spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""Contains classes concerning VisionEncoderDecoderForImageCaptioning."""
|
|
16
|
+
|
|
17
|
+
from sparknlp.common import *
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class VisionEncoderDecoderForImageCaptioning(AnnotatorModel,
|
|
21
|
+
HasBatchedAnnotateImage,
|
|
22
|
+
HasImageFeatureProperties,
|
|
23
|
+
HasGeneratorProperties,
|
|
24
|
+
HasRescaleFactor,
|
|
25
|
+
HasEngine):
|
|
26
|
+
"""VisionEncoderDecoder model that converts images into text captions. It allows for the use of
|
|
27
|
+
pretrained vision auto-encoding models, such as ViT, BEiT, or DeiT as the encoder, in
|
|
28
|
+
combination with pretrained language models, like RoBERTa, GPT2, or BERT as the decoder.
|
|
29
|
+
|
|
30
|
+
Pretrained models can be loaded with ``pretrained`` of the companion object:
|
|
31
|
+
|
|
32
|
+
.. code-block:: python
|
|
33
|
+
|
|
34
|
+
imageClassifier = VisionEncoderDecoderForImageCaptioning.pretrained() \\
|
|
35
|
+
.setInputCols(["image_assembler"]) \\
|
|
36
|
+
.setOutputCol("caption")
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
The default model is ``"image_captioning_vit_gpt2"``, if no name is provided.
|
|
40
|
+
|
|
41
|
+
For available pretrained models please see the
|
|
42
|
+
`Models Hub <https://sparknlp.org/models?task=Image+Captioning>`__.
|
|
43
|
+
|
|
44
|
+
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To
|
|
45
|
+
see which models are compatible and how to import them see
|
|
46
|
+
https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended
|
|
47
|
+
examples, see
|
|
48
|
+
`VisionEncoderDecoderTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/VisionEncoderDecoderForImageCaptioningTestSpec.scala>`__.
|
|
49
|
+
|
|
50
|
+
Notes
|
|
51
|
+
-----
|
|
52
|
+
This is a very computationally expensive module especially on larger
|
|
53
|
+
batch sizes. The use of an accelerator such as GPU is recommended.
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
====================== ======================
|
|
57
|
+
Input Annotation types Output Annotation type
|
|
58
|
+
====================== ======================
|
|
59
|
+
``IMAGE`` ``DOCUMENT``
|
|
60
|
+
====================== ======================
|
|
61
|
+
|
|
62
|
+
Parameters
|
|
63
|
+
----------
|
|
64
|
+
configProtoBytes
|
|
65
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
66
|
+
doResize
|
|
67
|
+
Whether to resize the input to a certain size
|
|
68
|
+
doNormalize
|
|
69
|
+
Whether to normalize the input with mean and standard deviation
|
|
70
|
+
featureExtractorType
|
|
71
|
+
Name of model's architecture for feature extraction
|
|
72
|
+
imageMean
|
|
73
|
+
The sequence of means for each channel, to be used when normalizing images
|
|
74
|
+
imageStd
|
|
75
|
+
The sequence of standard deviations for each channel, to be used when normalizing images
|
|
76
|
+
resample
|
|
77
|
+
An optional resampling filter. This can be one of `PIL.Image.NEAREST`, `PIL.Image.BILINEAR` or
|
|
78
|
+
`PIL.Image.BICUBIC`. Only has an effect if do_resize is set to True.
|
|
79
|
+
size
|
|
80
|
+
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is
|
|
81
|
+
provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.
|
|
82
|
+
doRescale
|
|
83
|
+
Whether to rescale the image values by rescaleFactor
|
|
84
|
+
rescaleFactor
|
|
85
|
+
Factor to scale the image values
|
|
86
|
+
minOutputLength
|
|
87
|
+
Minimum length of the sequence to be generated
|
|
88
|
+
maxOutputLength
|
|
89
|
+
Maximum length of output text
|
|
90
|
+
doSample
|
|
91
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
92
|
+
temperature
|
|
93
|
+
The value used to module the next token probabilities
|
|
94
|
+
topK
|
|
95
|
+
The number of highest probability vocabulary tokens to keep for top-k-filtering
|
|
96
|
+
topP
|
|
97
|
+
If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are
|
|
98
|
+
kept for generation
|
|
99
|
+
repetitionPenalty
|
|
100
|
+
The parameter for repetition penalty. 1.0 means no penalty.
|
|
101
|
+
See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details
|
|
102
|
+
noRepeatNgramSize
|
|
103
|
+
If set to int > 0, all ngrams of that size can only occur once
|
|
104
|
+
beamSize
|
|
105
|
+
The Number of beams for beam search
|
|
106
|
+
nReturnSequences
|
|
107
|
+
The number of sequences to return from the beam search
|
|
108
|
+
|
|
109
|
+
Examples
|
|
110
|
+
--------
|
|
111
|
+
>>> import sparknlp
|
|
112
|
+
>>> from sparknlp.base import *
|
|
113
|
+
>>> from sparknlp.annotator import *
|
|
114
|
+
>>> from pyspark.ml import Pipeline
|
|
115
|
+
>>> imageDF = spark.read \\
|
|
116
|
+
... .format("image") \\
|
|
117
|
+
... .option("dropInvalid", value = True) \\
|
|
118
|
+
... .load("src/test/resources/image/")
|
|
119
|
+
>>> imageAssembler = ImageAssembler() \\
|
|
120
|
+
... .setInputCol("image") \\
|
|
121
|
+
... .setOutputCol("image_assembler")
|
|
122
|
+
>>> imageCaptioning = VisionEncoderDecoderForImageCaptioning \\
|
|
123
|
+
... .pretrained() \\
|
|
124
|
+
... .setBeamSize(2) \\
|
|
125
|
+
... .setDoSample(False) \\
|
|
126
|
+
... .setInputCols(["image_assembler"]) \\
|
|
127
|
+
... .setOutputCol("caption")
|
|
128
|
+
>>> pipeline = Pipeline().setStages([imageAssembler, imageCaptioning])
|
|
129
|
+
>>> pipelineDF = pipeline.fit(imageDF).transform(imageDF)
|
|
130
|
+
>>> pipelineDF \\
|
|
131
|
+
... .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "caption.result") \\
|
|
132
|
+
... .show(truncate = False)
|
|
133
|
+
+-----------------+---------------------------------------------------------+
|
|
134
|
+
|image_name |result |
|
|
135
|
+
+-----------------+---------------------------------------------------------+
|
|
136
|
+
|palace.JPEG |[a large room filled with furniture and a large window] |
|
|
137
|
+
|egyptian_cat.jpeg|[a cat laying on a couch next to another cat] |
|
|
138
|
+
|hippopotamus.JPEG|[a brown bear in a body of water] |
|
|
139
|
+
|hen.JPEG |[a flock of chickens standing next to each other] |
|
|
140
|
+
|ostrich.JPEG |[a large bird standing on top of a lush green field] |
|
|
141
|
+
|junco.JPEG |[a small bird standing on a wet ground] |
|
|
142
|
+
|bluetick.jpg |[a small dog standing on a wooden floor] |
|
|
143
|
+
|chihuahua.jpg |[a small brown dog wearing a blue sweater] |
|
|
144
|
+
|tractor.JPEG |[a man is standing in a field with a tractor] |
|
|
145
|
+
|ox.JPEG |[a large brown cow standing on top of a lush green field]|
|
|
146
|
+
+-----------------+---------------------------------------------------------+
|
|
147
|
+
|
|
148
|
+
"""
|
|
149
|
+
name = "VisionEncoderDecoderForImageCaptioning"
|
|
150
|
+
|
|
151
|
+
inputAnnotatorTypes = [AnnotatorType.IMAGE]
|
|
152
|
+
|
|
153
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
154
|
+
|
|
155
|
+
configProtoBytes = Param(Params._dummy(),
|
|
156
|
+
"configProtoBytes",
|
|
157
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with "
|
|
158
|
+
"config_proto.SerializeToString()",
|
|
159
|
+
TypeConverters.toListInt)
|
|
160
|
+
|
|
161
|
+
def setConfigProtoBytes(self, b):
|
|
162
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
163
|
+
|
|
164
|
+
Parameters
|
|
165
|
+
----------
|
|
166
|
+
b : List[int]
|
|
167
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
168
|
+
"""
|
|
169
|
+
return self._set(configProtoBytes=b)
|
|
170
|
+
|
|
171
|
+
@keyword_only
|
|
172
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.VisionEncoderDecoderForImageCaptioning",
|
|
173
|
+
java_model=None):
|
|
174
|
+
super(VisionEncoderDecoderForImageCaptioning, self).__init__(
|
|
175
|
+
classname=classname,
|
|
176
|
+
java_model=java_model
|
|
177
|
+
)
|
|
178
|
+
self._setDefault(
|
|
179
|
+
batchSize=2,
|
|
180
|
+
beamSize=1,
|
|
181
|
+
doNormalize=True,
|
|
182
|
+
doRescale=True,
|
|
183
|
+
doResize=True,
|
|
184
|
+
doSample=True,
|
|
185
|
+
imageMean=[0.5, 0.5, 0.5],
|
|
186
|
+
imageStd=[0.5, 0.5, 0.5],
|
|
187
|
+
maxOutputLength=50,
|
|
188
|
+
minOutputLength=0,
|
|
189
|
+
nReturnSequences=1,
|
|
190
|
+
noRepeatNgramSize=0,
|
|
191
|
+
repetitionPenalty=1.0,
|
|
192
|
+
resample=2,
|
|
193
|
+
rescaleFactor=1 / 255.0,
|
|
194
|
+
size=224,
|
|
195
|
+
temperature=1.0,
|
|
196
|
+
topK=50,
|
|
197
|
+
topP=1.0)
|
|
198
|
+
|
|
199
|
+
@staticmethod
|
|
200
|
+
def loadSavedModel(folder, spark_session):
|
|
201
|
+
"""Loads a locally saved model.
|
|
202
|
+
|
|
203
|
+
Parameters
|
|
204
|
+
----------
|
|
205
|
+
folder : str
|
|
206
|
+
Folder of the saved model
|
|
207
|
+
spark_session : pyspark.sql.SparkSession
|
|
208
|
+
The current SparkSession
|
|
209
|
+
|
|
210
|
+
Returns
|
|
211
|
+
-------
|
|
212
|
+
VisionEncoderDecoderForImageCaptioning
|
|
213
|
+
The restored model
|
|
214
|
+
"""
|
|
215
|
+
from sparknlp.internal import _VisionEncoderDecoderForImageCaptioning
|
|
216
|
+
jModel = _VisionEncoderDecoderForImageCaptioning(folder, spark_session._jsparkSession)._java_obj
|
|
217
|
+
return VisionEncoderDecoderForImageCaptioning(java_model=jModel)
|
|
218
|
+
|
|
219
|
+
@staticmethod
|
|
220
|
+
def pretrained(name="image_captioning_vit_gpt2", lang="en", remote_loc=None):
|
|
221
|
+
"""Downloads and loads a pretrained model.
|
|
222
|
+
|
|
223
|
+
Parameters
|
|
224
|
+
----------
|
|
225
|
+
name : str, optional
|
|
226
|
+
Name of the pretrained model, by default
|
|
227
|
+
"image_captioning_vit_gpt2"
|
|
228
|
+
lang : str, optional
|
|
229
|
+
Language of the pretrained model, by default "en"
|
|
230
|
+
remote_loc : str, optional
|
|
231
|
+
Optional remote address of the resource, by default None. Will use
|
|
232
|
+
Spark NLPs repositories otherwise.
|
|
233
|
+
|
|
234
|
+
Returns
|
|
235
|
+
-------
|
|
236
|
+
VisionEncoderDecoderForImageCaptioning
|
|
237
|
+
The restored model
|
|
238
|
+
"""
|
|
239
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
240
|
+
return ResourceDownloader.downloadModel(VisionEncoderDecoderForImageCaptioning, name, lang, remote_loc)
|
|
@@ -0,0 +1,217 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""Contains classes concerning ViTForImageClassification."""
|
|
16
|
+
|
|
17
|
+
from sparknlp.common import *
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class ViTForImageClassification(AnnotatorModel,
|
|
21
|
+
HasBatchedAnnotateImage,
|
|
22
|
+
HasImageFeatureProperties,
|
|
23
|
+
HasEngine):
|
|
24
|
+
"""Vision Transformer (ViT) for image classification.
|
|
25
|
+
|
|
26
|
+
ViT is a transformer based alternative to the convolutional neural networks usually
|
|
27
|
+
used for image recognition tasks.
|
|
28
|
+
|
|
29
|
+
Pretrained models can be loaded with ``pretrained`` of the companion object:
|
|
30
|
+
|
|
31
|
+
.. code-block:: python
|
|
32
|
+
|
|
33
|
+
imageClassifier = ViTForImageClassification.pretrained() \\
|
|
34
|
+
.setInputCols(["image_assembler"]) \\
|
|
35
|
+
.setOutputCol("class")
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
The default model is ``"image_classifier_vit_base_patch16_224"``, if no name is
|
|
39
|
+
provided.
|
|
40
|
+
|
|
41
|
+
For available pretrained models please see the
|
|
42
|
+
`Models Hub <https://sparknlp.org/models?task=Image+Classification>`__.
|
|
43
|
+
|
|
44
|
+
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark
|
|
45
|
+
NLP 🚀. To see which models are compatible and how to import them see
|
|
46
|
+
https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended
|
|
47
|
+
examples, see
|
|
48
|
+
`ViTImageClassificationTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/ViTImageClassificationTestSpec.scala>`__.
|
|
49
|
+
|
|
50
|
+
**Paper Abstract:**
|
|
51
|
+
|
|
52
|
+
*While the Transformer architecture has become the de-facto standard for natural
|
|
53
|
+
language processing tasks, its applications to computer vision remain limited. In
|
|
54
|
+
vision, attention is either applied in conjunction with convolutional networks, or
|
|
55
|
+
used to replace certain components of convolutional networks while keeping their
|
|
56
|
+
overall structure in place. We show that this reliance on CNNs is not necessary and
|
|
57
|
+
a pure transformer applied directly to sequences of image patches can perform very
|
|
58
|
+
well on image classification tasks. When pre-trained on large amounts of data and
|
|
59
|
+
transferred to multiple mid-sized or small image recognition benchmarks (ImageNet,
|
|
60
|
+
CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared
|
|
61
|
+
to state-of-the-art convolutional networks while requiring substantially fewer
|
|
62
|
+
computational resources to train.*
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
====================== ======================
|
|
66
|
+
Input Annotation types Output Annotation type
|
|
67
|
+
====================== ======================
|
|
68
|
+
``IMAGE`` ``CATEGORY``
|
|
69
|
+
====================== ======================
|
|
70
|
+
|
|
71
|
+
References
|
|
72
|
+
----------
|
|
73
|
+
|
|
74
|
+
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
|
75
|
+
<https://arxiv.org/abs/2010.11929>`__
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
Parameters
|
|
79
|
+
----------
|
|
80
|
+
doResize
|
|
81
|
+
Whether to resize the input to a certain size
|
|
82
|
+
doNormalize
|
|
83
|
+
Whether to normalize the input with mean and standard deviation
|
|
84
|
+
featureExtractorType
|
|
85
|
+
Name of model's architecture for feature extraction
|
|
86
|
+
imageMean
|
|
87
|
+
The sequence of means for each channel, to be used when normalizing images
|
|
88
|
+
imageStd
|
|
89
|
+
The sequence of standard deviations for each channel, to be used when normalizing images
|
|
90
|
+
resample
|
|
91
|
+
An optional resampling filter. This can be one of `PIL.Image.NEAREST`, `PIL.Image.BILINEAR` or
|
|
92
|
+
`PIL.Image.BICUBIC`. Only has an effect if do_resize is set to True.
|
|
93
|
+
size
|
|
94
|
+
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is
|
|
95
|
+
provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.
|
|
96
|
+
configProtoBytes
|
|
97
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
98
|
+
|
|
99
|
+
Examples
|
|
100
|
+
--------
|
|
101
|
+
>>> import sparknlp
|
|
102
|
+
>>> from sparknlp.base import *
|
|
103
|
+
>>> from sparknlp.annotator import *
|
|
104
|
+
>>> from pyspark.ml import Pipeline
|
|
105
|
+
>>> imageDF = spark.read \\
|
|
106
|
+
... .format("image") \\
|
|
107
|
+
... .option("dropInvalid", value = True) \\
|
|
108
|
+
... .load("src/test/resources/image/")
|
|
109
|
+
>>> imageAssembler = ImageAssembler() \\
|
|
110
|
+
... .setInputCol("image") \\
|
|
111
|
+
... .setOutputCol("image_assembler")
|
|
112
|
+
>>> imageClassifier = ViTForImageClassification \\
|
|
113
|
+
... .pretrained() \\
|
|
114
|
+
... .setInputCols(["image_assembler"]) \\
|
|
115
|
+
... .setOutputCol("class")
|
|
116
|
+
>>> pipeline = Pipeline().setStages([imageAssembler, imageClassifier])
|
|
117
|
+
>>> pipelineDF = pipeline.fit(imageDF).transform(imageDF)
|
|
118
|
+
>>> pipelineDF \\
|
|
119
|
+
... .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "class.result") \\
|
|
120
|
+
... .show(truncate=False)
|
|
121
|
+
+-----------------+----------------------------------------------------------+
|
|
122
|
+
|image_name |result |
|
|
123
|
+
+-----------------+----------------------------------------------------------+
|
|
124
|
+
|palace.JPEG |[palace] |
|
|
125
|
+
|egyptian_cat.jpeg|[Egyptian cat] |
|
|
126
|
+
|hippopotamus.JPEG|[hippopotamus, hippo, river horse, Hippopotamus amphibius]|
|
|
127
|
+
|hen.JPEG |[hen] |
|
|
128
|
+
|ostrich.JPEG |[ostrich, Struthio camelus] |
|
|
129
|
+
|junco.JPEG |[junco, snowbird] |
|
|
130
|
+
|bluetick.jpg |[bluetick] |
|
|
131
|
+
|chihuahua.jpg |[Chihuahua] |
|
|
132
|
+
|tractor.JPEG |[tractor] |
|
|
133
|
+
|ox.JPEG |[ox] |
|
|
134
|
+
+-----------------+----------------------------------------------------------+
|
|
135
|
+
|
|
136
|
+
"""
|
|
137
|
+
name = "ViTForImageClassification"
|
|
138
|
+
|
|
139
|
+
inputAnnotatorTypes = [AnnotatorType.IMAGE]
|
|
140
|
+
|
|
141
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
142
|
+
|
|
143
|
+
configProtoBytes = Param(Params._dummy(),
|
|
144
|
+
"configProtoBytes",
|
|
145
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with "
|
|
146
|
+
"config_proto.SerializeToString()",
|
|
147
|
+
TypeConverters.toListInt)
|
|
148
|
+
|
|
149
|
+
def getClasses(self):
|
|
150
|
+
"""
|
|
151
|
+
Returns labels used to train this model
|
|
152
|
+
"""
|
|
153
|
+
return self._call_java("getClasses")
|
|
154
|
+
|
|
155
|
+
def setConfigProtoBytes(self, b):
|
|
156
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
157
|
+
|
|
158
|
+
Parameters
|
|
159
|
+
----------
|
|
160
|
+
b : List[int]
|
|
161
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
162
|
+
"""
|
|
163
|
+
return self._set(configProtoBytes=b)
|
|
164
|
+
|
|
165
|
+
@keyword_only
|
|
166
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.ViTForImageClassification",
|
|
167
|
+
java_model=None):
|
|
168
|
+
super(ViTForImageClassification, self).__init__(
|
|
169
|
+
classname=classname,
|
|
170
|
+
java_model=java_model
|
|
171
|
+
)
|
|
172
|
+
self._setDefault(
|
|
173
|
+
batchSize=2
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
@staticmethod
|
|
177
|
+
def loadSavedModel(folder, spark_session):
|
|
178
|
+
"""Loads a locally saved model.
|
|
179
|
+
|
|
180
|
+
Parameters
|
|
181
|
+
----------
|
|
182
|
+
folder : str
|
|
183
|
+
Folder of the saved model
|
|
184
|
+
spark_session : pyspark.sql.SparkSession
|
|
185
|
+
The current SparkSession
|
|
186
|
+
|
|
187
|
+
Returns
|
|
188
|
+
-------
|
|
189
|
+
ViTForImageClassification
|
|
190
|
+
The restored model
|
|
191
|
+
"""
|
|
192
|
+
from sparknlp.internal import _ViTForImageClassification
|
|
193
|
+
jModel = _ViTForImageClassification(folder, spark_session._jsparkSession)._java_obj
|
|
194
|
+
return ViTForImageClassification(java_model=jModel)
|
|
195
|
+
|
|
196
|
+
@staticmethod
|
|
197
|
+
def pretrained(name="image_classifier_vit_base_patch16_224", lang="en", remote_loc=None):
|
|
198
|
+
"""Downloads and loads a pretrained model.
|
|
199
|
+
|
|
200
|
+
Parameters
|
|
201
|
+
----------
|
|
202
|
+
name : str, optional
|
|
203
|
+
Name of the pretrained model, by default
|
|
204
|
+
"image_classifier_vit_base_patch16_224"
|
|
205
|
+
lang : str, optional
|
|
206
|
+
Language of the pretrained model, by default "en"
|
|
207
|
+
remote_loc : str, optional
|
|
208
|
+
Optional remote address of the resource, by default None. Will use
|
|
209
|
+
Spark NLPs repositories otherwise.
|
|
210
|
+
|
|
211
|
+
Returns
|
|
212
|
+
-------
|
|
213
|
+
ViTForImageClassification
|
|
214
|
+
The restored model
|
|
215
|
+
"""
|
|
216
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
217
|
+
return ResourceDownloader.downloadModel(ViTForImageClassification, name, lang, remote_loc)
|
|
@@ -0,0 +1,216 @@
|
|
|
1
|
+
# Copyright 2017-2025 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
from pyspark.ml import Transformer
|
|
15
|
+
from pyspark.ml.param.shared import *
|
|
16
|
+
from pyspark.sql import DataFrame
|
|
17
|
+
from typing import Any
|
|
18
|
+
|
|
19
|
+
# Custom converter for string-to-string dictionaries
|
|
20
|
+
def toStringDict(value):
|
|
21
|
+
if not isinstance(value, dict):
|
|
22
|
+
raise TypeError("Expected a dictionary of strings.")
|
|
23
|
+
return {str(k): str(v) for k, v in value.items()}
|
|
24
|
+
|
|
25
|
+
class DataFrameOptimizer(Transformer):
|
|
26
|
+
"""
|
|
27
|
+
Optimizes a Spark DataFrame by repartitioning, optionally caching, and persisting it to disk.
|
|
28
|
+
|
|
29
|
+
This transformer is intended to improve performance for Spark NLP pipelines or when preparing
|
|
30
|
+
data for export. It allows partition tuning via `numPartitions` directly, or indirectly using
|
|
31
|
+
`executorCores` and `numWorkers`. The DataFrame can also be persisted in a specified format
|
|
32
|
+
(`csv`, `json`, or `parquet`) with additional writer options.
|
|
33
|
+
|
|
34
|
+
Parameters
|
|
35
|
+
----------
|
|
36
|
+
executorCores : int, optional
|
|
37
|
+
Number of cores per Spark executor (used to compute number of partitions if `numPartitions` is not set).
|
|
38
|
+
|
|
39
|
+
numWorkers : int, optional
|
|
40
|
+
Number of executor nodes (used to compute number of partitions if `numPartitions` is not set).
|
|
41
|
+
|
|
42
|
+
numPartitions : int, optional
|
|
43
|
+
Target number of partitions for the DataFrame (overrides calculation via cores × workers).
|
|
44
|
+
|
|
45
|
+
doCache : bool, default False
|
|
46
|
+
Whether to cache the DataFrame after repartitioning.
|
|
47
|
+
|
|
48
|
+
persistPath : str, optional
|
|
49
|
+
Path to save the DataFrame output (if persistence is enabled).
|
|
50
|
+
|
|
51
|
+
persistFormat : str, optional
|
|
52
|
+
Format to persist the DataFrame in: one of `'csv'`, `'json'`, or `'parquet'`.
|
|
53
|
+
|
|
54
|
+
outputOptions : dict, optional
|
|
55
|
+
Dictionary of options for the DataFrameWriter (e.g., `{"compression": "snappy"}` for parquet).
|
|
56
|
+
|
|
57
|
+
Examples
|
|
58
|
+
--------
|
|
59
|
+
>>> optimizer = DataFrameOptimizer() \\
|
|
60
|
+
... .setExecutorCores(4) \\
|
|
61
|
+
... .setNumWorkers(5) \\
|
|
62
|
+
... .setDoCache(True) \\
|
|
63
|
+
... .setPersistPath("/tmp/out") \\
|
|
64
|
+
... .setPersistFormat("parquet") \\
|
|
65
|
+
... .setOutputOptions({"compression": "snappy"})
|
|
66
|
+
|
|
67
|
+
>>> optimized_df = optimizer.transform(input_df)
|
|
68
|
+
|
|
69
|
+
Notes
|
|
70
|
+
-----
|
|
71
|
+
- You must specify either `numPartitions`, or both `executorCores` and `numWorkers`.
|
|
72
|
+
- Schema is preserved; no columns are modified or removed.
|
|
73
|
+
"""
|
|
74
|
+
|
|
75
|
+
executorCores = Param(
|
|
76
|
+
Params._dummy(),
|
|
77
|
+
"executorCores",
|
|
78
|
+
"Number of cores per executor",
|
|
79
|
+
typeConverter = TypeConverters.toInt
|
|
80
|
+
)
|
|
81
|
+
numWorkers = Param(
|
|
82
|
+
Params._dummy(),
|
|
83
|
+
"numWorkers",
|
|
84
|
+
"Number of Spark workers",
|
|
85
|
+
typeConverter = TypeConverters.toInt
|
|
86
|
+
)
|
|
87
|
+
numPartitions = Param(
|
|
88
|
+
Params._dummy(),
|
|
89
|
+
"numPartitions",
|
|
90
|
+
"Total number of partitions (overrides executorCores * numWorkers)",
|
|
91
|
+
typeConverter = TypeConverters.toInt
|
|
92
|
+
)
|
|
93
|
+
doCache = Param(
|
|
94
|
+
Params._dummy(),
|
|
95
|
+
"doCache",
|
|
96
|
+
"Whether to cache the DataFrame",
|
|
97
|
+
typeConverter = TypeConverters.toBoolean
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
persistPath = Param(
|
|
101
|
+
Params._dummy(),
|
|
102
|
+
"persistPath",
|
|
103
|
+
"Optional path to persist the DataFrame",
|
|
104
|
+
typeConverter = TypeConverters.toString
|
|
105
|
+
)
|
|
106
|
+
persistFormat = Param(
|
|
107
|
+
Params._dummy(),
|
|
108
|
+
"persistFormat",
|
|
109
|
+
"Format to persist: parquet, json, csv",
|
|
110
|
+
typeConverter = TypeConverters.toString
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
outputOptions = Param(
|
|
114
|
+
Params._dummy(),
|
|
115
|
+
"outputOptions",
|
|
116
|
+
"Additional writer options",
|
|
117
|
+
typeConverter=toStringDict
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
def __init__(self):
|
|
121
|
+
super().__init__()
|
|
122
|
+
self._setDefault(
|
|
123
|
+
doCache=False,
|
|
124
|
+
persistFormat="none",
|
|
125
|
+
numPartitions=1,
|
|
126
|
+
executorCores=1,
|
|
127
|
+
numWorkers=1
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
# Parameter setters
|
|
131
|
+
def setExecutorCores(self, value: int):
|
|
132
|
+
"""Set the number of executor cores."""
|
|
133
|
+
return self._set(executorCores=value)
|
|
134
|
+
|
|
135
|
+
def setNumWorkers(self, value: int):
|
|
136
|
+
"""Set the number of Spark workers."""
|
|
137
|
+
return self._set(numWorkers=value)
|
|
138
|
+
|
|
139
|
+
def setNumPartitions(self, value: int):
|
|
140
|
+
"""Set the total number of partitions (overrides cores * workers)."""
|
|
141
|
+
return self._set(numPartitions=value)
|
|
142
|
+
|
|
143
|
+
def setDoCache(self, value: bool):
|
|
144
|
+
"""Set whether to cache the DataFrame."""
|
|
145
|
+
return self._set(doCache=value)
|
|
146
|
+
|
|
147
|
+
def setPersistPath(self, value: str):
|
|
148
|
+
"""Set the path where the DataFrame should be persisted."""
|
|
149
|
+
return self._set(persistPath=value)
|
|
150
|
+
|
|
151
|
+
def setPersistFormat(self, value: str):
|
|
152
|
+
"""Set the format to persist the DataFrame (parquet, json, csv)."""
|
|
153
|
+
return self._set(persistFormat=value)
|
|
154
|
+
|
|
155
|
+
def setOutputOptions(self, value: dict):
|
|
156
|
+
"""Set additional writer options (e.g. for csv headers)."""
|
|
157
|
+
return self._set(outputOptions=value)
|
|
158
|
+
|
|
159
|
+
# Optional bulk setter
|
|
160
|
+
def setParams(self, **kwargs: Any):
|
|
161
|
+
for param, value in kwargs.items():
|
|
162
|
+
self._set(**{param: value})
|
|
163
|
+
return self
|
|
164
|
+
|
|
165
|
+
def _transform(self, dataset: DataFrame) -> DataFrame:
|
|
166
|
+
self._validate_params()
|
|
167
|
+
part_count = self.getOrDefault(self.numPartitions)
|
|
168
|
+
cores = self.getOrDefault(self.executorCores)
|
|
169
|
+
workers = self.getOrDefault(self.numWorkers)
|
|
170
|
+
if cores is None or workers is None:
|
|
171
|
+
raise ValueError("Provide either numPartitions or both executorCores and numWorkers")
|
|
172
|
+
if part_count == 1:
|
|
173
|
+
part_count = cores * workers
|
|
174
|
+
|
|
175
|
+
optimized_df = dataset.repartition(part_count)
|
|
176
|
+
|
|
177
|
+
if self.getOrDefault(self.doCache):
|
|
178
|
+
optimized_df = optimized_df.cache()
|
|
179
|
+
|
|
180
|
+
format = self.getOrDefault(self.persistFormat).lower()
|
|
181
|
+
if format != "none":
|
|
182
|
+
path = self.getOrDefault(self.persistPath)
|
|
183
|
+
if not path:
|
|
184
|
+
raise ValueError("persistPath must be set when persistFormat is not 'none'")
|
|
185
|
+
writer = optimized_df.write.mode("overwrite")
|
|
186
|
+
if self.isDefined(self.outputOptions):
|
|
187
|
+
writer = writer.options(**self.getOrDefault(self.outputOptions))
|
|
188
|
+
if format == "parquet":
|
|
189
|
+
writer.parquet(path)
|
|
190
|
+
elif format == "json":
|
|
191
|
+
writer.json(path)
|
|
192
|
+
elif format == "csv":
|
|
193
|
+
writer.csv(path)
|
|
194
|
+
else:
|
|
195
|
+
raise ValueError(f"Unsupported format: {format}")
|
|
196
|
+
|
|
197
|
+
return optimized_df
|
|
198
|
+
|
|
199
|
+
def _validate_params(self):
|
|
200
|
+
if self.isDefined(self.executorCores):
|
|
201
|
+
val = self.getOrDefault(self.executorCores)
|
|
202
|
+
if val <= 0:
|
|
203
|
+
raise ValueError("executorCores must be > 0")
|
|
204
|
+
|
|
205
|
+
if self.isDefined(self.numWorkers):
|
|
206
|
+
val = self.getOrDefault(self.numWorkers)
|
|
207
|
+
if val <= 0:
|
|
208
|
+
raise ValueError("numWorkers must be > 0")
|
|
209
|
+
|
|
210
|
+
if self.isDefined(self.numPartitions):
|
|
211
|
+
val = self.getOrDefault(self.numPartitions)
|
|
212
|
+
if val <= 0:
|
|
213
|
+
raise ValueError("numPartitions must be > 0")
|
|
214
|
+
|
|
215
|
+
if self.isDefined(self.persistPath) and not self.isDefined(self.persistFormat):
|
|
216
|
+
raise ValueError("persistFormat must be defined when persistPath is set")
|