spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,195 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for E5Embeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class E5Embeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using E5.
|
|
26
|
+
|
|
27
|
+
E5, a weakly supervised text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.)
|
|
28
|
+
Note that this annotator is only supported for Spark Versions 3.4 and up.
|
|
29
|
+
|
|
30
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
31
|
+
object:
|
|
32
|
+
|
|
33
|
+
>>> embeddings = E5Embeddings.pretrained() \\
|
|
34
|
+
... .setInputCols(["document"]) \\
|
|
35
|
+
... .setOutputCol("e5_embeddings")
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
The default model is ``"e5_small"``, if no name is provided.
|
|
39
|
+
|
|
40
|
+
For available pretrained models please see the
|
|
41
|
+
`Models Hub <https://sparknlp.org/models?q=E5>`__.
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Size of every batch , by default 8
|
|
54
|
+
dimension
|
|
55
|
+
Number of embedding dimensions, by default 768
|
|
56
|
+
caseSensitive
|
|
57
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
58
|
+
maxSentenceLength
|
|
59
|
+
Max sentence length to process, by default 512
|
|
60
|
+
configProtoBytes
|
|
61
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
62
|
+
|
|
63
|
+
References
|
|
64
|
+
----------
|
|
65
|
+
`Text Embeddings by Weakly-Supervised Contrastive Pre-training <https://arxiv.org/pdf/2212.03533>`__
|
|
66
|
+
|
|
67
|
+
https://github.com/microsoft/unilm/tree/master/e5
|
|
68
|
+
|
|
69
|
+
**Paper abstract**
|
|
70
|
+
|
|
71
|
+
*This paper presents E5, a family of state-of-the-art text embeddings that transfer
|
|
72
|
+
well to a wide range of tasks. The model is trained in a contrastive manner with
|
|
73
|
+
weak supervision signals from our curated large-scale text pair dataset (called
|
|
74
|
+
CCPairs). E5 can be readily used as a general-purpose embedding model for any
|
|
75
|
+
tasks requiring a single-vector representation of texts such as retrieval, clustering,
|
|
76
|
+
and classification, achieving strong performance in both zero-shot and fine-tuned
|
|
77
|
+
settings. We conduct extensive evaluations on 56 datasets from the BEIR and
|
|
78
|
+
MTEB benchmarks. For zero-shot settings, E5 is the first model that outperforms
|
|
79
|
+
the strong BM25 baseline on the BEIR retrieval benchmark without using any
|
|
80
|
+
labeled data. When fine-tuned, E5 obtains the best results on the MTEB benchmark,
|
|
81
|
+
beating existing embedding models with 40× more parameters.*
|
|
82
|
+
|
|
83
|
+
Examples
|
|
84
|
+
--------
|
|
85
|
+
>>> import sparknlp
|
|
86
|
+
>>> from sparknlp.base import *
|
|
87
|
+
>>> from sparknlp.annotator import *
|
|
88
|
+
>>> from pyspark.ml import Pipeline
|
|
89
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
90
|
+
... .setInputCol("text") \\
|
|
91
|
+
... .setOutputCol("document")
|
|
92
|
+
>>> embeddings = E5Embeddings.pretrained() \\
|
|
93
|
+
... .setInputCols(["document"]) \\
|
|
94
|
+
... .setOutputCol("e5_embeddings")
|
|
95
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
96
|
+
... .setInputCols(["e5_embeddings"]) \\
|
|
97
|
+
... .setOutputCols("finished_embeddings") \\
|
|
98
|
+
... .setOutputAsVector(True)
|
|
99
|
+
>>> pipeline = Pipeline().setStages([
|
|
100
|
+
... documentAssembler,
|
|
101
|
+
... embeddings,
|
|
102
|
+
... embeddingsFinisher
|
|
103
|
+
... ])
|
|
104
|
+
>>> data = spark.createDataFrame([["query: how much protein should a female eat",
|
|
105
|
+
... "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day." + \
|
|
106
|
+
... "But, as you can see from this chart, you'll need to increase that if you're expecting or training for a" + \
|
|
107
|
+
... "marathon. Check out the chart below to see how much protein you should be eating each day.",
|
|
108
|
+
... ]]).toDF("text")
|
|
109
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
110
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
111
|
+
+--------------------------------------------------------------------------------+
|
|
112
|
+
| result|
|
|
113
|
+
+--------------------------------------------------------------------------------+
|
|
114
|
+
|[[8.0190285E-4, -0.005974853, -0.072875895, 0.007944068, 0.026059335, -0.0080...|
|
|
115
|
+
|[[0.050514214, 0.010061974, -0.04340176, -0.020937217, 0.05170225, 0.01157857...|
|
|
116
|
+
+--------------------------------------------------------------------------------+
|
|
117
|
+
"""
|
|
118
|
+
|
|
119
|
+
name = "E5Embeddings"
|
|
120
|
+
|
|
121
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
122
|
+
|
|
123
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
124
|
+
configProtoBytes = Param(Params._dummy(),
|
|
125
|
+
"configProtoBytes",
|
|
126
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
127
|
+
TypeConverters.toListInt)
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def setConfigProtoBytes(self, b):
|
|
131
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
132
|
+
|
|
133
|
+
Parameters
|
|
134
|
+
----------
|
|
135
|
+
b : List[int]
|
|
136
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
137
|
+
"""
|
|
138
|
+
return self._set(configProtoBytes=b)
|
|
139
|
+
|
|
140
|
+
@keyword_only
|
|
141
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.E5Embeddings", java_model=None):
|
|
142
|
+
super(E5Embeddings, self).__init__(
|
|
143
|
+
classname=classname,
|
|
144
|
+
java_model=java_model
|
|
145
|
+
)
|
|
146
|
+
self._setDefault(
|
|
147
|
+
dimension=768,
|
|
148
|
+
batchSize=8,
|
|
149
|
+
maxSentenceLength=512,
|
|
150
|
+
caseSensitive=False,
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
@staticmethod
|
|
154
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
155
|
+
"""Loads a locally saved model.
|
|
156
|
+
|
|
157
|
+
Parameters
|
|
158
|
+
----------
|
|
159
|
+
folder : str
|
|
160
|
+
Folder of the saved model
|
|
161
|
+
spark_session : pyspark.sql.SparkSession
|
|
162
|
+
The current SparkSession
|
|
163
|
+
use_openvino : bool
|
|
164
|
+
Use OpenVINO backend
|
|
165
|
+
|
|
166
|
+
Returns
|
|
167
|
+
-------
|
|
168
|
+
E5Embeddings
|
|
169
|
+
The restored model
|
|
170
|
+
"""
|
|
171
|
+
from sparknlp.internal import _E5Loader
|
|
172
|
+
jModel = _E5Loader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
173
|
+
return E5Embeddings(java_model=jModel)
|
|
174
|
+
|
|
175
|
+
@staticmethod
|
|
176
|
+
def pretrained(name="e5_small", lang="en", remote_loc=None):
|
|
177
|
+
"""Downloads and loads a pretrained model.
|
|
178
|
+
|
|
179
|
+
Parameters
|
|
180
|
+
----------
|
|
181
|
+
name : str, optional
|
|
182
|
+
Name of the pretrained model, by default "e5_small"
|
|
183
|
+
lang : str, optional
|
|
184
|
+
Language of the pretrained model, by default "en"
|
|
185
|
+
remote_loc : str, optional
|
|
186
|
+
Optional remote address of the resource, by default None. Will use
|
|
187
|
+
Spark NLPs repositories otherwise.
|
|
188
|
+
|
|
189
|
+
Returns
|
|
190
|
+
-------
|
|
191
|
+
E5Embeddings
|
|
192
|
+
The restored model
|
|
193
|
+
"""
|
|
194
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
195
|
+
return ResourceDownloader.downloadModel(E5Embeddings, name, lang, remote_loc)
|
|
@@ -0,0 +1,138 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class E5VEmbeddings(AnnotatorModel,
|
|
18
|
+
HasBatchedAnnotateImage,
|
|
19
|
+
HasImageFeatureProperties,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasRescaleFactor):
|
|
22
|
+
"""Universal multimodal embeddings using the E5-V model (see https://huggingface.co/royokong/e5-v).
|
|
23
|
+
|
|
24
|
+
E5-V bridges the modality gap between different input types (text, image) and demonstrates strong performance in multimodal embeddings, even without fine-tuning. It also supports a single-modality training approach, where the model is trained exclusively on text pairs, often yielding better performance than multimodal training.
|
|
25
|
+
|
|
26
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
|
|
27
|
+
|
|
28
|
+
>>> e5vEmbeddings = E5VEmbeddings.pretrained() \
|
|
29
|
+
... .setInputCols(["image_assembler"]) \
|
|
30
|
+
... .setOutputCol("e5v")
|
|
31
|
+
|
|
32
|
+
The default model is ``"e5v_int4"``, if no name is provided.
|
|
33
|
+
|
|
34
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Question+Answering>`__.
|
|
35
|
+
|
|
36
|
+
====================== ======================
|
|
37
|
+
Input Annotation types Output Annotation type
|
|
38
|
+
====================== ======================
|
|
39
|
+
``IMAGE`` ``SENTENCE_EMBEDDINGS``
|
|
40
|
+
====================== ======================
|
|
41
|
+
|
|
42
|
+
Examples
|
|
43
|
+
--------
|
|
44
|
+
Image + Text Embedding:
|
|
45
|
+
>>> import sparknlp
|
|
46
|
+
>>> from sparknlp.base import *
|
|
47
|
+
>>> from sparknlp.annotator import *
|
|
48
|
+
>>> from pyspark.ml import Pipeline
|
|
49
|
+
>>> image_df = spark.read.format("image").option("dropInvalid", value = True).load(imageFolder)
|
|
50
|
+
>>> imagePrompt = "<|start_header_id|>user<|end_header_id|>\n\n<image>\\nSummary above image in one word: <|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n"
|
|
51
|
+
>>> test_df = image_df.withColumn("text", lit(imagePrompt))
|
|
52
|
+
>>> imageAssembler = ImageAssembler() \
|
|
53
|
+
... .setInputCol("image") \
|
|
54
|
+
... .setOutputCol("image_assembler")
|
|
55
|
+
>>> e5vEmbeddings = E5VEmbeddings.pretrained() \
|
|
56
|
+
... .setInputCols(["image_assembler"]) \
|
|
57
|
+
... .setOutputCol("e5v")
|
|
58
|
+
>>> pipeline = Pipeline().setStages([
|
|
59
|
+
... imageAssembler,
|
|
60
|
+
... e5vEmbeddings
|
|
61
|
+
... ])
|
|
62
|
+
>>> result = pipeline.fit(test_df).transform(test_df)
|
|
63
|
+
>>> result.select("e5v.embeddings").show(truncate = False)
|
|
64
|
+
|
|
65
|
+
Text-Only Embedding:
|
|
66
|
+
>>> from sparknlp.util import EmbeddingsDataFrameUtils
|
|
67
|
+
>>> textPrompt = "<|start_header_id|>user<|end_header_id|>\n\n<sent>\\nSummary above sentence in one word: <|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n"
|
|
68
|
+
>>> textDesc = "A cat sitting in a box."
|
|
69
|
+
>>> nullImageDF = spark.createDataFrame(spark.sparkContext.parallelize([EmbeddingsDataFrameUtils.emptyImageRow]), EmbeddingsDataFrameUtils.imageSchema)
|
|
70
|
+
>>> textDF = nullImageDF.withColumn("text", lit(textPrompt.replace("<sent>", textDesc)))
|
|
71
|
+
>>> e5vEmbeddings = E5VEmbeddings.pretrained() \
|
|
72
|
+
... .setInputCols(["image"]) \
|
|
73
|
+
... .setOutputCol("e5v")
|
|
74
|
+
>>> result = e5vEmbeddings.transform(textDF)
|
|
75
|
+
>>> result.select("e5v.embeddings").show(truncate = False)
|
|
76
|
+
"""
|
|
77
|
+
|
|
78
|
+
name = "E5VEmbeddings"
|
|
79
|
+
|
|
80
|
+
inputAnnotatorTypes = [AnnotatorType.IMAGE]
|
|
81
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
82
|
+
|
|
83
|
+
@keyword_only
|
|
84
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.E5VEmbeddings", java_model=None):
|
|
85
|
+
"""Initializes the E5VEmbeddings annotator.
|
|
86
|
+
|
|
87
|
+
Parameters
|
|
88
|
+
----------
|
|
89
|
+
classname : str, optional
|
|
90
|
+
The Java class name of the annotator, by default "com.johnsnowlabs.nlp.annotators.embeddings.E5VEmbeddings"
|
|
91
|
+
java_model : Optional[java.lang.Object], optional
|
|
92
|
+
A pre-initialized Java model, by default None
|
|
93
|
+
"""
|
|
94
|
+
super(E5VEmbeddings, self).__init__(classname=classname, java_model=java_model)
|
|
95
|
+
self._setDefault()
|
|
96
|
+
|
|
97
|
+
@staticmethod
|
|
98
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
99
|
+
"""Loads a locally saved model.
|
|
100
|
+
|
|
101
|
+
Parameters
|
|
102
|
+
----------
|
|
103
|
+
folder : str
|
|
104
|
+
Folder of the saved model
|
|
105
|
+
spark_session : pyspark.sql.SparkSession
|
|
106
|
+
The current SparkSession
|
|
107
|
+
use_openvino : bool, optional
|
|
108
|
+
Whether to use OpenVINO engine, by default False
|
|
109
|
+
|
|
110
|
+
Returns
|
|
111
|
+
-------
|
|
112
|
+
E5VEmbeddings
|
|
113
|
+
The restored model
|
|
114
|
+
"""
|
|
115
|
+
from sparknlp.internal import _E5VEmbeddingsLoader
|
|
116
|
+
jModel = _E5VEmbeddingsLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
117
|
+
return E5VEmbeddings(java_model=jModel)
|
|
118
|
+
|
|
119
|
+
@staticmethod
|
|
120
|
+
def pretrained(name="e5v_int4", lang="en", remote_loc=None):
|
|
121
|
+
"""Downloads and loads a pretrained model.
|
|
122
|
+
|
|
123
|
+
Parameters
|
|
124
|
+
----------
|
|
125
|
+
name : str, optional
|
|
126
|
+
Name of the pretrained model, by default "e5v_int4"
|
|
127
|
+
lang : str, optional
|
|
128
|
+
Language of the pretrained model, by default "en"
|
|
129
|
+
remote_loc : str, optional
|
|
130
|
+
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
|
|
131
|
+
|
|
132
|
+
Returns
|
|
133
|
+
-------
|
|
134
|
+
E5VEmbeddings
|
|
135
|
+
The restored model
|
|
136
|
+
"""
|
|
137
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
138
|
+
return ResourceDownloader.downloadModel(E5VEmbeddings, name, lang, remote_loc)
|
|
@@ -0,0 +1,251 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for ElmoEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class ElmoEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasEngine):
|
|
24
|
+
"""Word embeddings from ELMo (Embeddings from Language Models), a language
|
|
25
|
+
model trained on the 1 Billion Word Benchmark.
|
|
26
|
+
|
|
27
|
+
Note that this is a very computationally expensive module compared to word
|
|
28
|
+
embedding modules that only perform embedding lookups. The use of an
|
|
29
|
+
accelerator is recommended.
|
|
30
|
+
|
|
31
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
32
|
+
object:
|
|
33
|
+
|
|
34
|
+
>>> embeddings = ElmoEmbeddings.pretrained() \\
|
|
35
|
+
... .setInputCols(["sentence", "token"]) \\
|
|
36
|
+
... .setOutputCol("elmo_embeddings")
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
The default model is ``"elmo"``, if no name is provided.
|
|
40
|
+
|
|
41
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
|
|
42
|
+
|
|
43
|
+
The pooling layer can be set with :meth:`.setPoolingLayer` to the following
|
|
44
|
+
values:
|
|
45
|
+
|
|
46
|
+
- ``"word_emb"``: the character-based word representations with shape
|
|
47
|
+
``[batch_size, max_length, 512]``.
|
|
48
|
+
- ``"lstm_outputs1"``: the first LSTM hidden state with shape
|
|
49
|
+
``[batch_size, max_length, 1024]``.
|
|
50
|
+
- ``"lstm_outputs2"``: the second LSTM hidden state with shape
|
|
51
|
+
``[batch_size, max_length, 1024]``.
|
|
52
|
+
- ``"elmo"``: the weighted sum of the 3 layers, where the weights are
|
|
53
|
+
trainable. This tensor has shape ``[batch_size, max_length, 1024]``.
|
|
54
|
+
|
|
55
|
+
For extended examples of usage, see the
|
|
56
|
+
`Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_elmo.ipynb>`__.
|
|
57
|
+
|
|
58
|
+
====================== ======================
|
|
59
|
+
Input Annotation types Output Annotation type
|
|
60
|
+
====================== ======================
|
|
61
|
+
``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
|
|
62
|
+
====================== ======================
|
|
63
|
+
|
|
64
|
+
Parameters
|
|
65
|
+
----------
|
|
66
|
+
batchSize
|
|
67
|
+
Batch size. Large values allows faster processing but requires more
|
|
68
|
+
memory, by default 32
|
|
69
|
+
dimension
|
|
70
|
+
Number of embedding dimensions
|
|
71
|
+
caseSensitive
|
|
72
|
+
Whether to ignore case in tokens for embeddings matching
|
|
73
|
+
configProtoBytes
|
|
74
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
75
|
+
poolingLayer
|
|
76
|
+
Set ELMO pooling layer to: word_emb, lstm_outputs1, lstm_outputs2, or
|
|
77
|
+
elmo, by default word_emb
|
|
78
|
+
|
|
79
|
+
References
|
|
80
|
+
----------
|
|
81
|
+
https://tfhub.dev/google/elmo/3
|
|
82
|
+
|
|
83
|
+
`Deep contextualized word representations <https://arxiv.org/abs/1802.05365>`__
|
|
84
|
+
|
|
85
|
+
**Paper abstract:**
|
|
86
|
+
|
|
87
|
+
*We introduce a new type of deep contextualized word representation that
|
|
88
|
+
models both (1) complex characteristics of word use (e.g., syntax and
|
|
89
|
+
semantics), and (2) how these uses vary across linguistic contexts (i.e.,
|
|
90
|
+
to model polysemy). Our word vectors are learned functions of the internal
|
|
91
|
+
states of a deep bidirectional language model (biLM), which is pre-trained
|
|
92
|
+
on a large text corpus. We show that these representations can be easily
|
|
93
|
+
added to existing models and significantly improve the state of the art
|
|
94
|
+
across six challenging NLP problems, including question answering, textual
|
|
95
|
+
entailment and sentiment analysis. We also present an analysis showing that
|
|
96
|
+
exposing the deep internals of the pre-trained network is crucial, allowing
|
|
97
|
+
downstream models to mix different types of semi-supervision signals.*
|
|
98
|
+
|
|
99
|
+
Examples
|
|
100
|
+
--------
|
|
101
|
+
>>> import sparknlp
|
|
102
|
+
>>> from sparknlp.base import *
|
|
103
|
+
>>> from sparknlp.annotator import *
|
|
104
|
+
>>> from pyspark.ml import Pipeline
|
|
105
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
106
|
+
... .setInputCol("text") \\
|
|
107
|
+
... .setOutputCol("document")
|
|
108
|
+
>>> tokenizer = Tokenizer() \\
|
|
109
|
+
... .setInputCols(["document"]) \\
|
|
110
|
+
... .setOutputCol("token")
|
|
111
|
+
>>> embeddings = ElmoEmbeddings.pretrained() \\
|
|
112
|
+
... .setPoolingLayer("word_emb") \\
|
|
113
|
+
... .setInputCols(["token", "document"]) \\
|
|
114
|
+
... .setOutputCol("embeddings")
|
|
115
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
116
|
+
... .setInputCols(["embeddings"]) \\
|
|
117
|
+
... .setOutputCols("finished_embeddings") \\
|
|
118
|
+
... .setOutputAsVector(True) \\
|
|
119
|
+
... .setCleanAnnotations(False)
|
|
120
|
+
>>> pipeline = Pipeline().setStages([
|
|
121
|
+
... documentAssembler,
|
|
122
|
+
... tokenizer,
|
|
123
|
+
... embeddings,
|
|
124
|
+
... embeddingsFinisher
|
|
125
|
+
... ])
|
|
126
|
+
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
|
|
127
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
128
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
129
|
+
+--------------------------------------------------------------------------------+
|
|
130
|
+
| result|
|
|
131
|
+
+--------------------------------------------------------------------------------+
|
|
132
|
+
|[6.662458181381226E-4,-0.2541114091873169,-0.6275503039360046,0.5787073969841...|
|
|
133
|
+
|[0.19154725968837738,0.22998669743537903,-0.2894386649131775,0.21524395048618...|
|
|
134
|
+
|[0.10400570929050446,0.12288510054349899,-0.07056470215320587,-0.246389418840...|
|
|
135
|
+
|[0.49932169914245605,-0.12706467509269714,0.30969417095184326,0.2643227577209...|
|
|
136
|
+
|[-0.8871506452560425,-0.20039963722229004,-1.0601330995559692,0.0348707810044...|
|
|
137
|
+
+--------------------------------------------------------------------------------+
|
|
138
|
+
"""
|
|
139
|
+
|
|
140
|
+
name = "ElmoEmbeddings"
|
|
141
|
+
|
|
142
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
143
|
+
|
|
144
|
+
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
|
|
145
|
+
|
|
146
|
+
batchSize = Param(Params._dummy(),
|
|
147
|
+
"batchSize",
|
|
148
|
+
"Batch size. Large values allows faster processing but requires more memory.",
|
|
149
|
+
typeConverter=TypeConverters.toInt)
|
|
150
|
+
|
|
151
|
+
configProtoBytes = Param(Params._dummy(),
|
|
152
|
+
"configProtoBytes",
|
|
153
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
154
|
+
TypeConverters.toListInt)
|
|
155
|
+
|
|
156
|
+
poolingLayer = Param(Params._dummy(),
|
|
157
|
+
"poolingLayer", "Set ELMO pooling layer to: word_emb, lstm_outputs1, lstm_outputs2, or elmo",
|
|
158
|
+
typeConverter=TypeConverters.toString)
|
|
159
|
+
|
|
160
|
+
def setConfigProtoBytes(self, b):
|
|
161
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
162
|
+
|
|
163
|
+
Parameters
|
|
164
|
+
----------
|
|
165
|
+
b : List[int]
|
|
166
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
167
|
+
"""
|
|
168
|
+
return self._set(configProtoBytes=b)
|
|
169
|
+
|
|
170
|
+
def setBatchSize(self, value):
|
|
171
|
+
"""Sets batch size, by default 32.
|
|
172
|
+
|
|
173
|
+
Parameters
|
|
174
|
+
----------
|
|
175
|
+
value : int
|
|
176
|
+
Batch size
|
|
177
|
+
"""
|
|
178
|
+
return self._set(batchSize=value)
|
|
179
|
+
|
|
180
|
+
def setPoolingLayer(self, layer):
|
|
181
|
+
"""Sets ELMO pooling layer to: word_emb, lstm_outputs1, lstm_outputs2, or
|
|
182
|
+
elmo, by default word_emb
|
|
183
|
+
|
|
184
|
+
Parameters
|
|
185
|
+
----------
|
|
186
|
+
layer : str
|
|
187
|
+
ELMO pooling layer
|
|
188
|
+
"""
|
|
189
|
+
if layer == "word_emb":
|
|
190
|
+
return self._set(poolingLayer=layer)
|
|
191
|
+
elif layer == "lstm_outputs1":
|
|
192
|
+
return self._set(poolingLayer=layer)
|
|
193
|
+
elif layer == "lstm_outputs2":
|
|
194
|
+
return self._set(poolingLayer=layer)
|
|
195
|
+
elif layer == "elmo":
|
|
196
|
+
return self._set(poolingLayer=layer)
|
|
197
|
+
else:
|
|
198
|
+
return self._set(poolingLayer="word_emb")
|
|
199
|
+
|
|
200
|
+
@keyword_only
|
|
201
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.ElmoEmbeddings", java_model=None):
|
|
202
|
+
super(ElmoEmbeddings, self).__init__(
|
|
203
|
+
classname=classname,
|
|
204
|
+
java_model=java_model
|
|
205
|
+
)
|
|
206
|
+
self._setDefault(
|
|
207
|
+
batchSize=32,
|
|
208
|
+
poolingLayer="word_emb"
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
@staticmethod
|
|
212
|
+
def loadSavedModel(folder, spark_session):
|
|
213
|
+
"""Loads a locally saved model.
|
|
214
|
+
|
|
215
|
+
Parameters
|
|
216
|
+
----------
|
|
217
|
+
folder : str
|
|
218
|
+
Folder of the saved model
|
|
219
|
+
spark_session : pyspark.sql.SparkSession
|
|
220
|
+
The current SparkSession
|
|
221
|
+
|
|
222
|
+
Returns
|
|
223
|
+
-------
|
|
224
|
+
ElmoEmbeddings
|
|
225
|
+
The restored model
|
|
226
|
+
"""
|
|
227
|
+
from sparknlp.internal import _ElmoLoader
|
|
228
|
+
jModel = _ElmoLoader(folder, spark_session._jsparkSession)._java_obj
|
|
229
|
+
return ElmoEmbeddings(java_model=jModel)
|
|
230
|
+
|
|
231
|
+
@staticmethod
|
|
232
|
+
def pretrained(name="elmo", lang="en", remote_loc=None):
|
|
233
|
+
"""Downloads and loads a pretrained model.
|
|
234
|
+
|
|
235
|
+
Parameters
|
|
236
|
+
----------
|
|
237
|
+
name : str, optional
|
|
238
|
+
Name of the pretrained model, by default "elmo"
|
|
239
|
+
lang : str, optional
|
|
240
|
+
Language of the pretrained model, by default "en"
|
|
241
|
+
remote_loc : str, optional
|
|
242
|
+
Optional remote address of the resource, by default None. Will use
|
|
243
|
+
Spark NLPs repositories otherwise.
|
|
244
|
+
|
|
245
|
+
Returns
|
|
246
|
+
-------
|
|
247
|
+
ElmoEmbeddings
|
|
248
|
+
The restored model
|
|
249
|
+
"""
|
|
250
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
251
|
+
return ResourceDownloader.downloadModel(ElmoEmbeddings, name, lang, remote_loc)
|