spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,267 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the EntityRuler."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class EntityRulerApproach(AnnotatorApproach, HasStorage):
|
|
20
|
+
"""Fits an Annotator to match exact strings or regex patterns provided in a
|
|
21
|
+
file against a Document and assigns them an named entity. The definitions
|
|
22
|
+
can contain any number of named entities.
|
|
23
|
+
|
|
24
|
+
There are multiple ways and formats to set the extraction resource. It is
|
|
25
|
+
possible to set it either as a "JSON", "JSONL" or "CSV" file. A path to the
|
|
26
|
+
file needs to be provided to ``setPatternsResource``. The file format needs
|
|
27
|
+
to be set as the "format" field in the ``option`` parameter map and
|
|
28
|
+
depending on the file type, additional parameters might need to be set.
|
|
29
|
+
|
|
30
|
+
If the file is in a JSON format, then the rule definitions need to be given
|
|
31
|
+
in a list with the fields "id", "label" and "patterns"::
|
|
32
|
+
|
|
33
|
+
[
|
|
34
|
+
{
|
|
35
|
+
"id": "person-regex",
|
|
36
|
+
"label": "PERSON",
|
|
37
|
+
"patterns": ["\\w+\\s\\w+", "\\w+-\\w+"]
|
|
38
|
+
},
|
|
39
|
+
{
|
|
40
|
+
"id": "locations-words",
|
|
41
|
+
"label": "LOCATION",
|
|
42
|
+
"patterns": ["Winterfell"]
|
|
43
|
+
}
|
|
44
|
+
]
|
|
45
|
+
|
|
46
|
+
The same fields also apply to a file in the JSONL format::
|
|
47
|
+
|
|
48
|
+
{"id": "names-with-j", "label": "PERSON", "patterns": ["Jon", "John", "John Snow"]}
|
|
49
|
+
{"id": "names-with-s", "label": "PERSON", "patterns": ["Stark", "Snow"]}
|
|
50
|
+
{"id": "names-with-e", "label": "PERSON", "patterns": ["Eddard", "Eddard Stark"]}
|
|
51
|
+
|
|
52
|
+
In order to use a CSV file, an additional parameter "delimiter" needs to be
|
|
53
|
+
set. In this case, the delimiter might be set by using
|
|
54
|
+
``.setPatternsResource("patterns.csv", ReadAs.TEXT, {"format": "csv", "delimiter": "|")})``::
|
|
55
|
+
|
|
56
|
+
PERSON|Jon
|
|
57
|
+
PERSON|John
|
|
58
|
+
PERSON|John Snow
|
|
59
|
+
LOCATION|Winterfell
|
|
60
|
+
|
|
61
|
+
====================== ======================
|
|
62
|
+
Input Annotation types Output Annotation type
|
|
63
|
+
====================== ======================
|
|
64
|
+
``DOCUMENT, TOKEN`` ``CHUNK``
|
|
65
|
+
====================== ======================
|
|
66
|
+
|
|
67
|
+
Parameters
|
|
68
|
+
----------
|
|
69
|
+
patternsResource
|
|
70
|
+
Resource in JSON or CSV format to map entities to patterns
|
|
71
|
+
useStorage
|
|
72
|
+
Whether to use RocksDB storage to serialize patterns
|
|
73
|
+
|
|
74
|
+
Examples
|
|
75
|
+
--------
|
|
76
|
+
>>> import sparknlp
|
|
77
|
+
>>> from sparknlp.base import *
|
|
78
|
+
>>> from sparknlp.annotator import *
|
|
79
|
+
>>> from sparknlp.common import *
|
|
80
|
+
>>> from pyspark.ml import Pipeline
|
|
81
|
+
|
|
82
|
+
In this example, the entities file as the form of::
|
|
83
|
+
|
|
84
|
+
PERSON|Jon
|
|
85
|
+
PERSON|John
|
|
86
|
+
PERSON|John Snow
|
|
87
|
+
LOCATION|Winterfell
|
|
88
|
+
|
|
89
|
+
where each line represents an entity and the associated string delimited by "|".
|
|
90
|
+
|
|
91
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
92
|
+
... .setInputCol("text") \\
|
|
93
|
+
... .setOutputCol("document")
|
|
94
|
+
>>> tokenizer = Tokenizer() \\
|
|
95
|
+
... .setInputCols(["document"]) \\
|
|
96
|
+
... .setOutputCol("token")
|
|
97
|
+
>>> entityRuler = EntityRulerApproach() \\
|
|
98
|
+
... .setInputCols(["document", "token"]) \\
|
|
99
|
+
... .setOutputCol("entities") \\
|
|
100
|
+
... .setPatternsResource(
|
|
101
|
+
... "patterns.csv",
|
|
102
|
+
... ReadAs.TEXT,
|
|
103
|
+
... {"format": "csv", "delimiter": "\\\\|"}
|
|
104
|
+
... )
|
|
105
|
+
>>> pipeline = Pipeline().setStages([
|
|
106
|
+
... documentAssembler,
|
|
107
|
+
... tokenizer,
|
|
108
|
+
... entityRuler
|
|
109
|
+
... ])
|
|
110
|
+
>>> data = spark.createDataFrame([["Jon Snow wants to be lord of Winterfell."]]).toDF("text")
|
|
111
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
112
|
+
>>> result.selectExpr("explode(entities)").show(truncate=False)
|
|
113
|
+
+--------------------------------------------------------------------+
|
|
114
|
+
|col |
|
|
115
|
+
+--------------------------------------------------------------------+
|
|
116
|
+
|[chunk, 0, 2, Jon, [entity -> PERSON, sentence -> 0], []] |
|
|
117
|
+
|[chunk, 29, 38, Winterfell, [entity -> LOCATION, sentence -> 0], []]|
|
|
118
|
+
+--------------------------------------------------------------------+
|
|
119
|
+
"""
|
|
120
|
+
name = "EntityRulerApproach"
|
|
121
|
+
|
|
122
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
123
|
+
optionalInputAnnotatorTypes = [AnnotatorType.TOKEN]
|
|
124
|
+
|
|
125
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
126
|
+
|
|
127
|
+
patternsResource = Param(Params._dummy(),
|
|
128
|
+
"patternsResource",
|
|
129
|
+
"Resource in JSON or CSV format to map entities to patterns",
|
|
130
|
+
typeConverter=TypeConverters.identity)
|
|
131
|
+
|
|
132
|
+
useStorage = Param(Params._dummy(),
|
|
133
|
+
"useStorage",
|
|
134
|
+
"Whether to use RocksDB storage to serialize patterns",
|
|
135
|
+
typeConverter=TypeConverters.toBoolean)
|
|
136
|
+
|
|
137
|
+
sentenceMatch = Param(Params._dummy(),
|
|
138
|
+
"sentenceMatch",
|
|
139
|
+
"Whether to find match at sentence level. True: sentence level. False: token level",
|
|
140
|
+
typeConverter=TypeConverters.toBoolean)
|
|
141
|
+
|
|
142
|
+
alphabet = Param(Params._dummy(),
|
|
143
|
+
"alphabet",
|
|
144
|
+
"Alphabet resource path to plain text file with all characters in a given alphabet",
|
|
145
|
+
typeConverter=TypeConverters.identity)
|
|
146
|
+
|
|
147
|
+
@keyword_only
|
|
148
|
+
def __init__(self):
|
|
149
|
+
super(EntityRulerApproach, self).__init__(
|
|
150
|
+
classname="com.johnsnowlabs.nlp.annotators.er.EntityRulerApproach")
|
|
151
|
+
|
|
152
|
+
def setPatternsResource(self, path, read_as=ReadAs.TEXT, options={"format": "JSON"}):
|
|
153
|
+
"""Sets Resource in JSON or CSV format to map entities to patterns.
|
|
154
|
+
|
|
155
|
+
Parameters
|
|
156
|
+
----------
|
|
157
|
+
path : str
|
|
158
|
+
Path to the resource
|
|
159
|
+
read_as : str, optional
|
|
160
|
+
How to interpret the resource, by default ReadAs.TEXT
|
|
161
|
+
options : dict, optional
|
|
162
|
+
Options for parsing the resource, by default {"format": "JSON"}
|
|
163
|
+
"""
|
|
164
|
+
return self._set(patternsResource=ExternalResource(path, read_as, options))
|
|
165
|
+
|
|
166
|
+
def setUseStorage(self, value):
|
|
167
|
+
"""Sets whether to use RocksDB storage to serialize patterns.
|
|
168
|
+
|
|
169
|
+
Parameters
|
|
170
|
+
----------
|
|
171
|
+
value : bool
|
|
172
|
+
Whether to use RocksDB storage to serialize patterns.
|
|
173
|
+
"""
|
|
174
|
+
return self._set(useStorage=value)
|
|
175
|
+
|
|
176
|
+
def setSentenceMatch(self, value):
|
|
177
|
+
"""Sets whether to find match at sentence level.
|
|
178
|
+
|
|
179
|
+
Parameters
|
|
180
|
+
----------
|
|
181
|
+
value : bool
|
|
182
|
+
True: sentence level. False: token level
|
|
183
|
+
"""
|
|
184
|
+
return self._set(sentenceMatch=value)
|
|
185
|
+
|
|
186
|
+
def setAlphabetResource(self, path):
|
|
187
|
+
"""Alphabet Resource (a simple plain text with all language characters)
|
|
188
|
+
|
|
189
|
+
Parameters
|
|
190
|
+
----------
|
|
191
|
+
path : str
|
|
192
|
+
Path to the resource
|
|
193
|
+
"""
|
|
194
|
+
return self._set(alphabet=ExternalResource(path, read_as=ReadAs.TEXT, options={}))
|
|
195
|
+
|
|
196
|
+
def _create_model(self, java_model):
|
|
197
|
+
return EntityRulerModel(java_model=java_model)
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
class EntityRulerModel(AnnotatorModel, HasStorageModel):
|
|
201
|
+
"""Instantiated model of the EntityRulerApproach.
|
|
202
|
+
For usage and examples see the documentation of the main class.
|
|
203
|
+
|
|
204
|
+
====================== ======================
|
|
205
|
+
Input Annotation types Output Annotation type
|
|
206
|
+
====================== ======================
|
|
207
|
+
``DOCUMENT, TOKEN`` ``CHUNK``
|
|
208
|
+
====================== ======================
|
|
209
|
+
"""
|
|
210
|
+
name = "EntityRulerModel"
|
|
211
|
+
database = ['ENTITY_PATTERNS']
|
|
212
|
+
|
|
213
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
214
|
+
optionalInputAnnotatorTypes = [AnnotatorType.TOKEN]
|
|
215
|
+
|
|
216
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
217
|
+
|
|
218
|
+
autoMode = Param(
|
|
219
|
+
Params._dummy(),
|
|
220
|
+
"autoMode",
|
|
221
|
+
"Enable built-in regex presets that combine related entity patterns (e.g., 'communication_entities', 'network_entities', 'media_entities', etc.).",
|
|
222
|
+
typeConverter=TypeConverters.toString
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
extractEntities = Param(
|
|
226
|
+
Params._dummy(),
|
|
227
|
+
"extractEntities",
|
|
228
|
+
"List of entity types to extract. If not set, all entities in the active autoMode or from regexPatterns are used.",
|
|
229
|
+
typeConverter=TypeConverters.toListString
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.er.EntityRulerModel", java_model=None):
|
|
233
|
+
super(EntityRulerModel, self).__init__(
|
|
234
|
+
classname=classname,
|
|
235
|
+
java_model=java_model
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
@staticmethod
|
|
239
|
+
def pretrained(name, lang="en", remote_loc=None):
|
|
240
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
241
|
+
return ResourceDownloader.downloadModel(EntityRulerModel, name, lang, remote_loc)
|
|
242
|
+
|
|
243
|
+
@staticmethod
|
|
244
|
+
def loadStorage(path, spark, storage_ref):
|
|
245
|
+
HasStorageModel.loadStorages(path, spark, storage_ref, EntityRulerModel.database)
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
def setAutoMode(self, value):
|
|
249
|
+
"""Sets the auto mode for predefined regex entity groups.
|
|
250
|
+
|
|
251
|
+
Parameters
|
|
252
|
+
----------
|
|
253
|
+
value : str
|
|
254
|
+
Name of the auto mode to activate (e.g., 'communication_entities', 'network_entities', etc.)
|
|
255
|
+
"""
|
|
256
|
+
return self._set(autoMode=value)
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
def setExtractEntities(self, value):
|
|
260
|
+
"""Sets specific entities to extract, filtering only those defined in regexPatterns or autoMode.
|
|
261
|
+
|
|
262
|
+
Parameters
|
|
263
|
+
----------
|
|
264
|
+
value : list[str]
|
|
265
|
+
List of entity names to extract, e.g., ['EMAIL_ADDRESS_PATTERN', 'IPV4_PATTERN'].
|
|
266
|
+
"""
|
|
267
|
+
return self._set(extractEntities=value)
|
|
@@ -0,0 +1,368 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for GraphExtraction."""
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class GraphExtraction(AnnotatorModel):
|
|
19
|
+
"""Extracts a dependency graph between entities.
|
|
20
|
+
|
|
21
|
+
The GraphExtraction class takes e.g. extracted entities from a
|
|
22
|
+
:class:`.NerDLModel` and creates a dependency tree which describes how the
|
|
23
|
+
entities relate to each other. For that a triple store format is used. Nodes
|
|
24
|
+
represent the entities and the edges represent the relations between those
|
|
25
|
+
entities. The graph can then be used to find relevant relationships between
|
|
26
|
+
words.
|
|
27
|
+
|
|
28
|
+
Both the :class:`.DependencyParserModel` and
|
|
29
|
+
:class:`.TypedDependencyParserModel` need to be
|
|
30
|
+
present in the pipeline. There are two ways to set them:
|
|
31
|
+
|
|
32
|
+
#. Both Annotators are present in the pipeline already. The dependencies are
|
|
33
|
+
taken implicitly from these two Annotators.
|
|
34
|
+
#. Setting :meth:`.setMergeEntities` to ``True`` will download the
|
|
35
|
+
default pretrained models for those two Annotators automatically. The
|
|
36
|
+
specific models can also be set with :meth:`.setDependencyParserModel`
|
|
37
|
+
and :meth:`.setTypedDependencyParserModel`:
|
|
38
|
+
|
|
39
|
+
>>> graph_extraction = GraphExtraction() \\
|
|
40
|
+
... .setInputCols(["document", "token", "ner"]) \\
|
|
41
|
+
... .setOutputCol("graph") \\
|
|
42
|
+
... .setRelationshipTypes(["prefer-LOC"]) \\
|
|
43
|
+
... .setMergeEntities(True)
|
|
44
|
+
>>> #.setDependencyParserModel(["dependency_conllu", "en", "public/models"])
|
|
45
|
+
>>> #.setTypedDependencyParserModel(["dependency_typed_conllu", "en", "public/models"])
|
|
46
|
+
|
|
47
|
+
================================= ======================
|
|
48
|
+
Input Annotation types Output Annotation type
|
|
49
|
+
================================= ======================
|
|
50
|
+
``DOCUMENT, TOKEN, NAMED_ENTITY`` ``NODE``
|
|
51
|
+
================================= ======================
|
|
52
|
+
|
|
53
|
+
Parameters
|
|
54
|
+
----------
|
|
55
|
+
relationshipTypes
|
|
56
|
+
Paths to find between a pair of token and entity
|
|
57
|
+
entityTypes
|
|
58
|
+
Paths to find between a pair of entities
|
|
59
|
+
explodeEntities
|
|
60
|
+
When set to true find paths between entities
|
|
61
|
+
rootTokens
|
|
62
|
+
Tokens to be consider as root to start traversing the paths. Use it
|
|
63
|
+
along with explodeEntities
|
|
64
|
+
maxSentenceSize
|
|
65
|
+
Maximum sentence size that the annotator will process, by default 1000.
|
|
66
|
+
Above this, the sentence is skipped
|
|
67
|
+
minSentenceSize
|
|
68
|
+
Minimum sentence size that the annotator will process, by default 2.
|
|
69
|
+
Below this, the sentence is skipped.
|
|
70
|
+
mergeEntities
|
|
71
|
+
Merge same neighboring entities as a single token
|
|
72
|
+
includeEdges
|
|
73
|
+
Whether to include edges when building paths
|
|
74
|
+
delimiter
|
|
75
|
+
Delimiter symbol used for path output
|
|
76
|
+
posModel
|
|
77
|
+
Coordinates (name, lang, remoteLoc) to a pretrained POS model
|
|
78
|
+
dependencyParserModel
|
|
79
|
+
Coordinates (name, lang, remoteLoc) to a pretrained Dependency Parser
|
|
80
|
+
model
|
|
81
|
+
typedDependencyParserModel
|
|
82
|
+
Coordinates (name, lang, remoteLoc) to a pretrained Typed Dependency
|
|
83
|
+
Parser model
|
|
84
|
+
|
|
85
|
+
Examples
|
|
86
|
+
--------
|
|
87
|
+
>>> import sparknlp
|
|
88
|
+
>>> from sparknlp.base import *
|
|
89
|
+
>>> from sparknlp.annotator import *
|
|
90
|
+
>>> from pyspark.ml import Pipeline
|
|
91
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
92
|
+
... .setInputCol("text") \\
|
|
93
|
+
... .setOutputCol("document")
|
|
94
|
+
>>> sentence = SentenceDetector() \\
|
|
95
|
+
... .setInputCols(["document"]) \\
|
|
96
|
+
... .setOutputCol("sentence")
|
|
97
|
+
>>> tokenizer = Tokenizer() \\
|
|
98
|
+
... .setInputCols(["sentence"]) \\
|
|
99
|
+
... .setOutputCol("token")
|
|
100
|
+
>>> embeddings = WordEmbeddingsModel.pretrained() \\
|
|
101
|
+
... .setInputCols(["sentence", "token"]) \\
|
|
102
|
+
... .setOutputCol("embeddings")
|
|
103
|
+
>>> nerTagger = NerDLModel.pretrained() \\
|
|
104
|
+
... .setInputCols(["sentence", "token", "embeddings"]) \\
|
|
105
|
+
... .setOutputCol("ner")
|
|
106
|
+
>>> posTagger = PerceptronModel.pretrained() \\
|
|
107
|
+
... .setInputCols(["sentence", "token"]) \\
|
|
108
|
+
... .setOutputCol("pos")
|
|
109
|
+
>>> dependencyParser = DependencyParserModel.pretrained() \\
|
|
110
|
+
... .setInputCols(["sentence", "pos", "token"]) \\
|
|
111
|
+
... .setOutputCol("dependency")
|
|
112
|
+
>>> typedDependencyParser = TypedDependencyParserModel.pretrained() \\
|
|
113
|
+
... .setInputCols(["dependency", "pos", "token"]) \\
|
|
114
|
+
... .setOutputCol("dependency_type")
|
|
115
|
+
>>> graph_extraction = GraphExtraction() \\
|
|
116
|
+
... .setInputCols(["document", "token", "ner"]) \\
|
|
117
|
+
... .setOutputCol("graph") \\
|
|
118
|
+
... .setRelationshipTypes(["prefer-LOC"])
|
|
119
|
+
>>> pipeline = Pipeline().setStages([
|
|
120
|
+
... documentAssembler,
|
|
121
|
+
... sentence,
|
|
122
|
+
... tokenizer,
|
|
123
|
+
... embeddings,
|
|
124
|
+
... nerTagger,
|
|
125
|
+
... posTagger,
|
|
126
|
+
... dependencyParser,
|
|
127
|
+
... typedDependencyParser,
|
|
128
|
+
... graph_extraction
|
|
129
|
+
... ])
|
|
130
|
+
>>> data = spark.createDataFrame([["You and John prefer the morning flight through Denver"]]).toDF("text")
|
|
131
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
132
|
+
>>> result.select("graph").show(truncate=False)
|
|
133
|
+
+-----------------------------------------------------------------------------------------------------------------+
|
|
134
|
+
|graph |
|
|
135
|
+
+-----------------------------------------------------------------------------------------------------------------+
|
|
136
|
+
|[[node, 13, 18, prefer, [relationship -> prefer,LOC, path1 -> prefer,nsubj,morning,flat,flight,flat,Denver], []]]|
|
|
137
|
+
+-----------------------------------------------------------------------------------------------------------------+
|
|
138
|
+
|
|
139
|
+
See Also
|
|
140
|
+
--------
|
|
141
|
+
GraphFinisher : to output the paths in a more generic format, like RDF
|
|
142
|
+
"""
|
|
143
|
+
name = "GraphExtraction"
|
|
144
|
+
|
|
145
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN, AnnotatorType.NAMED_ENTITY]
|
|
146
|
+
|
|
147
|
+
optionalInputAnnotatorTypes = [AnnotatorType.DEPENDENCY, AnnotatorType.LABELED_DEPENDENCY]
|
|
148
|
+
|
|
149
|
+
outputAnnotatorType = AnnotatorType.NODE
|
|
150
|
+
|
|
151
|
+
relationshipTypes = Param(Params._dummy(),
|
|
152
|
+
"relationshipTypes",
|
|
153
|
+
"Find paths between a pair of token and entity",
|
|
154
|
+
typeConverter=TypeConverters.toListString)
|
|
155
|
+
|
|
156
|
+
entityTypes = Param(Params._dummy(),
|
|
157
|
+
"entityTypes",
|
|
158
|
+
"Find paths between a pair of entities",
|
|
159
|
+
typeConverter=TypeConverters.toListString)
|
|
160
|
+
|
|
161
|
+
explodeEntities = Param(Params._dummy(),
|
|
162
|
+
"explodeEntities",
|
|
163
|
+
"When set to true find paths between entities",
|
|
164
|
+
typeConverter=TypeConverters.toBoolean)
|
|
165
|
+
|
|
166
|
+
rootTokens = Param(Params._dummy(),
|
|
167
|
+
"rootTokens",
|
|
168
|
+
"Tokens to be consider as root to start traversing the paths. Use it along with explodeEntities",
|
|
169
|
+
typeConverter=TypeConverters.toListString)
|
|
170
|
+
|
|
171
|
+
maxSentenceSize = Param(Params._dummy(),
|
|
172
|
+
"maxSentenceSize",
|
|
173
|
+
"Maximum sentence size that the annotator will process. Above this, the sentence is skipped",
|
|
174
|
+
typeConverter=TypeConverters.toInt)
|
|
175
|
+
|
|
176
|
+
minSentenceSize = Param(Params._dummy(),
|
|
177
|
+
"minSentenceSize",
|
|
178
|
+
"Minimum sentence size that the annotator will process. Above this, the sentence is skipped",
|
|
179
|
+
typeConverter=TypeConverters.toInt)
|
|
180
|
+
|
|
181
|
+
mergeEntities = Param(Params._dummy(),
|
|
182
|
+
"mergeEntities",
|
|
183
|
+
"Merge same neighboring entities as a single token",
|
|
184
|
+
typeConverter=TypeConverters.toBoolean)
|
|
185
|
+
|
|
186
|
+
mergeEntitiesIOBFormat = Param(Params._dummy(),
|
|
187
|
+
"mergeEntitiesIOBFormat",
|
|
188
|
+
"IOB format to apply when merging entities",
|
|
189
|
+
typeConverter=TypeConverters.toString)
|
|
190
|
+
|
|
191
|
+
includeEdges = Param(Params._dummy(),
|
|
192
|
+
"includeEdges",
|
|
193
|
+
"Whether to include edges when building paths",
|
|
194
|
+
typeConverter=TypeConverters.toBoolean)
|
|
195
|
+
|
|
196
|
+
delimiter = Param(Params._dummy(),
|
|
197
|
+
"delimiter",
|
|
198
|
+
"Delimiter symbol used for path output",
|
|
199
|
+
typeConverter=TypeConverters.toString)
|
|
200
|
+
|
|
201
|
+
posModel = Param(Params._dummy(),
|
|
202
|
+
"posModel",
|
|
203
|
+
"Coordinates (name, lang, remoteLoc) to a pretrained POS model",
|
|
204
|
+
typeConverter=TypeConverters.toListString)
|
|
205
|
+
|
|
206
|
+
dependencyParserModel = Param(Params._dummy(),
|
|
207
|
+
"dependencyParserModel",
|
|
208
|
+
"Coordinates (name, lang, remoteLoc) to a pretrained Dependency Parser model",
|
|
209
|
+
typeConverter=TypeConverters.toListString)
|
|
210
|
+
|
|
211
|
+
typedDependencyParserModel = Param(Params._dummy(),
|
|
212
|
+
"typedDependencyParserModel",
|
|
213
|
+
"Coordinates (name, lang, remoteLoc) to a pretrained Typed Dependency Parser model",
|
|
214
|
+
typeConverter=TypeConverters.toListString)
|
|
215
|
+
|
|
216
|
+
def setRelationshipTypes(self, value):
|
|
217
|
+
"""Sets paths to find between a pair of token and entity.
|
|
218
|
+
|
|
219
|
+
Parameters
|
|
220
|
+
----------
|
|
221
|
+
value : List[str]
|
|
222
|
+
Paths to find between a pair of token and entity
|
|
223
|
+
"""
|
|
224
|
+
return self._set(relationshipTypes=value)
|
|
225
|
+
|
|
226
|
+
def setEntityTypes(self, value):
|
|
227
|
+
"""Sets paths to find between a pair of entities.
|
|
228
|
+
|
|
229
|
+
Parameters
|
|
230
|
+
----------
|
|
231
|
+
value : List[str]
|
|
232
|
+
Paths to find between a pair of entities
|
|
233
|
+
"""
|
|
234
|
+
return self._set(entityTypes=value)
|
|
235
|
+
|
|
236
|
+
def setExplodeEntities(self, value):
|
|
237
|
+
"""Sets whether to find paths between entities.
|
|
238
|
+
|
|
239
|
+
Parameters
|
|
240
|
+
----------
|
|
241
|
+
value : bool
|
|
242
|
+
Whether to find paths between entities.
|
|
243
|
+
"""
|
|
244
|
+
return self._set(explodeEntities=value)
|
|
245
|
+
|
|
246
|
+
def setRootTokens(self, value):
|
|
247
|
+
"""Sets tokens to be considered as the root to start traversing the paths.
|
|
248
|
+
|
|
249
|
+
Use it along with explodeEntities.
|
|
250
|
+
|
|
251
|
+
Parameters
|
|
252
|
+
----------
|
|
253
|
+
value : List[str]
|
|
254
|
+
Sets Tokens to be consider as root to start traversing the paths.
|
|
255
|
+
"""
|
|
256
|
+
return self._set(rootTokens=value)
|
|
257
|
+
|
|
258
|
+
def setMaxSentenceSize(self, value):
|
|
259
|
+
"""Sets Maximum sentence size that the annotator will process, by
|
|
260
|
+
default 1000.
|
|
261
|
+
|
|
262
|
+
Above this, the sentence is skipped.
|
|
263
|
+
|
|
264
|
+
Parameters
|
|
265
|
+
----------
|
|
266
|
+
value : int
|
|
267
|
+
Maximum sentence size that the annotator will process
|
|
268
|
+
"""
|
|
269
|
+
return self._set(maxSentenceSize=value)
|
|
270
|
+
|
|
271
|
+
def setMinSentenceSize(self, value):
|
|
272
|
+
"""Sets Minimum sentence size that the annotator will process, by
|
|
273
|
+
default 2.
|
|
274
|
+
|
|
275
|
+
Below this, the sentence is skipped.
|
|
276
|
+
|
|
277
|
+
Parameters
|
|
278
|
+
----------
|
|
279
|
+
value : int
|
|
280
|
+
Minimum sentence size that the annotator will process
|
|
281
|
+
"""
|
|
282
|
+
return self._set(minSentenceSize=value)
|
|
283
|
+
|
|
284
|
+
def setMergeEntities(self, value):
|
|
285
|
+
"""Sets whether to merge same neighboring entities as a single token.
|
|
286
|
+
|
|
287
|
+
Parameters
|
|
288
|
+
----------
|
|
289
|
+
value : bool
|
|
290
|
+
Whether to merge same neighboring entities as a single token.
|
|
291
|
+
"""
|
|
292
|
+
return self._set(mergeEntities=value)
|
|
293
|
+
|
|
294
|
+
def setMergeEntitiesIOBFormat(self, value):
|
|
295
|
+
"""Sets IOB format to apply when merging entities.
|
|
296
|
+
|
|
297
|
+
Parameters
|
|
298
|
+
----------
|
|
299
|
+
value : str
|
|
300
|
+
IOB format to apply when merging entities. Values IOB or IOB2
|
|
301
|
+
"""
|
|
302
|
+
return self._set(mergeEntitiesIOBFormat=value)
|
|
303
|
+
|
|
304
|
+
def setIncludeEdges(self, value):
|
|
305
|
+
"""Sets whether to include edges when building paths.
|
|
306
|
+
|
|
307
|
+
Parameters
|
|
308
|
+
----------
|
|
309
|
+
value : bool
|
|
310
|
+
Whether to include edges when building paths
|
|
311
|
+
"""
|
|
312
|
+
return self._set(includeEdges=value)
|
|
313
|
+
|
|
314
|
+
def setDelimiter(self, value):
|
|
315
|
+
"""Sets delimiter symbol used for path output.
|
|
316
|
+
|
|
317
|
+
Parameters
|
|
318
|
+
----------
|
|
319
|
+
value : str
|
|
320
|
+
Delimiter symbol used for path output
|
|
321
|
+
"""
|
|
322
|
+
return self._set(delimiter=value)
|
|
323
|
+
|
|
324
|
+
def setPosModel(self, value):
|
|
325
|
+
"""Sets Coordinates (name, lang, remoteLoc) to a pretrained POS model.
|
|
326
|
+
|
|
327
|
+
Parameters
|
|
328
|
+
----------
|
|
329
|
+
value : List[str]
|
|
330
|
+
Coordinates (name, lang, remoteLoc) to a pretrained POS model
|
|
331
|
+
"""
|
|
332
|
+
return self._set(posModel=value)
|
|
333
|
+
|
|
334
|
+
def setDependencyParserModel(self, value):
|
|
335
|
+
"""Sets Coordinates (name, lang, remoteLoc) to a pretrained Dependency
|
|
336
|
+
Parser model.
|
|
337
|
+
|
|
338
|
+
Parameters
|
|
339
|
+
----------
|
|
340
|
+
value : List[str]
|
|
341
|
+
Coordinates (name, lang, remoteLoc) to a pretrained Dependency
|
|
342
|
+
Parser model
|
|
343
|
+
"""
|
|
344
|
+
return self._set(dependencyParserModel=value)
|
|
345
|
+
|
|
346
|
+
def setTypedDependencyParserModel(self, value):
|
|
347
|
+
"""Sets Coordinates (name, lang, remoteLoc) to a pretrained Typed
|
|
348
|
+
Dependency Parser model.
|
|
349
|
+
|
|
350
|
+
Parameters
|
|
351
|
+
----------
|
|
352
|
+
value : List[str]
|
|
353
|
+
Coordinates (name, lang, remoteLoc) to a pretrained Typed Dependency
|
|
354
|
+
Parser model
|
|
355
|
+
"""
|
|
356
|
+
return self._set(typedDependencyParserModel=value)
|
|
357
|
+
|
|
358
|
+
@keyword_only
|
|
359
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.GraphExtraction", java_model=None):
|
|
360
|
+
super(GraphExtraction, self).__init__(
|
|
361
|
+
classname=classname,
|
|
362
|
+
java_model=java_model
|
|
363
|
+
)
|
|
364
|
+
self._setDefault(
|
|
365
|
+
maxSentenceSize=1000,
|
|
366
|
+
minSentenceSize=2
|
|
367
|
+
)
|
|
368
|
+
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""Module of annotators for keyword extraction."""
|
|
16
|
+
from sparknlp.annotator.keyword_extraction.yake_keyword_extraction import *
|