spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,385 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for WordEmbeddings."""
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
from sparknlp.common import *
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class WordEmbeddings(AnnotatorApproach, HasEmbeddingsProperties, HasStorage):
|
|
21
|
+
"""Word Embeddings lookup annotator that maps tokens to vectors.
|
|
22
|
+
|
|
23
|
+
For instantiated/pretrained models, see :class:`.WordEmbeddingsModel`.
|
|
24
|
+
|
|
25
|
+
A custom token lookup dictionary for embeddings can be set with
|
|
26
|
+
:meth:`.setStoragePath`. Each line of the provided file needs to have a
|
|
27
|
+
token, followed by their vector representation, delimited by a spaces::
|
|
28
|
+
|
|
29
|
+
...
|
|
30
|
+
are 0.39658191506190343 0.630968081620067 0.5393722253731201 0.8428180123359783
|
|
31
|
+
were 0.7535235923631415 0.9699218875629833 0.10397182122983872 0.11833962569383116
|
|
32
|
+
stress 0.0492683418305907 0.9415954572751959 0.47624463167525755 0.16790967216778263
|
|
33
|
+
induced 0.1535748762292387 0.33498936903209897 0.9235178224122094 0.1158772920395934
|
|
34
|
+
...
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
If a token is not found in the dictionary, then the result will be a zero
|
|
38
|
+
vector of the same dimension. Statistics about the rate of converted tokens,
|
|
39
|
+
can be retrieved with :meth:`WordEmbeddingsModel.withCoverageColumn()
|
|
40
|
+
<sparknlp.annotator.WordEmbeddingsModel.withCoverageColumn>` and
|
|
41
|
+
:meth:`WordEmbeddingsModel.overallCoverage()
|
|
42
|
+
<sparknlp.annotator.WordEmbeddingsModel.overallCoverage>`.
|
|
43
|
+
|
|
44
|
+
For extended examples of usage, see the `Examples
|
|
45
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/scala/training/NerDL/win/customNerDlPipeline/CustomForNerDLPipeline.java>`__.
|
|
46
|
+
|
|
47
|
+
====================== ======================
|
|
48
|
+
Input Annotation types Output Annotation type
|
|
49
|
+
====================== ======================
|
|
50
|
+
``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
|
|
51
|
+
====================== ======================
|
|
52
|
+
|
|
53
|
+
Parameters
|
|
54
|
+
----------
|
|
55
|
+
writeBufferSize
|
|
56
|
+
Buffer size limit before dumping to disk storage while writing, by
|
|
57
|
+
default 10000
|
|
58
|
+
readCacheSize
|
|
59
|
+
Cache size for items retrieved from storage. Increase for performance
|
|
60
|
+
but higher memory consumption
|
|
61
|
+
|
|
62
|
+
Examples
|
|
63
|
+
--------
|
|
64
|
+
In this example, the file ``random_embeddings_dim4.txt`` has the form of the
|
|
65
|
+
content above.
|
|
66
|
+
|
|
67
|
+
>>> import sparknlp
|
|
68
|
+
>>> from sparknlp.base import *
|
|
69
|
+
>>> from sparknlp.annotator import *
|
|
70
|
+
>>> from pyspark.ml import Pipeline
|
|
71
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
72
|
+
... .setInputCol("text") \\
|
|
73
|
+
... .setOutputCol("document")
|
|
74
|
+
>>> tokenizer = Tokenizer() \\
|
|
75
|
+
... .setInputCols(["document"]) \\
|
|
76
|
+
... .setOutputCol("token")
|
|
77
|
+
>>> embeddings = WordEmbeddings() \\
|
|
78
|
+
... .setStoragePath("src/test/resources/random_embeddings_dim4.txt", ReadAs.TEXT) \\
|
|
79
|
+
... .setStorageRef("glove_4d") \\
|
|
80
|
+
... .setDimension(4) \\
|
|
81
|
+
... .setInputCols(["document", "token"]) \\
|
|
82
|
+
... .setOutputCol("embeddings")
|
|
83
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
84
|
+
... .setInputCols(["embeddings"]) \\
|
|
85
|
+
... .setOutputCols("finished_embeddings") \\
|
|
86
|
+
... .setOutputAsVector(True) \\
|
|
87
|
+
... .setCleanAnnotations(False)
|
|
88
|
+
>>> pipeline = Pipeline() \\
|
|
89
|
+
... .setStages([
|
|
90
|
+
... documentAssembler,
|
|
91
|
+
... tokenizer,
|
|
92
|
+
... embeddings,
|
|
93
|
+
... embeddingsFinisher
|
|
94
|
+
... ])
|
|
95
|
+
>>> data = spark.createDataFrame([["The patient was diagnosed with diabetes."]]).toDF("text")
|
|
96
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
97
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(truncate=False)
|
|
98
|
+
+----------------------------------------------------------------------------------+
|
|
99
|
+
|result |
|
|
100
|
+
+----------------------------------------------------------------------------------+
|
|
101
|
+
|[0.9439099431037903,0.4707513153553009,0.806300163269043,0.16176554560661316] |
|
|
102
|
+
|[0.7966810464859009,0.5551124811172485,0.8861005902290344,0.28284206986427307] |
|
|
103
|
+
|[0.025029370561242104,0.35177749395370483,0.052506182342767715,0.1887107789516449]|
|
|
104
|
+
|[0.08617766946554184,0.8399239182472229,0.5395117998123169,0.7864698767662048] |
|
|
105
|
+
|[0.6599600911140442,0.16109347343444824,0.6041093468666077,0.8913561105728149] |
|
|
106
|
+
|[0.5955275893211365,0.01899011991918087,0.4397728443145752,0.8911281824111938] |
|
|
107
|
+
|[0.9840458631515503,0.7599489092826843,0.9417727589607239,0.8624503016471863] |
|
|
108
|
+
+----------------------------------------------------------------------------------+
|
|
109
|
+
|
|
110
|
+
See Also
|
|
111
|
+
--------
|
|
112
|
+
SentenceEmbeddings : to combine embeddings into a sentence-level representation
|
|
113
|
+
"""
|
|
114
|
+
|
|
115
|
+
name = "WordEmbeddings"
|
|
116
|
+
|
|
117
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
118
|
+
|
|
119
|
+
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
|
|
120
|
+
|
|
121
|
+
writeBufferSize = Param(Params._dummy(),
|
|
122
|
+
"writeBufferSize",
|
|
123
|
+
"buffer size limit before dumping to disk storage while writing",
|
|
124
|
+
typeConverter=TypeConverters.toInt)
|
|
125
|
+
|
|
126
|
+
readCacheSize = Param(Params._dummy(),
|
|
127
|
+
"readCacheSize",
|
|
128
|
+
"cache size for items retrieved from storage. Increase for performance but higher memory consumption",
|
|
129
|
+
typeConverter=TypeConverters.toInt)
|
|
130
|
+
|
|
131
|
+
def setWriteBufferSize(self, v):
|
|
132
|
+
"""Sets buffer size limit before dumping to disk storage while writing,
|
|
133
|
+
by default 10000.
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
v : int
|
|
138
|
+
Buffer size limit
|
|
139
|
+
"""
|
|
140
|
+
return self._set(writeBufferSize=v)
|
|
141
|
+
|
|
142
|
+
def setReadCacheSize(self, v):
|
|
143
|
+
"""Sets cache size for items retrieved from storage. Increase for
|
|
144
|
+
performance but higher memory consumption.
|
|
145
|
+
|
|
146
|
+
Parameters
|
|
147
|
+
----------
|
|
148
|
+
v : int
|
|
149
|
+
Cache size for items retrieved from storage
|
|
150
|
+
"""
|
|
151
|
+
return self._set(readCacheSize=v)
|
|
152
|
+
|
|
153
|
+
@keyword_only
|
|
154
|
+
def __init__(self):
|
|
155
|
+
super(WordEmbeddings, self).__init__(classname="com.johnsnowlabs.nlp.embeddings.WordEmbeddings")
|
|
156
|
+
self._setDefault(
|
|
157
|
+
caseSensitive=False,
|
|
158
|
+
writeBufferSize=10000,
|
|
159
|
+
storageRef=self.uid
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
def _create_model(self, java_model):
|
|
163
|
+
return WordEmbeddingsModel(java_model=java_model)
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
class WordEmbeddingsModel(AnnotatorModel, HasEmbeddingsProperties, HasStorageModel):
|
|
167
|
+
"""Word Embeddings lookup annotator that maps tokens to vectors
|
|
168
|
+
|
|
169
|
+
This is the instantiated model of :class:`.WordEmbeddings`.
|
|
170
|
+
|
|
171
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
172
|
+
object:
|
|
173
|
+
|
|
174
|
+
>>> embeddings = WordEmbeddingsModel.pretrained() \\
|
|
175
|
+
... .setInputCols(["document", "token"]) \\
|
|
176
|
+
... .setOutputCol("embeddings")
|
|
177
|
+
|
|
178
|
+
The default model is ``"glove_100d"``, if no name is provided. For available
|
|
179
|
+
pretrained models please see the `Models Hub
|
|
180
|
+
<https://sparknlp.org/models?task=Embeddings>`__.
|
|
181
|
+
|
|
182
|
+
For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_offline.ipynb>`__.
|
|
183
|
+
|
|
184
|
+
====================== ======================
|
|
185
|
+
Input Annotation types Output Annotation type
|
|
186
|
+
====================== ======================
|
|
187
|
+
``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
|
|
188
|
+
====================== ======================
|
|
189
|
+
|
|
190
|
+
Parameters
|
|
191
|
+
----------
|
|
192
|
+
dimension
|
|
193
|
+
Number of embedding dimensions
|
|
194
|
+
readCacheSize
|
|
195
|
+
Cache size for items retrieved from storage. Increase for performance
|
|
196
|
+
but higher memory consumption
|
|
197
|
+
|
|
198
|
+
Notes
|
|
199
|
+
-----
|
|
200
|
+
There are also two convenient functions to retrieve the embeddings coverage
|
|
201
|
+
with respect to the transformed dataset:
|
|
202
|
+
|
|
203
|
+
- :meth:`.withCoverageColumn`: Adds a custom
|
|
204
|
+
column with word coverage stats for the embedded field. This creates
|
|
205
|
+
a new column with statistics for each row.
|
|
206
|
+
- :meth:`.overallCoverage`: Calculates overall word
|
|
207
|
+
coverage for the whole data in the embedded field. This returns a single
|
|
208
|
+
coverage object considering all rows in the field.
|
|
209
|
+
|
|
210
|
+
Examples
|
|
211
|
+
--------
|
|
212
|
+
>>> import sparknlp
|
|
213
|
+
>>> from sparknlp.base import *
|
|
214
|
+
>>> from sparknlp.annotator import *
|
|
215
|
+
>>> from pyspark.ml import Pipeline
|
|
216
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
217
|
+
... .setInputCol("text") \\
|
|
218
|
+
... .setOutputCol("document")
|
|
219
|
+
>>> tokenizer = Tokenizer() \\
|
|
220
|
+
... .setInputCols(["document"]) \\
|
|
221
|
+
... .setOutputCol("token")
|
|
222
|
+
>>> embeddings = WordEmbeddingsModel.pretrained() \\
|
|
223
|
+
... .setInputCols(["document", "token"]) \\
|
|
224
|
+
... .setOutputCol("embeddings")
|
|
225
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
226
|
+
... .setInputCols(["embeddings"]) \\
|
|
227
|
+
... .setOutputCols("finished_embeddings") \\
|
|
228
|
+
... .setOutputAsVector(True) \\
|
|
229
|
+
... .setCleanAnnotations(False)
|
|
230
|
+
>>> pipeline = Pipeline() \\
|
|
231
|
+
... .setStages([
|
|
232
|
+
... documentAssembler,
|
|
233
|
+
... tokenizer,
|
|
234
|
+
... embeddings,
|
|
235
|
+
... embeddingsFinisher
|
|
236
|
+
... ])
|
|
237
|
+
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
|
|
238
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
239
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
240
|
+
+--------------------------------------------------------------------------------+
|
|
241
|
+
| result|
|
|
242
|
+
+--------------------------------------------------------------------------------+
|
|
243
|
+
|[-0.570580005645752,0.44183000922203064,0.7010200023651123,-0.417129993438720...|
|
|
244
|
+
|[-0.542639970779419,0.4147599935531616,1.0321999788284302,-0.4024400115013122...|
|
|
245
|
+
|[-0.2708599865436554,0.04400600120425224,-0.020260000601410866,-0.17395000159...|
|
|
246
|
+
|[0.6191999912261963,0.14650000631809235,-0.08592499792575836,-0.2629800140857...|
|
|
247
|
+
|[-0.3397899866104126,0.20940999686717987,0.46347999572753906,-0.6479200124740...|
|
|
248
|
+
+--------------------------------------------------------------------------------+
|
|
249
|
+
|
|
250
|
+
See Also
|
|
251
|
+
--------
|
|
252
|
+
SentenceEmbeddings : to combine embeddings into a sentence-level representation
|
|
253
|
+
"""
|
|
254
|
+
|
|
255
|
+
name = "WordEmbeddingsModel"
|
|
256
|
+
|
|
257
|
+
databases = ['EMBEDDINGS']
|
|
258
|
+
|
|
259
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
260
|
+
|
|
261
|
+
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
|
|
262
|
+
|
|
263
|
+
readCacheSize = Param(Params._dummy(),
|
|
264
|
+
"readCacheSize",
|
|
265
|
+
"cache size for items retrieved from storage. Increase for performance but higher memory consumption",
|
|
266
|
+
typeConverter=TypeConverters.toInt)
|
|
267
|
+
|
|
268
|
+
def setReadCacheSize(self, v):
|
|
269
|
+
"""Sets cache size for items retrieved from storage. Increase for
|
|
270
|
+
performance but higher memory consumption.
|
|
271
|
+
|
|
272
|
+
Parameters
|
|
273
|
+
----------
|
|
274
|
+
v : int
|
|
275
|
+
Cache size for items retrieved from storage
|
|
276
|
+
"""
|
|
277
|
+
return self._set(readCacheSize=v)
|
|
278
|
+
|
|
279
|
+
@keyword_only
|
|
280
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.WordEmbeddingsModel", java_model=None):
|
|
281
|
+
super(WordEmbeddingsModel, self).__init__(
|
|
282
|
+
classname=classname,
|
|
283
|
+
java_model=java_model
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
@staticmethod
|
|
287
|
+
def overallCoverage(dataset, embeddings_col):
|
|
288
|
+
"""Calculates overall word coverage for the whole data in the embedded
|
|
289
|
+
field.
|
|
290
|
+
|
|
291
|
+
This returns a single coverage object considering all rows in the
|
|
292
|
+
field.
|
|
293
|
+
|
|
294
|
+
Parameters
|
|
295
|
+
----------
|
|
296
|
+
dataset : :class:`pyspark.sql.DataFrame`
|
|
297
|
+
The dataset with embeddings column
|
|
298
|
+
embeddings_col : str
|
|
299
|
+
Name of the embeddings column
|
|
300
|
+
|
|
301
|
+
Returns
|
|
302
|
+
-------
|
|
303
|
+
:class:`.CoverageResult`
|
|
304
|
+
CoverateResult object with extracted information
|
|
305
|
+
|
|
306
|
+
Examples
|
|
307
|
+
--------
|
|
308
|
+
>>> wordsOverallCoverage = WordEmbeddingsModel.overallCoverage(
|
|
309
|
+
... resultDF,"embeddings"
|
|
310
|
+
... ).percentage
|
|
311
|
+
1.0
|
|
312
|
+
"""
|
|
313
|
+
from sparknlp.internal import _EmbeddingsOverallCoverage
|
|
314
|
+
from sparknlp.common import CoverageResult
|
|
315
|
+
return CoverageResult(_EmbeddingsOverallCoverage(dataset, embeddings_col).apply())
|
|
316
|
+
|
|
317
|
+
@staticmethod
|
|
318
|
+
def withCoverageColumn(dataset, embeddings_col, output_col='coverage'):
|
|
319
|
+
"""Adds a custom column with word coverage stats for the embedded field.
|
|
320
|
+
This creates a new column with statistics for each row.
|
|
321
|
+
|
|
322
|
+
Parameters
|
|
323
|
+
----------
|
|
324
|
+
dataset : :class:`pyspark.sql.DataFrame`
|
|
325
|
+
The dataset with embeddings column
|
|
326
|
+
embeddings_col : str
|
|
327
|
+
Name of the embeddings column
|
|
328
|
+
output_col : str, optional
|
|
329
|
+
Name for the resulting column, by default 'coverage'
|
|
330
|
+
|
|
331
|
+
Returns
|
|
332
|
+
-------
|
|
333
|
+
:class:`pyspark.sql.DataFrame`
|
|
334
|
+
Dataframe with calculated coverage
|
|
335
|
+
|
|
336
|
+
Examples
|
|
337
|
+
--------
|
|
338
|
+
>>> wordsCoverage = WordEmbeddingsModel.withCoverageColumn(resultDF, "embeddings", "cov_embeddings")
|
|
339
|
+
>>> wordsCoverage.select("text","cov_embeddings").show(truncate=False)
|
|
340
|
+
+-------------------+--------------+
|
|
341
|
+
|text |cov_embeddings|
|
|
342
|
+
+-------------------+--------------+
|
|
343
|
+
|This is a sentence.|[5, 5, 1.0] |
|
|
344
|
+
+-------------------+--------------+
|
|
345
|
+
"""
|
|
346
|
+
from sparknlp.internal import _EmbeddingsCoverageColumn
|
|
347
|
+
from pyspark.sql import DataFrame
|
|
348
|
+
return DataFrame(_EmbeddingsCoverageColumn(dataset, embeddings_col, output_col).apply(), dataset.sql_ctx)
|
|
349
|
+
|
|
350
|
+
@staticmethod
|
|
351
|
+
def pretrained(name="glove_100d", lang="en", remote_loc=None):
|
|
352
|
+
"""Downloads and loads a pretrained model.
|
|
353
|
+
|
|
354
|
+
Parameters
|
|
355
|
+
----------
|
|
356
|
+
name : str, optional
|
|
357
|
+
Name of the pretrained model, by default "glove_100d"
|
|
358
|
+
lang : str, optional
|
|
359
|
+
Language of the pretrained model, by default "en"
|
|
360
|
+
remote_loc : str, optional
|
|
361
|
+
Optional remote address of the resource, by default None. Will use
|
|
362
|
+
Spark NLPs repositories otherwise.
|
|
363
|
+
|
|
364
|
+
Returns
|
|
365
|
+
-------
|
|
366
|
+
WordEmbeddingsModel
|
|
367
|
+
The restored model
|
|
368
|
+
"""
|
|
369
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
370
|
+
return ResourceDownloader.downloadModel(WordEmbeddingsModel, name, lang, remote_loc)
|
|
371
|
+
|
|
372
|
+
@staticmethod
|
|
373
|
+
def loadStorage(path, spark, storage_ref):
|
|
374
|
+
"""Loads the model from storage.
|
|
375
|
+
|
|
376
|
+
Parameters
|
|
377
|
+
----------
|
|
378
|
+
path : str
|
|
379
|
+
Path to the model
|
|
380
|
+
spark : :class:`pyspark.sql.SparkSession`
|
|
381
|
+
The current SparkSession
|
|
382
|
+
storage_ref : str
|
|
383
|
+
Identifiers for the model parameters
|
|
384
|
+
"""
|
|
385
|
+
HasStorageModel.loadStorages(path, spark, storage_ref, WordEmbeddingsModel.databases)
|
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for XlmRoBertaEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class XlmRoBertaEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
26
|
+
"""The XLM-RoBERTa model was proposed in `Unsupervised Cross-lingual
|
|
27
|
+
Representation Learning at Scale` by Alexis Conneau, Kartikay Khandelwal,
|
|
28
|
+
Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard
|
|
29
|
+
Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
|
|
30
|
+
|
|
31
|
+
It is based on Facebook's RoBERTa model released in 2019. It is a large
|
|
32
|
+
multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data.
|
|
33
|
+
|
|
34
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
35
|
+
object:
|
|
36
|
+
|
|
37
|
+
>>> embeddings = XlmRoBertaEmbeddings.pretrained() \\
|
|
38
|
+
... .setInputCols(["document", "token"]) \\
|
|
39
|
+
... .setOutputCol("embeddings")
|
|
40
|
+
|
|
41
|
+
The default model is ``"xlm_roberta_base"``, default language is ``"xx"``
|
|
42
|
+
(meaning multi-lingual), if no values are provided. For available pretrained
|
|
43
|
+
models please see the `Models Hub
|
|
44
|
+
<https://sparknlp.org/models?task=Embeddings>`__.
|
|
45
|
+
|
|
46
|
+
For extended examples of usage, see the `Examples
|
|
47
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/HuggingFace%20in%20Spark%20NLP%20-%20XLM-RoBERTa.ipynb>`__.
|
|
48
|
+
To see which models are compatible and how to import them see
|
|
49
|
+
`Import Transformers into Spark NLP 🚀
|
|
50
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
51
|
+
|
|
52
|
+
====================== ======================
|
|
53
|
+
Input Annotation types Output Annotation type
|
|
54
|
+
====================== ======================
|
|
55
|
+
``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
|
|
56
|
+
====================== ======================
|
|
57
|
+
|
|
58
|
+
Parameters
|
|
59
|
+
----------
|
|
60
|
+
batchSize
|
|
61
|
+
Size of every batch, by default 8
|
|
62
|
+
dimension
|
|
63
|
+
Number of embedding dimensions, by default 768
|
|
64
|
+
caseSensitive
|
|
65
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
66
|
+
True
|
|
67
|
+
maxSentenceLength
|
|
68
|
+
Max sentence length to process, by default 128
|
|
69
|
+
configProtoBytes
|
|
70
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
71
|
+
|
|
72
|
+
Notes
|
|
73
|
+
-----
|
|
74
|
+
- XLM-RoBERTa is a multilingual model trained on 100 different languages.
|
|
75
|
+
Unlike some XLM multilingual models, it does not require **lang**
|
|
76
|
+
parameter to understand which language is used, and should be able to
|
|
77
|
+
determine the correct language from the input ids.
|
|
78
|
+
- This implementation is the same as RoBERTa. Refer to
|
|
79
|
+
:class:`.RoBertaEmbeddings` for usage examples as well as the information
|
|
80
|
+
relative to the inputs and outputs.
|
|
81
|
+
|
|
82
|
+
References
|
|
83
|
+
----------
|
|
84
|
+
`Unsupervised Cross-lingual
|
|
85
|
+
Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__
|
|
86
|
+
|
|
87
|
+
**Paper Abstract:**
|
|
88
|
+
|
|
89
|
+
*This paper shows that pretraining multilingual language models at scale
|
|
90
|
+
leads to significant performance gains for a wide range of cross-lingual
|
|
91
|
+
transfer tasks. We train a Transformer-based masked language model on one
|
|
92
|
+
hundred languages, using more than two terabytes of filtered CommonCrawl
|
|
93
|
+
data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT
|
|
94
|
+
(mBERT) on a variety of cross-lingual benchmarks, including +13.8% average
|
|
95
|
+
accuracy on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1
|
|
96
|
+
score on NER. XLM-R performs particularly well on low-resource languages,
|
|
97
|
+
improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the
|
|
98
|
+
previous XLM model. We also present a detailed empirical evaluation of the
|
|
99
|
+
key factors that are required to achieve these gains, including the
|
|
100
|
+
trade-offs between (1) positive transfer and capacity dilution and (2) the
|
|
101
|
+
performance of high and low resource languages at scale. Finally, we show,
|
|
102
|
+
for the first time, the possibility of multilingual modeling without
|
|
103
|
+
sacrificing per-language performance; XLM-Ris very competitive with strong
|
|
104
|
+
monolingual models on the GLUE and XNLI benchmarks. We will make XLM-R code,
|
|
105
|
+
data, and models publicly available.*
|
|
106
|
+
|
|
107
|
+
Examples
|
|
108
|
+
--------
|
|
109
|
+
>>> import sparknlp
|
|
110
|
+
>>> from sparknlp.base import *
|
|
111
|
+
>>> from sparknlp.annotator import *
|
|
112
|
+
>>> from pyspark.ml import Pipeline
|
|
113
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
114
|
+
... .setInputCol("text") \\
|
|
115
|
+
... .setOutputCol("document")
|
|
116
|
+
>>> tokenizer = Tokenizer() \\
|
|
117
|
+
... .setInputCols(["document"]) \\
|
|
118
|
+
... .setOutputCol("token")
|
|
119
|
+
>>> embeddings = XlmRoBertaEmbeddings.pretrained() \\
|
|
120
|
+
... .setInputCols(["document", "token"]) \\
|
|
121
|
+
... .setOutputCol("embeddings") \\
|
|
122
|
+
... .setCaseSensitive(True)
|
|
123
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
124
|
+
... .setInputCols(["embeddings"]) \\
|
|
125
|
+
... .setOutputCols("finished_embeddings") \\
|
|
126
|
+
... .setOutputAsVector(True) \\
|
|
127
|
+
... .setCleanAnnotations(False)
|
|
128
|
+
>>> pipeline = Pipeline() \\
|
|
129
|
+
... .setStages([
|
|
130
|
+
... documentAssembler,
|
|
131
|
+
... tokenizer,
|
|
132
|
+
... embeddings,
|
|
133
|
+
... embeddingsFinisher
|
|
134
|
+
... ])
|
|
135
|
+
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
|
|
136
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
137
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
138
|
+
+--------------------------------------------------------------------------------+
|
|
139
|
+
| result|
|
|
140
|
+
+--------------------------------------------------------------------------------+
|
|
141
|
+
|[-0.05969233065843582,-0.030789051204919815,0.04443822056055069,0.09564960747...|
|
|
142
|
+
|[-0.038839809596538544,0.011712731793522835,0.019954433664679527,0.0667808502...|
|
|
143
|
+
|[-0.03952755779027939,-0.03455188870429993,0.019103847444057465,0.04311436787...|
|
|
144
|
+
|[-0.09579929709434509,0.02494969218969345,-0.014753809198737144,0.10259044915...|
|
|
145
|
+
|[0.004710011184215546,-0.022148698568344116,0.011723337695002556,-0.013356896...|
|
|
146
|
+
+--------------------------------------------------------------------------------+
|
|
147
|
+
"""
|
|
148
|
+
|
|
149
|
+
name = "XlmRoBertaEmbeddings"
|
|
150
|
+
|
|
151
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
152
|
+
|
|
153
|
+
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
|
|
154
|
+
|
|
155
|
+
configProtoBytes = Param(Params._dummy(),
|
|
156
|
+
"configProtoBytes",
|
|
157
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
158
|
+
TypeConverters.toListInt)
|
|
159
|
+
|
|
160
|
+
def setConfigProtoBytes(self, b):
|
|
161
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
162
|
+
|
|
163
|
+
Parameters
|
|
164
|
+
----------
|
|
165
|
+
b : List[int]
|
|
166
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
167
|
+
"""
|
|
168
|
+
return self._set(configProtoBytes=b)
|
|
169
|
+
|
|
170
|
+
@keyword_only
|
|
171
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlmRoBertaEmbeddings", java_model=None):
|
|
172
|
+
super(XlmRoBertaEmbeddings, self).__init__(
|
|
173
|
+
classname=classname,
|
|
174
|
+
java_model=java_model
|
|
175
|
+
)
|
|
176
|
+
self._setDefault(
|
|
177
|
+
dimension=768,
|
|
178
|
+
batchSize=8,
|
|
179
|
+
maxSentenceLength=128,
|
|
180
|
+
caseSensitive=True
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
@staticmethod
|
|
184
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
185
|
+
"""Loads a locally saved model.
|
|
186
|
+
|
|
187
|
+
Parameters
|
|
188
|
+
----------
|
|
189
|
+
folder : str
|
|
190
|
+
Folder of the saved model
|
|
191
|
+
spark_session : pyspark.sql.SparkSession
|
|
192
|
+
The current SparkSession
|
|
193
|
+
use_openvino: bool
|
|
194
|
+
Use OpenVINO backend
|
|
195
|
+
|
|
196
|
+
Returns
|
|
197
|
+
-------
|
|
198
|
+
XlmRoBertaEmbeddings
|
|
199
|
+
The restored model
|
|
200
|
+
"""
|
|
201
|
+
from sparknlp.internal import _XlmRoBertaLoader
|
|
202
|
+
jModel = _XlmRoBertaLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
203
|
+
return XlmRoBertaEmbeddings(java_model=jModel)
|
|
204
|
+
|
|
205
|
+
@staticmethod
|
|
206
|
+
def pretrained(name="xlm_roberta_base", lang="xx", remote_loc=None):
|
|
207
|
+
"""Downloads and loads a pretrained model.
|
|
208
|
+
|
|
209
|
+
Parameters
|
|
210
|
+
----------
|
|
211
|
+
name : str, optional
|
|
212
|
+
Name of the pretrained model, by default "xlm_roberta_base"
|
|
213
|
+
lang : str, optional
|
|
214
|
+
Language of the pretrained model, by default "xx"
|
|
215
|
+
remote_loc : str, optional
|
|
216
|
+
Optional remote address of the resource, by default None. Will use
|
|
217
|
+
Spark NLPs repositories otherwise.
|
|
218
|
+
|
|
219
|
+
Returns
|
|
220
|
+
-------
|
|
221
|
+
XlmRoBertaEmbeddings
|
|
222
|
+
The restored model
|
|
223
|
+
"""
|
|
224
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
225
|
+
return ResourceDownloader.downloadModel(XlmRoBertaEmbeddings, name, lang, remote_loc)
|