spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (329) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. com/johnsnowlabs/nlp/__init__.py +4 -2
  4. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  5. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  6. {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  7. sparknlp/__init__.py +281 -27
  8. sparknlp/annotation.py +137 -6
  9. sparknlp/annotation_audio.py +61 -0
  10. sparknlp/annotation_image.py +82 -0
  11. sparknlp/annotator/__init__.py +93 -0
  12. sparknlp/annotator/audio/__init__.py +16 -0
  13. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  14. sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
  15. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  16. sparknlp/annotator/chunk2_doc.py +85 -0
  17. sparknlp/annotator/chunker.py +137 -0
  18. sparknlp/annotator/classifier_dl/__init__.py +61 -0
  19. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  20. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
  21. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
  22. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
  23. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  24. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  25. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  26. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
  27. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
  28. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
  29. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  30. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  31. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
  32. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
  33. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  34. sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
  35. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
  36. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
  37. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
  38. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  39. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
  40. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
  41. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
  42. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  43. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  44. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
  45. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
  46. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
  47. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  48. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  49. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  50. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
  51. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  52. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
  53. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
  54. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
  55. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  56. sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
  57. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
  60. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
  61. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
  62. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  63. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
  64. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
  65. sparknlp/annotator/cleaners/__init__.py +15 -0
  66. sparknlp/annotator/cleaners/cleaner.py +202 -0
  67. sparknlp/annotator/cleaners/extractor.py +191 -0
  68. sparknlp/annotator/coref/__init__.py +1 -0
  69. sparknlp/annotator/coref/spanbert_coref.py +221 -0
  70. sparknlp/annotator/cv/__init__.py +29 -0
  71. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  72. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  73. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  74. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  75. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  76. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  77. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  78. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  79. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  80. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  81. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  82. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  83. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  84. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  85. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  86. sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
  87. sparknlp/annotator/dataframe_optimizer.py +216 -0
  88. sparknlp/annotator/date2_chunk.py +88 -0
  89. sparknlp/annotator/dependency/__init__.py +17 -0
  90. sparknlp/annotator/dependency/dependency_parser.py +294 -0
  91. sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
  92. sparknlp/annotator/document_character_text_splitter.py +228 -0
  93. sparknlp/annotator/document_normalizer.py +235 -0
  94. sparknlp/annotator/document_token_splitter.py +175 -0
  95. sparknlp/annotator/document_token_splitter_test.py +85 -0
  96. sparknlp/annotator/embeddings/__init__.py +45 -0
  97. sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
  98. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  99. sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
  100. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
  101. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  102. sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
  103. sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
  104. sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
  105. sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
  106. sparknlp/annotator/embeddings/doc2vec.py +352 -0
  107. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  108. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  109. sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
  110. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  111. sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
  112. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  113. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  114. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  115. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  116. sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
  117. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
  118. sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
  119. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  120. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  121. sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
  122. sparknlp/annotator/embeddings/word2vec.py +353 -0
  123. sparknlp/annotator/embeddings/word_embeddings.py +385 -0
  124. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
  125. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
  126. sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
  127. sparknlp/annotator/er/__init__.py +16 -0
  128. sparknlp/annotator/er/entity_ruler.py +267 -0
  129. sparknlp/annotator/graph_extraction.py +368 -0
  130. sparknlp/annotator/keyword_extraction/__init__.py +16 -0
  131. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
  132. sparknlp/annotator/ld_dl/__init__.py +16 -0
  133. sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
  134. sparknlp/annotator/lemmatizer.py +250 -0
  135. sparknlp/annotator/matcher/__init__.py +20 -0
  136. sparknlp/annotator/matcher/big_text_matcher.py +272 -0
  137. sparknlp/annotator/matcher/date_matcher.py +303 -0
  138. sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
  139. sparknlp/annotator/matcher/regex_matcher.py +221 -0
  140. sparknlp/annotator/matcher/text_matcher.py +290 -0
  141. sparknlp/annotator/n_gram_generator.py +141 -0
  142. sparknlp/annotator/ner/__init__.py +21 -0
  143. sparknlp/annotator/ner/ner_approach.py +94 -0
  144. sparknlp/annotator/ner/ner_converter.py +148 -0
  145. sparknlp/annotator/ner/ner_crf.py +397 -0
  146. sparknlp/annotator/ner/ner_dl.py +591 -0
  147. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  148. sparknlp/annotator/ner/ner_overwriter.py +166 -0
  149. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  150. sparknlp/annotator/normalizer.py +230 -0
  151. sparknlp/annotator/openai/__init__.py +16 -0
  152. sparknlp/annotator/openai/openai_completion.py +349 -0
  153. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  154. sparknlp/annotator/param/__init__.py +17 -0
  155. sparknlp/annotator/param/classifier_encoder.py +98 -0
  156. sparknlp/annotator/param/evaluation_dl_params.py +130 -0
  157. sparknlp/annotator/pos/__init__.py +16 -0
  158. sparknlp/annotator/pos/perceptron.py +263 -0
  159. sparknlp/annotator/sentence/__init__.py +17 -0
  160. sparknlp/annotator/sentence/sentence_detector.py +290 -0
  161. sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
  162. sparknlp/annotator/sentiment/__init__.py +17 -0
  163. sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
  164. sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
  165. sparknlp/annotator/seq2seq/__init__.py +35 -0
  166. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  167. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  168. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  169. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  170. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  171. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  172. sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
  173. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  174. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  175. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  176. sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
  177. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  178. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  179. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  180. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  181. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  182. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  183. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  184. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  185. sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
  186. sparknlp/annotator/similarity/__init__.py +0 -0
  187. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  188. sparknlp/annotator/spell_check/__init__.py +18 -0
  189. sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
  190. sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
  191. sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
  192. sparknlp/annotator/stemmer.py +79 -0
  193. sparknlp/annotator/stop_words_cleaner.py +190 -0
  194. sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
  195. sparknlp/annotator/token/__init__.py +19 -0
  196. sparknlp/annotator/token/chunk_tokenizer.py +118 -0
  197. sparknlp/annotator/token/recursive_tokenizer.py +205 -0
  198. sparknlp/annotator/token/regex_tokenizer.py +208 -0
  199. sparknlp/annotator/token/tokenizer.py +561 -0
  200. sparknlp/annotator/token2_chunk.py +76 -0
  201. sparknlp/annotator/ws/__init__.py +16 -0
  202. sparknlp/annotator/ws/word_segmenter.py +429 -0
  203. sparknlp/base/__init__.py +30 -0
  204. sparknlp/base/audio_assembler.py +95 -0
  205. sparknlp/base/doc2_chunk.py +169 -0
  206. sparknlp/base/document_assembler.py +164 -0
  207. sparknlp/base/embeddings_finisher.py +201 -0
  208. sparknlp/base/finisher.py +217 -0
  209. sparknlp/base/gguf_ranking_finisher.py +234 -0
  210. sparknlp/base/graph_finisher.py +125 -0
  211. sparknlp/base/has_recursive_fit.py +24 -0
  212. sparknlp/base/has_recursive_transform.py +22 -0
  213. sparknlp/base/image_assembler.py +172 -0
  214. sparknlp/base/light_pipeline.py +429 -0
  215. sparknlp/base/multi_document_assembler.py +164 -0
  216. sparknlp/base/prompt_assembler.py +207 -0
  217. sparknlp/base/recursive_pipeline.py +107 -0
  218. sparknlp/base/table_assembler.py +145 -0
  219. sparknlp/base/token_assembler.py +124 -0
  220. sparknlp/common/__init__.py +26 -0
  221. sparknlp/common/annotator_approach.py +41 -0
  222. sparknlp/common/annotator_model.py +47 -0
  223. sparknlp/common/annotator_properties.py +114 -0
  224. sparknlp/common/annotator_type.py +38 -0
  225. sparknlp/common/completion_post_processing.py +37 -0
  226. sparknlp/common/coverage_result.py +22 -0
  227. sparknlp/common/match_strategy.py +33 -0
  228. sparknlp/common/properties.py +1298 -0
  229. sparknlp/common/read_as.py +33 -0
  230. sparknlp/common/recursive_annotator_approach.py +35 -0
  231. sparknlp/common/storage.py +149 -0
  232. sparknlp/common/utils.py +39 -0
  233. sparknlp/functions.py +315 -5
  234. sparknlp/internal/__init__.py +1199 -0
  235. sparknlp/internal/annotator_java_ml.py +32 -0
  236. sparknlp/internal/annotator_transformer.py +37 -0
  237. sparknlp/internal/extended_java_wrapper.py +63 -0
  238. sparknlp/internal/params_getters_setters.py +71 -0
  239. sparknlp/internal/recursive.py +70 -0
  240. sparknlp/logging/__init__.py +15 -0
  241. sparknlp/logging/comet.py +467 -0
  242. sparknlp/partition/__init__.py +16 -0
  243. sparknlp/partition/partition.py +244 -0
  244. sparknlp/partition/partition_properties.py +902 -0
  245. sparknlp/partition/partition_transformer.py +200 -0
  246. sparknlp/pretrained/__init__.py +17 -0
  247. sparknlp/pretrained/pretrained_pipeline.py +158 -0
  248. sparknlp/pretrained/resource_downloader.py +216 -0
  249. sparknlp/pretrained/utils.py +35 -0
  250. sparknlp/reader/__init__.py +15 -0
  251. sparknlp/reader/enums.py +19 -0
  252. sparknlp/reader/pdf_to_text.py +190 -0
  253. sparknlp/reader/reader2doc.py +124 -0
  254. sparknlp/reader/reader2image.py +136 -0
  255. sparknlp/reader/reader2table.py +44 -0
  256. sparknlp/reader/reader_assembler.py +159 -0
  257. sparknlp/reader/sparknlp_reader.py +461 -0
  258. sparknlp/training/__init__.py +20 -0
  259. sparknlp/training/_tf_graph_builders/__init__.py +0 -0
  260. sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
  261. sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
  262. sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
  263. sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
  264. sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
  265. sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
  266. sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
  267. sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
  268. sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
  269. sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
  270. sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
  271. sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
  272. sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
  273. sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
  274. sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
  275. sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
  276. sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
  277. sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
  278. sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
  279. sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
  280. sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
  281. sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
  282. sparknlp/training/conll.py +150 -0
  283. sparknlp/training/conllu.py +103 -0
  284. sparknlp/training/pos.py +103 -0
  285. sparknlp/training/pub_tator.py +76 -0
  286. sparknlp/training/spacy_to_annotation.py +57 -0
  287. sparknlp/training/tfgraphs.py +5 -0
  288. sparknlp/upload_to_hub.py +149 -0
  289. sparknlp/util.py +51 -5
  290. com/__init__.pyc +0 -0
  291. com/__pycache__/__init__.cpython-36.pyc +0 -0
  292. com/johnsnowlabs/__init__.pyc +0 -0
  293. com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
  294. com/johnsnowlabs/nlp/__init__.pyc +0 -0
  295. com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
  296. spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
  297. spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
  298. sparknlp/__init__.pyc +0 -0
  299. sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
  300. sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
  301. sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
  302. sparknlp/__pycache__/base.cpython-36.pyc +0 -0
  303. sparknlp/__pycache__/common.cpython-36.pyc +0 -0
  304. sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
  305. sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
  306. sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
  307. sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
  308. sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
  309. sparknlp/__pycache__/training.cpython-36.pyc +0 -0
  310. sparknlp/__pycache__/util.cpython-36.pyc +0 -0
  311. sparknlp/annotation.pyc +0 -0
  312. sparknlp/annotator.py +0 -3006
  313. sparknlp/annotator.pyc +0 -0
  314. sparknlp/base.py +0 -347
  315. sparknlp/base.pyc +0 -0
  316. sparknlp/common.py +0 -193
  317. sparknlp/common.pyc +0 -0
  318. sparknlp/embeddings.py +0 -40
  319. sparknlp/embeddings.pyc +0 -0
  320. sparknlp/internal.py +0 -288
  321. sparknlp/internal.pyc +0 -0
  322. sparknlp/pretrained.py +0 -123
  323. sparknlp/pretrained.pyc +0 -0
  324. sparknlp/storage.py +0 -32
  325. sparknlp/storage.pyc +0 -0
  326. sparknlp/training.py +0 -62
  327. sparknlp/training.pyc +0 -0
  328. sparknlp/util.pyc +0 -0
  329. {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,225 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for RoBertaEmbeddings."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class RoBertaEmbeddings(AnnotatorModel,
20
+ HasEmbeddingsProperties,
21
+ HasCaseSensitiveProperties,
22
+ HasStorageRef,
23
+ HasBatchedAnnotate,
24
+ HasEngine,
25
+ HasMaxSentenceLengthLimit):
26
+ """Creates word embeddings using RoBERTa.
27
+
28
+ The RoBERTa model was proposed in `RoBERTa: A Robustly Optimized BERT
29
+ Pretraining Approach` by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
30
+ Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin
31
+ Stoyanov. It is based on Google's BERT model released in 2018.
32
+
33
+ It builds on BERT and modifies key hyperparameters, removing the
34
+ next-sentence pretraining objective and training with much larger
35
+ mini-batches and learning rates.
36
+
37
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
38
+ object:
39
+
40
+ >>> embeddings = RoBertaEmbeddings.pretrained() \\
41
+ ... .setInputCols(["document", "token"]) \\
42
+ ... .setOutputCol("embeddings")
43
+
44
+ The default model is ``"roberta_base"``, if no name is provided. For
45
+ available pretrained models please see the `Models Hub
46
+ <https://sparknlp.org/models?task=Embeddings>`__.
47
+
48
+ For extended examples of usage, see the `Examples
49
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/HuggingFace%20in%20Spark%20NLP%20-%20RoBERTa.ipynb>`__.
50
+ To see which models are compatible and how to import them see
51
+ `Import Transformers into Spark NLP 🚀
52
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
53
+
54
+
55
+ ====================== ======================
56
+ Input Annotation types Output Annotation type
57
+ ====================== ======================
58
+ ``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
59
+ ====================== ======================
60
+
61
+ Parameters
62
+ ----------
63
+ batchSize
64
+ Size of every batch, by default 8
65
+ dimension
66
+ Number of embedding dimensions, by default 768
67
+ caseSensitive
68
+ Whether to ignore case in tokens for embeddings matching, by default
69
+ True
70
+ maxSentenceLength
71
+ Max sentence length to process, by default 128
72
+ configProtoBytes
73
+ ConfigProto from tensorflow, serialized into byte array.
74
+
75
+ Notes
76
+ -----
77
+ - RoBERTa has the same architecture as BERT, but uses a byte-level BPE as
78
+ a tokenizer (same as GPT-2) and uses a different pretraining scheme.
79
+ - RoBERTa doesn't have ``token_type_ids``, you don't need to indicate
80
+ which token belongs to which segment. Just separate your segments with
81
+ the separation token ``tokenizer.sep_token`` (or ``</s>``)
82
+
83
+ References
84
+ ----------
85
+ `RoBERTa: A Robustly Optimized BERT
86
+ Pretraining Approach <https://arxiv.org/abs/1907.11692>`__
87
+
88
+ **Paper Abstract:**
89
+
90
+ *Language model pretraining has led to significant performance gains but
91
+ careful comparison between different approaches is challenging. Training is
92
+ computationally expensive, often done on private datasets of different
93
+ sizes, and, as we will show, hyperparameter choices have significant impact
94
+ on the final results. We present a replication study of BERT pretraining
95
+ (Devlin et al., 2019) that carefully measures the impact of many key
96
+ hyperparameters and training data size. We find that BERT was significantly
97
+ undertrained, and can match or exceed the performance of every model
98
+ published after it. Our best model achieves state-of-the-art results on
99
+ GLUE, RACE and SQuAD. These results highlight the importance of previously
100
+ overlooked design choices, and raise questions about the source of recently
101
+ reported improvements. We release our models and code.*
102
+
103
+ Source of the original code: `RoBERTa: A Robustly Optimized BERT Pretraining
104
+ Approach on GitHub
105
+ <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__.
106
+
107
+ Examples
108
+ --------
109
+ >>> import sparknlp
110
+ >>> from sparknlp.base import *
111
+ >>> from sparknlp.annotator import *
112
+ >>> from pyspark.ml import Pipeline
113
+ >>> documentAssembler = DocumentAssembler() \\
114
+ ... .setInputCol("text") \\
115
+ ... .setOutputCol("document")
116
+ >>> tokenizer = Tokenizer() \\
117
+ ... .setInputCols(["document"]) \\
118
+ ... .setOutputCol("token")
119
+ >>> embeddings = RoBertaEmbeddings.pretrained() \\
120
+ ... .setInputCols(["document", "token"]) \\
121
+ ... .setOutputCol("embeddings") \\
122
+ ... .setCaseSensitive(True)
123
+ >>> embeddingsFinisher = EmbeddingsFinisher() \\
124
+ ... .setInputCols(["embeddings"]) \\
125
+ ... .setOutputCols("finished_embeddings") \\
126
+ ... .setOutputAsVector(True) \\
127
+ ... .setCleanAnnotations(False)
128
+ >>> pipeline = Pipeline() \\
129
+ ... .setStages([
130
+ ... documentAssembler,
131
+ ... tokenizer,
132
+ ... embeddings,
133
+ ... embeddingsFinisher
134
+ ... ])
135
+ >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
136
+ >>> result = pipeline.fit(data).transform(data)
137
+ >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
138
+ +--------------------------------------------------------------------------------+
139
+ | result|
140
+ +--------------------------------------------------------------------------------+
141
+ |[0.18792399764060974,-0.14591649174690247,0.20547787845134735,0.1468472778797...|
142
+ |[0.22845706343650818,0.18073144555091858,0.09725798666477203,-0.0417917296290...|
143
+ |[0.07037967443466187,-0.14801117777824402,-0.03603338822722435,-0.17893412709...|
144
+ |[-0.08734266459941864,0.2486150562763214,-0.009067727252840996,-0.24408400058...|
145
+ |[0.22409197688102722,-0.4312366545200348,0.1401449590921402,0.356410235166549...|
146
+ +--------------------------------------------------------------------------------+
147
+ """
148
+
149
+ name = "RoBertaEmbeddings"
150
+
151
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
152
+
153
+ outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
154
+
155
+ configProtoBytes = Param(Params._dummy(),
156
+ "configProtoBytes",
157
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
158
+ TypeConverters.toListInt)
159
+
160
+ def setConfigProtoBytes(self, b):
161
+ """Sets configProto from tensorflow, serialized into byte array.
162
+
163
+ Parameters
164
+ ----------
165
+ b : List[int]
166
+ ConfigProto from tensorflow, serialized into byte array
167
+ """
168
+ return self._set(configProtoBytes=b)
169
+
170
+ @keyword_only
171
+ def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.RoBertaEmbeddings", java_model=None):
172
+ super(RoBertaEmbeddings, self).__init__(
173
+ classname=classname,
174
+ java_model=java_model
175
+ )
176
+ self._setDefault(
177
+ dimension=768,
178
+ batchSize=8,
179
+ maxSentenceLength=128,
180
+ caseSensitive=True
181
+ )
182
+
183
+ @staticmethod
184
+ def loadSavedModel(folder, spark_session, use_openvino=False):
185
+ """Loads a locally saved model.
186
+
187
+ Parameters
188
+ ----------
189
+ folder : str
190
+ Folder of the saved model
191
+ spark_session : pyspark.sql.SparkSession
192
+ The current SparkSession
193
+ use_openvino: bool
194
+ Use OpenVINO backend
195
+
196
+ Returns
197
+ -------
198
+ RoBertaEmbeddings
199
+ The restored model
200
+ """
201
+ from sparknlp.internal import _RoBertaLoader
202
+ jModel = _RoBertaLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
203
+ return RoBertaEmbeddings(java_model=jModel)
204
+
205
+ @staticmethod
206
+ def pretrained(name="roberta_base", lang="en", remote_loc=None):
207
+ """Downloads and loads a pretrained model.
208
+
209
+ Parameters
210
+ ----------
211
+ name : str, optional
212
+ Name of the pretrained model, by default "roberta_base"
213
+ lang : str, optional
214
+ Language of the pretrained model, by default "en"
215
+ remote_loc : str, optional
216
+ Optional remote address of the resource, by default None. Will use
217
+ Spark NLPs repositories otherwise.
218
+
219
+ Returns
220
+ -------
221
+ RoBertaEmbeddings
222
+ The restored model
223
+ """
224
+ from sparknlp.pretrained import ResourceDownloader
225
+ return ResourceDownloader.downloadModel(RoBertaEmbeddings, name, lang, remote_loc)
@@ -0,0 +1,191 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for RoBertaSentenceEmbeddings."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class RoBertaSentenceEmbeddings(AnnotatorModel,
20
+ HasEmbeddingsProperties,
21
+ HasCaseSensitiveProperties,
22
+ HasStorageRef,
23
+ HasBatchedAnnotate,
24
+ HasEngine,
25
+ HasMaxSentenceLengthLimit):
26
+ """Sentence-level embeddings using RoBERTa. The RoBERTa model was proposed in RoBERTa: A Robustly Optimized BERT
27
+ Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
28
+ Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018. It builds on
29
+ BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with much
30
+ larger mini-batches and learning rates. Pretrained models can be loaded with pretrained of the companion object:
31
+
32
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
33
+ object:
34
+
35
+ >>> embeddings = RoBertaSentenceEmbeddings.pretrained() \\
36
+ ... .setInputCols(["sentence"]) \\
37
+ ... .setOutputCol("sentence_embeddings")
38
+
39
+
40
+ The default model is ``"sent_roberta_base"``, if no name is provided.
41
+
42
+ For available pretrained models please see the
43
+ `Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
44
+
45
+ ====================== =======================
46
+ Input Annotation types Output Annotation type
47
+ ====================== =======================
48
+ ``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
49
+ ====================== =======================
50
+
51
+ Parameters
52
+ ----------
53
+ batchSize
54
+ Size of every batch, by default 8
55
+ caseSensitive
56
+ Whether to ignore case in tokens for embeddings matching, by default
57
+ False
58
+ dimension
59
+ Number of embedding dimensions, by default 768
60
+ maxSentenceLength
61
+ Max sentence length to process, by default 128
62
+ configProtoBytes
63
+ ConfigProto from tensorflow, serialized into byte array.
64
+
65
+ References
66
+ ----------
67
+ `RoBERTa: A Robustly Optimized BERT Pretraining Approach <https://arxiv.org/abs/1907.11692>`__
68
+
69
+ **Paper abstract:**
70
+
71
+ *Language model pretraining has led to significant performance gains but careful comparison between different
72
+ approaches is challenging. Training is computationally expensive, often done on private datasets of different
73
+ sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a
74
+ replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key
75
+ hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed
76
+ the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE,
77
+ RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise
78
+ questions about the source of recently reported improvements. We release our models and code.*
79
+
80
+ Examples
81
+ --------
82
+ >>> import sparknlp
83
+ >>> from sparknlp.base import *
84
+ >>> from sparknlp.annotator import *
85
+ >>> from pyspark.ml import Pipeline
86
+ >>> documentAssembler = DocumentAssembler() \\
87
+ ... .setInputCol("text") \\
88
+ ... .setOutputCol("document")
89
+ >>> sentence = SentenceDetector() \\
90
+ ... .setInputCols(["document"]) \\
91
+ ... .setOutputCol("sentence")
92
+ >>> embeddings = RoBertaSentenceEmbeddings.pretrained() \\
93
+ ... .setInputCols(["sentence"]) \\
94
+ ... .setOutputCol("sentence_embeddings")
95
+ >>> embeddingsFinisher = EmbeddingsFinisher() \\
96
+ ... .setInputCols(["sentence_embeddings"]) \\
97
+ ... .setOutputCols("finished_embeddings") \\
98
+ ... .setOutputAsVector(True)
99
+ >>> pipeline = Pipeline().setStages([
100
+ ... documentAssembler,
101
+ ... sentence,
102
+ ... embeddings,
103
+ ... embeddingsFinisher
104
+ ... ])
105
+ >>> data = spark.createDataFrame([["John loves apples. Mary loves oranges. John loves Mary."]]).toDF("text")
106
+ >>> result = pipeline.fit(data).transform(data)
107
+ >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
108
+ +--------------------------------------------------------------------------------+
109
+ | result|
110
+ +--------------------------------------------------------------------------------+
111
+ |[-0.8951074481010437,0.13753940165042877,0.3108254075050354,-1.65693199634552...|
112
+ |[-0.6180210709571838,-0.12179657071828842,-0.191165953874588,-1.4497021436691...|
113
+ |[-0.822715163230896,0.7568016648292542,-0.1165061742067337,-1.59048593044281,...|
114
+ +--------------------------------------------------------------------------------+
115
+ """
116
+
117
+ name = "RoBertaSentenceEmbeddings"
118
+
119
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
120
+
121
+ outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
122
+
123
+ configProtoBytes = Param(Params._dummy(),
124
+ "configProtoBytes",
125
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
126
+ TypeConverters.toListInt)
127
+
128
+ def setConfigProtoBytes(self, b):
129
+ """Sets configProto from tensorflow, serialized into byte array.
130
+
131
+ Parameters
132
+ ----------
133
+ b : List[int]
134
+ ConfigProto from tensorflow, serialized into byte array
135
+ """
136
+ return self._set(configProtoBytes=b)
137
+
138
+ @keyword_only
139
+ def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.RoBertaSentenceEmbeddings", java_model=None):
140
+ super(RoBertaSentenceEmbeddings, self).__init__(
141
+ classname=classname,
142
+ java_model=java_model
143
+ )
144
+ self._setDefault(
145
+ dimension=768,
146
+ batchSize=8,
147
+ maxSentenceLength=128,
148
+ caseSensitive=True
149
+ )
150
+
151
+ @staticmethod
152
+ def loadSavedModel(folder, spark_session):
153
+ """Loads a locally saved model.
154
+
155
+ Parameters
156
+ ----------
157
+ folder : str
158
+ Folder of the saved model
159
+ spark_session : pyspark.sql.SparkSession
160
+ The current SparkSession
161
+
162
+ Returns
163
+ -------
164
+ BertSentenceEmbeddings
165
+ The restored model
166
+ """
167
+ from sparknlp.internal import _RoBertaSentenceLoader
168
+ jModel = _RoBertaSentenceLoader(folder, spark_session._jsparkSession)._java_obj
169
+ return RoBertaSentenceEmbeddings(java_model=jModel)
170
+
171
+ @staticmethod
172
+ def pretrained(name="sent_roberta_base", lang="en", remote_loc=None):
173
+ """Downloads and loads a pretrained model.
174
+
175
+ Parameters
176
+ ----------
177
+ name : str, optional
178
+ Name of the pretrained model, by default "sent_roberta_base"
179
+ lang : str, optional
180
+ Language of the pretrained model, by default "en"
181
+ remote_loc : str, optional
182
+ Optional remote address of the resource, by default None. Will use
183
+ Spark NLPs repositories otherwise.
184
+
185
+ Returns
186
+ -------
187
+ RoBertaSentenceEmbeddings
188
+ The restored model
189
+ """
190
+ from sparknlp.pretrained import ResourceDownloader
191
+ return ResourceDownloader.downloadModel(RoBertaSentenceEmbeddings, name, lang, remote_loc)
@@ -0,0 +1,134 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for SentenceEmbeddings."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class SentenceEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasStorageRef):
20
+ """Converts the results from WordEmbeddings, BertEmbeddings, or other word
21
+ embeddings into sentence or document embeddings by either summing up or
22
+ averaging all the word embeddings in a sentence or a document (depending on
23
+ the inputCols).
24
+
25
+ This can be configured with :meth:`.setPoolingStrategy`, which either be
26
+ ``"AVERAGE"`` or ``"SUM"``.
27
+
28
+ For more extended examples see the `Examples
29
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/text-similarity/Spark_NLP_Spark_ML_Text_Similarity.ipynb>`__..
30
+
31
+ ============================= =======================
32
+ Input Annotation types Output Annotation type
33
+ ============================= =======================
34
+ ``DOCUMENT, WORD_EMBEDDINGS`` ``SENTENCE_EMBEDDINGS``
35
+ ============================= =======================
36
+
37
+ Parameters
38
+ ----------
39
+ dimension
40
+ Number of embedding dimensions
41
+ poolingStrategy
42
+ Choose how you would like to aggregate Word Embeddings to Sentence
43
+ Embeddings: AVERAGE or SUM, by default AVERAGE
44
+
45
+ Notes
46
+ -----
47
+ If you choose document as your input for Tokenizer,
48
+ WordEmbeddings/BertEmbeddings, and SentenceEmbeddings then it averages/sums
49
+ all the embeddings into one array of embeddings. However, if you choose
50
+ sentences as inputCols then for each sentence SentenceEmbeddings generates
51
+ one array of embeddings.
52
+
53
+ Examples
54
+ --------
55
+ >>> import sparknlp
56
+ >>> from sparknlp.base import *
57
+ >>> from sparknlp.annotator import *
58
+ >>> from pyspark.ml import Pipeline
59
+ >>> documentAssembler = DocumentAssembler() \\
60
+ ... .setInputCol("text") \\
61
+ ... .setOutputCol("document")
62
+ >>> tokenizer = Tokenizer() \\
63
+ ... .setInputCols(["document"]) \\
64
+ ... .setOutputCol("token")
65
+ >>> embeddings = WordEmbeddingsModel.pretrained() \\
66
+ ... .setInputCols(["document", "token"]) \\
67
+ ... .setOutputCol("embeddings")
68
+ >>> embeddingsSentence = SentenceEmbeddings() \\
69
+ ... .setInputCols(["document", "embeddings"]) \\
70
+ ... .setOutputCol("sentence_embeddings") \\
71
+ ... .setPoolingStrategy("AVERAGE")
72
+ >>> embeddingsFinisher = EmbeddingsFinisher() \\
73
+ ... .setInputCols(["sentence_embeddings"]) \\
74
+ ... .setOutputCols("finished_embeddings") \\
75
+ ... .setOutputAsVector(True) \\
76
+ ... .setCleanAnnotations(False)
77
+ >>> pipeline = Pipeline() \\
78
+ ... .setStages([
79
+ ... documentAssembler,
80
+ ... tokenizer,
81
+ ... embeddings,
82
+ ... embeddingsSentence,
83
+ ... embeddingsFinisher
84
+ ... ])
85
+ >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
86
+ >>> result = pipeline.fit(data).transform(data)
87
+ >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
88
+ +--------------------------------------------------------------------------------+
89
+ | result|
90
+ +--------------------------------------------------------------------------------+
91
+ |[-0.22093398869037628,0.25130119919776917,0.41810303926467896,-0.380883991718...|
92
+ +--------------------------------------------------------------------------------+
93
+ """
94
+
95
+ name = "SentenceEmbeddings"
96
+
97
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.WORD_EMBEDDINGS]
98
+
99
+ outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
100
+
101
+ @keyword_only
102
+ def __init__(self):
103
+ super(SentenceEmbeddings, self).__init__(classname="com.johnsnowlabs.nlp.embeddings.SentenceEmbeddings")
104
+ self._setDefault(
105
+ poolingStrategy="AVERAGE"
106
+ )
107
+
108
+ poolingStrategy = Param(Params._dummy(),
109
+ "poolingStrategy",
110
+ "Choose how you would like to aggregate Word Embeddings to Sentence Embeddings: AVERAGE or SUM",
111
+ typeConverter=TypeConverters.toString)
112
+
113
+ def setPoolingStrategy(self, strategy):
114
+ """Sets how to aggregate the word Embeddings to sentence embeddings, by
115
+ default AVERAGE.
116
+
117
+ Can either be AVERAGE or SUM.
118
+
119
+ Parameters
120
+ ----------
121
+ strategy : str
122
+ Pooling Strategy, either be AVERAGE or SUM
123
+
124
+ Returns
125
+ -------
126
+ [type]
127
+ [description]
128
+ """
129
+ if strategy == "AVERAGE":
130
+ return self._set(poolingStrategy=strategy)
131
+ elif strategy == "SUM":
132
+ return self._set(poolingStrategy=strategy)
133
+ else:
134
+ return self._set(poolingStrategy="AVERAGE")