spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for RoBertaEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class RoBertaEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
26
|
+
"""Creates word embeddings using RoBERTa.
|
|
27
|
+
|
|
28
|
+
The RoBERTa model was proposed in `RoBERTa: A Robustly Optimized BERT
|
|
29
|
+
Pretraining Approach` by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
|
|
30
|
+
Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin
|
|
31
|
+
Stoyanov. It is based on Google's BERT model released in 2018.
|
|
32
|
+
|
|
33
|
+
It builds on BERT and modifies key hyperparameters, removing the
|
|
34
|
+
next-sentence pretraining objective and training with much larger
|
|
35
|
+
mini-batches and learning rates.
|
|
36
|
+
|
|
37
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
38
|
+
object:
|
|
39
|
+
|
|
40
|
+
>>> embeddings = RoBertaEmbeddings.pretrained() \\
|
|
41
|
+
... .setInputCols(["document", "token"]) \\
|
|
42
|
+
... .setOutputCol("embeddings")
|
|
43
|
+
|
|
44
|
+
The default model is ``"roberta_base"``, if no name is provided. For
|
|
45
|
+
available pretrained models please see the `Models Hub
|
|
46
|
+
<https://sparknlp.org/models?task=Embeddings>`__.
|
|
47
|
+
|
|
48
|
+
For extended examples of usage, see the `Examples
|
|
49
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/HuggingFace%20in%20Spark%20NLP%20-%20RoBERTa.ipynb>`__.
|
|
50
|
+
To see which models are compatible and how to import them see
|
|
51
|
+
`Import Transformers into Spark NLP 🚀
|
|
52
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
====================== ======================
|
|
56
|
+
Input Annotation types Output Annotation type
|
|
57
|
+
====================== ======================
|
|
58
|
+
``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
|
|
59
|
+
====================== ======================
|
|
60
|
+
|
|
61
|
+
Parameters
|
|
62
|
+
----------
|
|
63
|
+
batchSize
|
|
64
|
+
Size of every batch, by default 8
|
|
65
|
+
dimension
|
|
66
|
+
Number of embedding dimensions, by default 768
|
|
67
|
+
caseSensitive
|
|
68
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
69
|
+
True
|
|
70
|
+
maxSentenceLength
|
|
71
|
+
Max sentence length to process, by default 128
|
|
72
|
+
configProtoBytes
|
|
73
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
74
|
+
|
|
75
|
+
Notes
|
|
76
|
+
-----
|
|
77
|
+
- RoBERTa has the same architecture as BERT, but uses a byte-level BPE as
|
|
78
|
+
a tokenizer (same as GPT-2) and uses a different pretraining scheme.
|
|
79
|
+
- RoBERTa doesn't have ``token_type_ids``, you don't need to indicate
|
|
80
|
+
which token belongs to which segment. Just separate your segments with
|
|
81
|
+
the separation token ``tokenizer.sep_token`` (or ``</s>``)
|
|
82
|
+
|
|
83
|
+
References
|
|
84
|
+
----------
|
|
85
|
+
`RoBERTa: A Robustly Optimized BERT
|
|
86
|
+
Pretraining Approach <https://arxiv.org/abs/1907.11692>`__
|
|
87
|
+
|
|
88
|
+
**Paper Abstract:**
|
|
89
|
+
|
|
90
|
+
*Language model pretraining has led to significant performance gains but
|
|
91
|
+
careful comparison between different approaches is challenging. Training is
|
|
92
|
+
computationally expensive, often done on private datasets of different
|
|
93
|
+
sizes, and, as we will show, hyperparameter choices have significant impact
|
|
94
|
+
on the final results. We present a replication study of BERT pretraining
|
|
95
|
+
(Devlin et al., 2019) that carefully measures the impact of many key
|
|
96
|
+
hyperparameters and training data size. We find that BERT was significantly
|
|
97
|
+
undertrained, and can match or exceed the performance of every model
|
|
98
|
+
published after it. Our best model achieves state-of-the-art results on
|
|
99
|
+
GLUE, RACE and SQuAD. These results highlight the importance of previously
|
|
100
|
+
overlooked design choices, and raise questions about the source of recently
|
|
101
|
+
reported improvements. We release our models and code.*
|
|
102
|
+
|
|
103
|
+
Source of the original code: `RoBERTa: A Robustly Optimized BERT Pretraining
|
|
104
|
+
Approach on GitHub
|
|
105
|
+
<https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__.
|
|
106
|
+
|
|
107
|
+
Examples
|
|
108
|
+
--------
|
|
109
|
+
>>> import sparknlp
|
|
110
|
+
>>> from sparknlp.base import *
|
|
111
|
+
>>> from sparknlp.annotator import *
|
|
112
|
+
>>> from pyspark.ml import Pipeline
|
|
113
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
114
|
+
... .setInputCol("text") \\
|
|
115
|
+
... .setOutputCol("document")
|
|
116
|
+
>>> tokenizer = Tokenizer() \\
|
|
117
|
+
... .setInputCols(["document"]) \\
|
|
118
|
+
... .setOutputCol("token")
|
|
119
|
+
>>> embeddings = RoBertaEmbeddings.pretrained() \\
|
|
120
|
+
... .setInputCols(["document", "token"]) \\
|
|
121
|
+
... .setOutputCol("embeddings") \\
|
|
122
|
+
... .setCaseSensitive(True)
|
|
123
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
124
|
+
... .setInputCols(["embeddings"]) \\
|
|
125
|
+
... .setOutputCols("finished_embeddings") \\
|
|
126
|
+
... .setOutputAsVector(True) \\
|
|
127
|
+
... .setCleanAnnotations(False)
|
|
128
|
+
>>> pipeline = Pipeline() \\
|
|
129
|
+
... .setStages([
|
|
130
|
+
... documentAssembler,
|
|
131
|
+
... tokenizer,
|
|
132
|
+
... embeddings,
|
|
133
|
+
... embeddingsFinisher
|
|
134
|
+
... ])
|
|
135
|
+
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
|
|
136
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
137
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
138
|
+
+--------------------------------------------------------------------------------+
|
|
139
|
+
| result|
|
|
140
|
+
+--------------------------------------------------------------------------------+
|
|
141
|
+
|[0.18792399764060974,-0.14591649174690247,0.20547787845134735,0.1468472778797...|
|
|
142
|
+
|[0.22845706343650818,0.18073144555091858,0.09725798666477203,-0.0417917296290...|
|
|
143
|
+
|[0.07037967443466187,-0.14801117777824402,-0.03603338822722435,-0.17893412709...|
|
|
144
|
+
|[-0.08734266459941864,0.2486150562763214,-0.009067727252840996,-0.24408400058...|
|
|
145
|
+
|[0.22409197688102722,-0.4312366545200348,0.1401449590921402,0.356410235166549...|
|
|
146
|
+
+--------------------------------------------------------------------------------+
|
|
147
|
+
"""
|
|
148
|
+
|
|
149
|
+
name = "RoBertaEmbeddings"
|
|
150
|
+
|
|
151
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
152
|
+
|
|
153
|
+
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
|
|
154
|
+
|
|
155
|
+
configProtoBytes = Param(Params._dummy(),
|
|
156
|
+
"configProtoBytes",
|
|
157
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
158
|
+
TypeConverters.toListInt)
|
|
159
|
+
|
|
160
|
+
def setConfigProtoBytes(self, b):
|
|
161
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
162
|
+
|
|
163
|
+
Parameters
|
|
164
|
+
----------
|
|
165
|
+
b : List[int]
|
|
166
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
167
|
+
"""
|
|
168
|
+
return self._set(configProtoBytes=b)
|
|
169
|
+
|
|
170
|
+
@keyword_only
|
|
171
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.RoBertaEmbeddings", java_model=None):
|
|
172
|
+
super(RoBertaEmbeddings, self).__init__(
|
|
173
|
+
classname=classname,
|
|
174
|
+
java_model=java_model
|
|
175
|
+
)
|
|
176
|
+
self._setDefault(
|
|
177
|
+
dimension=768,
|
|
178
|
+
batchSize=8,
|
|
179
|
+
maxSentenceLength=128,
|
|
180
|
+
caseSensitive=True
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
@staticmethod
|
|
184
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
185
|
+
"""Loads a locally saved model.
|
|
186
|
+
|
|
187
|
+
Parameters
|
|
188
|
+
----------
|
|
189
|
+
folder : str
|
|
190
|
+
Folder of the saved model
|
|
191
|
+
spark_session : pyspark.sql.SparkSession
|
|
192
|
+
The current SparkSession
|
|
193
|
+
use_openvino: bool
|
|
194
|
+
Use OpenVINO backend
|
|
195
|
+
|
|
196
|
+
Returns
|
|
197
|
+
-------
|
|
198
|
+
RoBertaEmbeddings
|
|
199
|
+
The restored model
|
|
200
|
+
"""
|
|
201
|
+
from sparknlp.internal import _RoBertaLoader
|
|
202
|
+
jModel = _RoBertaLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
203
|
+
return RoBertaEmbeddings(java_model=jModel)
|
|
204
|
+
|
|
205
|
+
@staticmethod
|
|
206
|
+
def pretrained(name="roberta_base", lang="en", remote_loc=None):
|
|
207
|
+
"""Downloads and loads a pretrained model.
|
|
208
|
+
|
|
209
|
+
Parameters
|
|
210
|
+
----------
|
|
211
|
+
name : str, optional
|
|
212
|
+
Name of the pretrained model, by default "roberta_base"
|
|
213
|
+
lang : str, optional
|
|
214
|
+
Language of the pretrained model, by default "en"
|
|
215
|
+
remote_loc : str, optional
|
|
216
|
+
Optional remote address of the resource, by default None. Will use
|
|
217
|
+
Spark NLPs repositories otherwise.
|
|
218
|
+
|
|
219
|
+
Returns
|
|
220
|
+
-------
|
|
221
|
+
RoBertaEmbeddings
|
|
222
|
+
The restored model
|
|
223
|
+
"""
|
|
224
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
225
|
+
return ResourceDownloader.downloadModel(RoBertaEmbeddings, name, lang, remote_loc)
|
|
@@ -0,0 +1,191 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for RoBertaSentenceEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class RoBertaSentenceEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
26
|
+
"""Sentence-level embeddings using RoBERTa. The RoBERTa model was proposed in RoBERTa: A Robustly Optimized BERT
|
|
27
|
+
Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
|
|
28
|
+
Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018. It builds on
|
|
29
|
+
BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with much
|
|
30
|
+
larger mini-batches and learning rates. Pretrained models can be loaded with pretrained of the companion object:
|
|
31
|
+
|
|
32
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
33
|
+
object:
|
|
34
|
+
|
|
35
|
+
>>> embeddings = RoBertaSentenceEmbeddings.pretrained() \\
|
|
36
|
+
... .setInputCols(["sentence"]) \\
|
|
37
|
+
... .setOutputCol("sentence_embeddings")
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
The default model is ``"sent_roberta_base"``, if no name is provided.
|
|
41
|
+
|
|
42
|
+
For available pretrained models please see the
|
|
43
|
+
`Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
|
|
44
|
+
|
|
45
|
+
====================== =======================
|
|
46
|
+
Input Annotation types Output Annotation type
|
|
47
|
+
====================== =======================
|
|
48
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
49
|
+
====================== =======================
|
|
50
|
+
|
|
51
|
+
Parameters
|
|
52
|
+
----------
|
|
53
|
+
batchSize
|
|
54
|
+
Size of every batch, by default 8
|
|
55
|
+
caseSensitive
|
|
56
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
57
|
+
False
|
|
58
|
+
dimension
|
|
59
|
+
Number of embedding dimensions, by default 768
|
|
60
|
+
maxSentenceLength
|
|
61
|
+
Max sentence length to process, by default 128
|
|
62
|
+
configProtoBytes
|
|
63
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
64
|
+
|
|
65
|
+
References
|
|
66
|
+
----------
|
|
67
|
+
`RoBERTa: A Robustly Optimized BERT Pretraining Approach <https://arxiv.org/abs/1907.11692>`__
|
|
68
|
+
|
|
69
|
+
**Paper abstract:**
|
|
70
|
+
|
|
71
|
+
*Language model pretraining has led to significant performance gains but careful comparison between different
|
|
72
|
+
approaches is challenging. Training is computationally expensive, often done on private datasets of different
|
|
73
|
+
sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a
|
|
74
|
+
replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key
|
|
75
|
+
hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed
|
|
76
|
+
the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE,
|
|
77
|
+
RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise
|
|
78
|
+
questions about the source of recently reported improvements. We release our models and code.*
|
|
79
|
+
|
|
80
|
+
Examples
|
|
81
|
+
--------
|
|
82
|
+
>>> import sparknlp
|
|
83
|
+
>>> from sparknlp.base import *
|
|
84
|
+
>>> from sparknlp.annotator import *
|
|
85
|
+
>>> from pyspark.ml import Pipeline
|
|
86
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
87
|
+
... .setInputCol("text") \\
|
|
88
|
+
... .setOutputCol("document")
|
|
89
|
+
>>> sentence = SentenceDetector() \\
|
|
90
|
+
... .setInputCols(["document"]) \\
|
|
91
|
+
... .setOutputCol("sentence")
|
|
92
|
+
>>> embeddings = RoBertaSentenceEmbeddings.pretrained() \\
|
|
93
|
+
... .setInputCols(["sentence"]) \\
|
|
94
|
+
... .setOutputCol("sentence_embeddings")
|
|
95
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
96
|
+
... .setInputCols(["sentence_embeddings"]) \\
|
|
97
|
+
... .setOutputCols("finished_embeddings") \\
|
|
98
|
+
... .setOutputAsVector(True)
|
|
99
|
+
>>> pipeline = Pipeline().setStages([
|
|
100
|
+
... documentAssembler,
|
|
101
|
+
... sentence,
|
|
102
|
+
... embeddings,
|
|
103
|
+
... embeddingsFinisher
|
|
104
|
+
... ])
|
|
105
|
+
>>> data = spark.createDataFrame([["John loves apples. Mary loves oranges. John loves Mary."]]).toDF("text")
|
|
106
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
107
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
108
|
+
+--------------------------------------------------------------------------------+
|
|
109
|
+
| result|
|
|
110
|
+
+--------------------------------------------------------------------------------+
|
|
111
|
+
|[-0.8951074481010437,0.13753940165042877,0.3108254075050354,-1.65693199634552...|
|
|
112
|
+
|[-0.6180210709571838,-0.12179657071828842,-0.191165953874588,-1.4497021436691...|
|
|
113
|
+
|[-0.822715163230896,0.7568016648292542,-0.1165061742067337,-1.59048593044281,...|
|
|
114
|
+
+--------------------------------------------------------------------------------+
|
|
115
|
+
"""
|
|
116
|
+
|
|
117
|
+
name = "RoBertaSentenceEmbeddings"
|
|
118
|
+
|
|
119
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
120
|
+
|
|
121
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
122
|
+
|
|
123
|
+
configProtoBytes = Param(Params._dummy(),
|
|
124
|
+
"configProtoBytes",
|
|
125
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
126
|
+
TypeConverters.toListInt)
|
|
127
|
+
|
|
128
|
+
def setConfigProtoBytes(self, b):
|
|
129
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
130
|
+
|
|
131
|
+
Parameters
|
|
132
|
+
----------
|
|
133
|
+
b : List[int]
|
|
134
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
135
|
+
"""
|
|
136
|
+
return self._set(configProtoBytes=b)
|
|
137
|
+
|
|
138
|
+
@keyword_only
|
|
139
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.RoBertaSentenceEmbeddings", java_model=None):
|
|
140
|
+
super(RoBertaSentenceEmbeddings, self).__init__(
|
|
141
|
+
classname=classname,
|
|
142
|
+
java_model=java_model
|
|
143
|
+
)
|
|
144
|
+
self._setDefault(
|
|
145
|
+
dimension=768,
|
|
146
|
+
batchSize=8,
|
|
147
|
+
maxSentenceLength=128,
|
|
148
|
+
caseSensitive=True
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
@staticmethod
|
|
152
|
+
def loadSavedModel(folder, spark_session):
|
|
153
|
+
"""Loads a locally saved model.
|
|
154
|
+
|
|
155
|
+
Parameters
|
|
156
|
+
----------
|
|
157
|
+
folder : str
|
|
158
|
+
Folder of the saved model
|
|
159
|
+
spark_session : pyspark.sql.SparkSession
|
|
160
|
+
The current SparkSession
|
|
161
|
+
|
|
162
|
+
Returns
|
|
163
|
+
-------
|
|
164
|
+
BertSentenceEmbeddings
|
|
165
|
+
The restored model
|
|
166
|
+
"""
|
|
167
|
+
from sparknlp.internal import _RoBertaSentenceLoader
|
|
168
|
+
jModel = _RoBertaSentenceLoader(folder, spark_session._jsparkSession)._java_obj
|
|
169
|
+
return RoBertaSentenceEmbeddings(java_model=jModel)
|
|
170
|
+
|
|
171
|
+
@staticmethod
|
|
172
|
+
def pretrained(name="sent_roberta_base", lang="en", remote_loc=None):
|
|
173
|
+
"""Downloads and loads a pretrained model.
|
|
174
|
+
|
|
175
|
+
Parameters
|
|
176
|
+
----------
|
|
177
|
+
name : str, optional
|
|
178
|
+
Name of the pretrained model, by default "sent_roberta_base"
|
|
179
|
+
lang : str, optional
|
|
180
|
+
Language of the pretrained model, by default "en"
|
|
181
|
+
remote_loc : str, optional
|
|
182
|
+
Optional remote address of the resource, by default None. Will use
|
|
183
|
+
Spark NLPs repositories otherwise.
|
|
184
|
+
|
|
185
|
+
Returns
|
|
186
|
+
-------
|
|
187
|
+
RoBertaSentenceEmbeddings
|
|
188
|
+
The restored model
|
|
189
|
+
"""
|
|
190
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
191
|
+
return ResourceDownloader.downloadModel(RoBertaSentenceEmbeddings, name, lang, remote_loc)
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for SentenceEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class SentenceEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasStorageRef):
|
|
20
|
+
"""Converts the results from WordEmbeddings, BertEmbeddings, or other word
|
|
21
|
+
embeddings into sentence or document embeddings by either summing up or
|
|
22
|
+
averaging all the word embeddings in a sentence or a document (depending on
|
|
23
|
+
the inputCols).
|
|
24
|
+
|
|
25
|
+
This can be configured with :meth:`.setPoolingStrategy`, which either be
|
|
26
|
+
``"AVERAGE"`` or ``"SUM"``.
|
|
27
|
+
|
|
28
|
+
For more extended examples see the `Examples
|
|
29
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/text-similarity/Spark_NLP_Spark_ML_Text_Similarity.ipynb>`__..
|
|
30
|
+
|
|
31
|
+
============================= =======================
|
|
32
|
+
Input Annotation types Output Annotation type
|
|
33
|
+
============================= =======================
|
|
34
|
+
``DOCUMENT, WORD_EMBEDDINGS`` ``SENTENCE_EMBEDDINGS``
|
|
35
|
+
============================= =======================
|
|
36
|
+
|
|
37
|
+
Parameters
|
|
38
|
+
----------
|
|
39
|
+
dimension
|
|
40
|
+
Number of embedding dimensions
|
|
41
|
+
poolingStrategy
|
|
42
|
+
Choose how you would like to aggregate Word Embeddings to Sentence
|
|
43
|
+
Embeddings: AVERAGE or SUM, by default AVERAGE
|
|
44
|
+
|
|
45
|
+
Notes
|
|
46
|
+
-----
|
|
47
|
+
If you choose document as your input for Tokenizer,
|
|
48
|
+
WordEmbeddings/BertEmbeddings, and SentenceEmbeddings then it averages/sums
|
|
49
|
+
all the embeddings into one array of embeddings. However, if you choose
|
|
50
|
+
sentences as inputCols then for each sentence SentenceEmbeddings generates
|
|
51
|
+
one array of embeddings.
|
|
52
|
+
|
|
53
|
+
Examples
|
|
54
|
+
--------
|
|
55
|
+
>>> import sparknlp
|
|
56
|
+
>>> from sparknlp.base import *
|
|
57
|
+
>>> from sparknlp.annotator import *
|
|
58
|
+
>>> from pyspark.ml import Pipeline
|
|
59
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
60
|
+
... .setInputCol("text") \\
|
|
61
|
+
... .setOutputCol("document")
|
|
62
|
+
>>> tokenizer = Tokenizer() \\
|
|
63
|
+
... .setInputCols(["document"]) \\
|
|
64
|
+
... .setOutputCol("token")
|
|
65
|
+
>>> embeddings = WordEmbeddingsModel.pretrained() \\
|
|
66
|
+
... .setInputCols(["document", "token"]) \\
|
|
67
|
+
... .setOutputCol("embeddings")
|
|
68
|
+
>>> embeddingsSentence = SentenceEmbeddings() \\
|
|
69
|
+
... .setInputCols(["document", "embeddings"]) \\
|
|
70
|
+
... .setOutputCol("sentence_embeddings") \\
|
|
71
|
+
... .setPoolingStrategy("AVERAGE")
|
|
72
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
73
|
+
... .setInputCols(["sentence_embeddings"]) \\
|
|
74
|
+
... .setOutputCols("finished_embeddings") \\
|
|
75
|
+
... .setOutputAsVector(True) \\
|
|
76
|
+
... .setCleanAnnotations(False)
|
|
77
|
+
>>> pipeline = Pipeline() \\
|
|
78
|
+
... .setStages([
|
|
79
|
+
... documentAssembler,
|
|
80
|
+
... tokenizer,
|
|
81
|
+
... embeddings,
|
|
82
|
+
... embeddingsSentence,
|
|
83
|
+
... embeddingsFinisher
|
|
84
|
+
... ])
|
|
85
|
+
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
|
|
86
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
87
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
88
|
+
+--------------------------------------------------------------------------------+
|
|
89
|
+
| result|
|
|
90
|
+
+--------------------------------------------------------------------------------+
|
|
91
|
+
|[-0.22093398869037628,0.25130119919776917,0.41810303926467896,-0.380883991718...|
|
|
92
|
+
+--------------------------------------------------------------------------------+
|
|
93
|
+
"""
|
|
94
|
+
|
|
95
|
+
name = "SentenceEmbeddings"
|
|
96
|
+
|
|
97
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.WORD_EMBEDDINGS]
|
|
98
|
+
|
|
99
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
100
|
+
|
|
101
|
+
@keyword_only
|
|
102
|
+
def __init__(self):
|
|
103
|
+
super(SentenceEmbeddings, self).__init__(classname="com.johnsnowlabs.nlp.embeddings.SentenceEmbeddings")
|
|
104
|
+
self._setDefault(
|
|
105
|
+
poolingStrategy="AVERAGE"
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
poolingStrategy = Param(Params._dummy(),
|
|
109
|
+
"poolingStrategy",
|
|
110
|
+
"Choose how you would like to aggregate Word Embeddings to Sentence Embeddings: AVERAGE or SUM",
|
|
111
|
+
typeConverter=TypeConverters.toString)
|
|
112
|
+
|
|
113
|
+
def setPoolingStrategy(self, strategy):
|
|
114
|
+
"""Sets how to aggregate the word Embeddings to sentence embeddings, by
|
|
115
|
+
default AVERAGE.
|
|
116
|
+
|
|
117
|
+
Can either be AVERAGE or SUM.
|
|
118
|
+
|
|
119
|
+
Parameters
|
|
120
|
+
----------
|
|
121
|
+
strategy : str
|
|
122
|
+
Pooling Strategy, either be AVERAGE or SUM
|
|
123
|
+
|
|
124
|
+
Returns
|
|
125
|
+
-------
|
|
126
|
+
[type]
|
|
127
|
+
[description]
|
|
128
|
+
"""
|
|
129
|
+
if strategy == "AVERAGE":
|
|
130
|
+
return self._set(poolingStrategy=strategy)
|
|
131
|
+
elif strategy == "SUM":
|
|
132
|
+
return self._set(poolingStrategy=strategy)
|
|
133
|
+
else:
|
|
134
|
+
return self._set(poolingStrategy="AVERAGE")
|