("sentence")
|
|
96
|
+
>>> embeddings = UniversalSentenceEncoder.pretrained() \\
|
|
97
|
+
... .setInputCols(["sentence"]) \\
|
|
98
|
+
... .setOutputCol("sentence_embeddings")
|
|
99
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
100
|
+
... .setInputCols(["sentence_embeddings"]) \\
|
|
101
|
+
... .setOutputCols("finished_embeddings") \\
|
|
102
|
+
... .setOutputAsVector(True) \\
|
|
103
|
+
... .setCleanAnnotations(False)
|
|
104
|
+
>>> pipeline = Pipeline() \\
|
|
105
|
+
... .setStages([
|
|
106
|
+
... documentAssembler,
|
|
107
|
+
... sentence,
|
|
108
|
+
... embeddings,
|
|
109
|
+
... embeddingsFinisher
|
|
110
|
+
... ])
|
|
111
|
+
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
|
|
112
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
113
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
114
|
+
+--------------------------------------------------------------------------------+
|
|
115
|
+
| result|
|
|
116
|
+
+--------------------------------------------------------------------------------+
|
|
117
|
+
|[0.04616805538535118,0.022307956591248512,-0.044395286589860916,-0.0016493503...|
|
|
118
|
+
+--------------------------------------------------------------------------------+
|
|
119
|
+
"""
|
|
120
|
+
|
|
121
|
+
name = "UniversalSentenceEncoder"
|
|
122
|
+
|
|
123
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
124
|
+
|
|
125
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
126
|
+
|
|
127
|
+
loadSP = Param(Params._dummy(), "loadSP",
|
|
128
|
+
"Whether to load SentencePiece ops file which is required only by multi-lingual models. "
|
|
129
|
+
"This is not changeable after it's set with a pretrained model nor it is compatible with Windows.",
|
|
130
|
+
typeConverter=TypeConverters.toBoolean)
|
|
131
|
+
|
|
132
|
+
configProtoBytes = Param(Params._dummy(),
|
|
133
|
+
"configProtoBytes",
|
|
134
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
135
|
+
TypeConverters.toListInt)
|
|
136
|
+
|
|
137
|
+
def setLoadSP(self, value):
|
|
138
|
+
"""Sets whether to load SentencePiece ops file which is required only by
|
|
139
|
+
multi-lingual models, by default False.
|
|
140
|
+
|
|
141
|
+
Parameters
|
|
142
|
+
----------
|
|
143
|
+
value : bool
|
|
144
|
+
Whether to load SentencePiece ops file which is required only by
|
|
145
|
+
multi-lingual models
|
|
146
|
+
"""
|
|
147
|
+
return self._set(loadSP=value)
|
|
148
|
+
|
|
149
|
+
def setConfigProtoBytes(self, b):
|
|
150
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
151
|
+
|
|
152
|
+
Parameters
|
|
153
|
+
----------
|
|
154
|
+
b : List[int]
|
|
155
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
156
|
+
"""
|
|
157
|
+
return self._set(configProtoBytes=b)
|
|
158
|
+
|
|
159
|
+
@keyword_only
|
|
160
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder", java_model=None):
|
|
161
|
+
super(UniversalSentenceEncoder, self).__init__(
|
|
162
|
+
classname=classname,
|
|
163
|
+
java_model=java_model
|
|
164
|
+
)
|
|
165
|
+
self._setDefault(
|
|
166
|
+
loadSP=False,
|
|
167
|
+
dimension=512,
|
|
168
|
+
batchSize=2
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
@staticmethod
|
|
172
|
+
def loadSavedModel(folder, spark_session, loadsp=False):
|
|
173
|
+
"""Loads a locally saved model.
|
|
174
|
+
|
|
175
|
+
Parameters
|
|
176
|
+
----------
|
|
177
|
+
folder : str
|
|
178
|
+
Folder of the saved model
|
|
179
|
+
spark_session : pyspark.sql.SparkSession
|
|
180
|
+
The current SparkSession
|
|
181
|
+
|
|
182
|
+
Returns
|
|
183
|
+
-------
|
|
184
|
+
UniversalSentenceEncoder
|
|
185
|
+
The restored model
|
|
186
|
+
"""
|
|
187
|
+
from sparknlp.internal import _USELoader
|
|
188
|
+
jModel = _USELoader(folder, spark_session._jsparkSession, loadsp)._java_obj
|
|
189
|
+
return UniversalSentenceEncoder(java_model=jModel)
|
|
190
|
+
|
|
191
|
+
@staticmethod
|
|
192
|
+
def pretrained(name="tfhub_use", lang="en", remote_loc=None):
|
|
193
|
+
"""Downloads and loads a pretrained model.
|
|
194
|
+
|
|
195
|
+
Parameters
|
|
196
|
+
----------
|
|
197
|
+
name : str, optional
|
|
198
|
+
Name of the pretrained model, by default "tfhub_use"
|
|
199
|
+
lang : str, optional
|
|
200
|
+
Language of the pretrained model, by default "en"
|
|
201
|
+
remote_loc : str, optional
|
|
202
|
+
Optional remote address of the resource, by default None. Will use
|
|
203
|
+
Spark NLPs repositories otherwise.
|
|
204
|
+
|
|
205
|
+
Returns
|
|
206
|
+
-------
|
|
207
|
+
UniversalSentenceEncoder
|
|
208
|
+
The restored model
|
|
209
|
+
"""
|
|
210
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
211
|
+
return ResourceDownloader.downloadModel(UniversalSentenceEncoder, name, lang, remote_loc)
|