spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for RoBertaForZeroShotClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class RoBertaForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine):
|
|
25
|
+
"""RoBertaForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
26
|
+
inference) tasks. Equivalent of `RoBertaForSequenceClassification` models, but these models don't require a hardcoded
|
|
27
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
28
|
+
flexible.
|
|
29
|
+
|
|
30
|
+
Note that the model will loop through all provided labels. So the more labels you have, the
|
|
31
|
+
longer this process will take.
|
|
32
|
+
|
|
33
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
34
|
+
pair and passed to the pretrained model.
|
|
35
|
+
|
|
36
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
37
|
+
object:
|
|
38
|
+
|
|
39
|
+
>>> sequenceClassifier = RoBertaForZeroShotClassification.pretrained() \\
|
|
40
|
+
... .setInputCols(["token", "document"]) \\
|
|
41
|
+
... .setOutputCol("label")
|
|
42
|
+
|
|
43
|
+
The default model is ``"roberta_base_zero_shot_classifier_nli"``, if no name is
|
|
44
|
+
provided.
|
|
45
|
+
|
|
46
|
+
For available pretrained models please see the `Models Hub
|
|
47
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
48
|
+
|
|
49
|
+
To see which models are compatible and how to import them see
|
|
50
|
+
`Import Transformers into Spark NLP 🚀
|
|
51
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
52
|
+
|
|
53
|
+
====================== ======================
|
|
54
|
+
Input Annotation types Output Annotation type
|
|
55
|
+
====================== ======================
|
|
56
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
57
|
+
====================== ======================
|
|
58
|
+
|
|
59
|
+
Parameters
|
|
60
|
+
----------
|
|
61
|
+
batchSize
|
|
62
|
+
Batch size. Large values allows faster processing but requires more
|
|
63
|
+
memory, by default 8
|
|
64
|
+
caseSensitive
|
|
65
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
66
|
+
True
|
|
67
|
+
configProtoBytes
|
|
68
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
69
|
+
maxSentenceLength
|
|
70
|
+
Max sentence length to process, by default 128
|
|
71
|
+
coalesceSentences
|
|
72
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
73
|
+
class per document by averaging probabilities in all sentences, by
|
|
74
|
+
default False
|
|
75
|
+
activation
|
|
76
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
77
|
+
`"softmax"`.
|
|
78
|
+
|
|
79
|
+
Examples
|
|
80
|
+
--------
|
|
81
|
+
>>> import sparknlp
|
|
82
|
+
>>> from sparknlp.base import *
|
|
83
|
+
>>> from sparknlp.annotator import *
|
|
84
|
+
>>> from pyspark.ml import Pipeline
|
|
85
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
86
|
+
... .setInputCol("text") \\
|
|
87
|
+
... .setOutputCol("document")
|
|
88
|
+
>>> tokenizer = Tokenizer() \\
|
|
89
|
+
... .setInputCols(["document"]) \\
|
|
90
|
+
... .setOutputCol("token")
|
|
91
|
+
>>> sequenceClassifier = RoBertaForZeroShotClassification.pretrained() \\
|
|
92
|
+
... .setInputCols(["token", "document"]) \\
|
|
93
|
+
... .setOutputCol("label") \\
|
|
94
|
+
... .setCaseSensitive(True)
|
|
95
|
+
>>> pipeline = Pipeline().setStages([
|
|
96
|
+
... documentAssembler,
|
|
97
|
+
... tokenizer,
|
|
98
|
+
... sequenceClassifier
|
|
99
|
+
... ])
|
|
100
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]]).toDF("text")
|
|
101
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
102
|
+
>>> result.select("label.result").show(truncate=False)
|
|
103
|
+
+------+
|
|
104
|
+
|result|
|
|
105
|
+
+------+
|
|
106
|
+
|[pos] |
|
|
107
|
+
|[neg] |
|
|
108
|
+
+------+
|
|
109
|
+
"""
|
|
110
|
+
name = "RoBertaForZeroShotClassification"
|
|
111
|
+
|
|
112
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
113
|
+
|
|
114
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
115
|
+
|
|
116
|
+
maxSentenceLength = Param(Params._dummy(),
|
|
117
|
+
"maxSentenceLength",
|
|
118
|
+
"Max sentence length to process",
|
|
119
|
+
typeConverter=TypeConverters.toInt)
|
|
120
|
+
|
|
121
|
+
configProtoBytes = Param(Params._dummy(),
|
|
122
|
+
"configProtoBytes",
|
|
123
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
124
|
+
TypeConverters.toListInt)
|
|
125
|
+
|
|
126
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
127
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
128
|
+
TypeConverters.toBoolean)
|
|
129
|
+
|
|
130
|
+
def getClasses(self):
|
|
131
|
+
"""
|
|
132
|
+
Returns labels used to train this model
|
|
133
|
+
"""
|
|
134
|
+
return self._call_java("getClasses")
|
|
135
|
+
|
|
136
|
+
def setConfigProtoBytes(self, b):
|
|
137
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
b : List[int]
|
|
142
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
143
|
+
"""
|
|
144
|
+
return self._set(configProtoBytes=b)
|
|
145
|
+
|
|
146
|
+
def setMaxSentenceLength(self, value):
|
|
147
|
+
"""Sets max sentence length to process, by default 128.
|
|
148
|
+
|
|
149
|
+
Parameters
|
|
150
|
+
----------
|
|
151
|
+
value : int
|
|
152
|
+
Max sentence length to process
|
|
153
|
+
"""
|
|
154
|
+
return self._set(maxSentenceLength=value)
|
|
155
|
+
|
|
156
|
+
def setCoalesceSentences(self, value):
|
|
157
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
158
|
+
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as RoBerta
|
|
159
|
+
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
|
|
160
|
+
for the entire document instead of probabilities per sentence. (Default: true)
|
|
161
|
+
|
|
162
|
+
Parameters
|
|
163
|
+
----------
|
|
164
|
+
value : bool
|
|
165
|
+
If the output of all sentences will be averaged to one output
|
|
166
|
+
"""
|
|
167
|
+
return self._set(coalesceSentences=value)
|
|
168
|
+
|
|
169
|
+
@keyword_only
|
|
170
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.RoBertaForZeroShotClassification",
|
|
171
|
+
java_model=None):
|
|
172
|
+
super(RoBertaForZeroShotClassification, self).__init__(
|
|
173
|
+
classname=classname,
|
|
174
|
+
java_model=java_model
|
|
175
|
+
)
|
|
176
|
+
self._setDefault(
|
|
177
|
+
batchSize=8,
|
|
178
|
+
maxSentenceLength=128,
|
|
179
|
+
caseSensitive=True,
|
|
180
|
+
coalesceSentences=False,
|
|
181
|
+
activation="softmax"
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
def loadSavedModel(folder, spark_session):
|
|
186
|
+
"""Loads a locally saved model.
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
folder : str
|
|
191
|
+
Folder of the saved model
|
|
192
|
+
spark_session : pyspark.sql.SparkSession
|
|
193
|
+
The current SparkSession
|
|
194
|
+
|
|
195
|
+
Returns
|
|
196
|
+
-------
|
|
197
|
+
RoBertaForZeroShotClassification
|
|
198
|
+
The restored model
|
|
199
|
+
"""
|
|
200
|
+
from sparknlp.internal import _RoBertaForZeroShotClassification
|
|
201
|
+
jModel = _RoBertaForZeroShotClassification(folder, spark_session._jsparkSession)._java_obj
|
|
202
|
+
return RoBertaForZeroShotClassification(java_model=jModel)
|
|
203
|
+
|
|
204
|
+
@staticmethod
|
|
205
|
+
def pretrained(name="roberta_base_zero_shot_classifier_nli", lang="en", remote_loc=None):
|
|
206
|
+
"""Downloads and loads a pretrained model.
|
|
207
|
+
|
|
208
|
+
Parameters
|
|
209
|
+
----------
|
|
210
|
+
name : str, optional
|
|
211
|
+
Name of the pretrained model, by default
|
|
212
|
+
"roberta_base_zero_shot_classifier_nli"
|
|
213
|
+
lang : str, optional
|
|
214
|
+
Language of the pretrained model, by default "en"
|
|
215
|
+
remote_loc : str, optional
|
|
216
|
+
Optional remote address of the resource, by default None. Will use
|
|
217
|
+
Spark NLPs repositories otherwise.
|
|
218
|
+
|
|
219
|
+
Returns
|
|
220
|
+
-------
|
|
221
|
+
RoBertaForZeroShotClassification
|
|
222
|
+
The restored model
|
|
223
|
+
"""
|
|
224
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
225
|
+
return ResourceDownloader.downloadModel(RoBertaForZeroShotClassification, name, lang, remote_loc)
|
|
@@ -0,0 +1,378 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for SentimentDL."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.annotator.param import EvaluationDLParams, ClassifierEncoder
|
|
17
|
+
from sparknlp.common import *
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class SentimentDLApproach(AnnotatorApproach, EvaluationDLParams, ClassifierEncoder):
|
|
21
|
+
"""Trains a SentimentDL, an annotator for multi-class sentiment analysis.
|
|
22
|
+
|
|
23
|
+
In natural language processing, sentiment analysis is the task of
|
|
24
|
+
classifying the affective state or subjective view of a text. A common
|
|
25
|
+
example is if either a product review or tweet can be interpreted positively
|
|
26
|
+
or negatively.
|
|
27
|
+
|
|
28
|
+
For the instantiated/pretrained models, see :class:`.SentimentDLModel`.
|
|
29
|
+
|
|
30
|
+
Setting a test dataset to monitor model metrics can be done with
|
|
31
|
+
``.setTestDataset``. The method expects a path to a parquet file containing a
|
|
32
|
+
dataframe that has the same required columns as the training dataframe. The
|
|
33
|
+
pre-processing steps for the training dataframe should also be applied to the test
|
|
34
|
+
dataframe. The following example will show how to create the test dataset:
|
|
35
|
+
|
|
36
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
37
|
+
... .setInputCol("text") \\
|
|
38
|
+
... .setOutputCol("document")
|
|
39
|
+
>>> embeddings = UniversalSentenceEncoder.pretrained() \\
|
|
40
|
+
... .setInputCols(["document"]) \\
|
|
41
|
+
... .setOutputCol("sentence_embeddings")
|
|
42
|
+
>>> preProcessingPipeline = Pipeline().setStages([documentAssembler, embeddings])
|
|
43
|
+
>>> (train, test) = data.randomSplit([0.8, 0.2])
|
|
44
|
+
>>> preProcessingPipeline \\
|
|
45
|
+
... .fit(test) \\
|
|
46
|
+
... .transform(test)
|
|
47
|
+
... .write \\
|
|
48
|
+
... .mode("overwrite") \\
|
|
49
|
+
... .parquet("test_data")
|
|
50
|
+
>>> classifier = SentimentDLApproach() \\
|
|
51
|
+
... .setInputCols(["sentence_embeddings"]) \\
|
|
52
|
+
... .setOutputCol("sentiment") \\
|
|
53
|
+
... .setLabelColumn("label") \\
|
|
54
|
+
... .setTestDataset("test_data")
|
|
55
|
+
|
|
56
|
+
For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/SentimentDL_train_multiclass_sentiment_classifier.ipynb>`__.
|
|
57
|
+
|
|
58
|
+
======================= ======================
|
|
59
|
+
Input Annotation types Output Annotation type
|
|
60
|
+
======================= ======================
|
|
61
|
+
``SENTENCE_EMBEDDINGS`` ``CATEGORY``
|
|
62
|
+
======================= ======================
|
|
63
|
+
|
|
64
|
+
Parameters
|
|
65
|
+
----------
|
|
66
|
+
batchSize
|
|
67
|
+
Batch size, by default 64
|
|
68
|
+
configProtoBytes
|
|
69
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
70
|
+
dropout
|
|
71
|
+
Dropout coefficient, by default 0.5
|
|
72
|
+
enableOutputLogs
|
|
73
|
+
Whether to use stdout in addition to Spark logs, by default False
|
|
74
|
+
evaluationLogExtended
|
|
75
|
+
Whether logs for validation to be extended: it displays time and evaluation of
|
|
76
|
+
each label. Default is False.
|
|
77
|
+
labelColumn
|
|
78
|
+
Column with label per each token
|
|
79
|
+
lr
|
|
80
|
+
Learning Rate, by default 0.005
|
|
81
|
+
maxEpochs
|
|
82
|
+
Maximum number of epochs to train, by default 30
|
|
83
|
+
outputLogsPath
|
|
84
|
+
Folder path to save training logs
|
|
85
|
+
randomSeed
|
|
86
|
+
Random seed
|
|
87
|
+
testDataset
|
|
88
|
+
Path to test dataset. If set used to calculate statistic on it during training.
|
|
89
|
+
threshold
|
|
90
|
+
The minimum threshold for the final result otheriwse it will be neutral,
|
|
91
|
+
by default 0.6
|
|
92
|
+
thresholdLabel
|
|
93
|
+
In case the score is less than threshold, what should be the label, by default
|
|
94
|
+
"neutral"
|
|
95
|
+
validationSplit
|
|
96
|
+
Choose the proportion of training dataset to be validated against the
|
|
97
|
+
model on each Epoch. The value should be between 0.0 and 1.0 and by
|
|
98
|
+
default it is 0.0 and off.
|
|
99
|
+
verbose
|
|
100
|
+
Level of verbosity during training
|
|
101
|
+
|
|
102
|
+
Notes
|
|
103
|
+
-----
|
|
104
|
+
- This annotator accepts a label column of a single item in either type of
|
|
105
|
+
String, Int, Float, or Double. So positive sentiment can be expressed as
|
|
106
|
+
either ``"positive"`` or ``0``, negative sentiment as ``"negative"`` or
|
|
107
|
+
``1``.
|
|
108
|
+
- UniversalSentenceEncoder, BertSentenceEmbeddings, or SentenceEmbeddings
|
|
109
|
+
can be used for the ``inputCol``.
|
|
110
|
+
|
|
111
|
+
Examples
|
|
112
|
+
--------
|
|
113
|
+
In this example, ``sentiment.csv`` is in the form::
|
|
114
|
+
|
|
115
|
+
text,label
|
|
116
|
+
This movie is the best movie I have watched ever! In my opinion this movie can win an award.,0
|
|
117
|
+
This was a terrible movie! The acting was bad really bad!,1
|
|
118
|
+
|
|
119
|
+
The model can then be trained with
|
|
120
|
+
|
|
121
|
+
>>> import sparknlp
|
|
122
|
+
>>> from sparknlp.base import *
|
|
123
|
+
>>> from sparknlp.annotator import *
|
|
124
|
+
>>> from pyspark.ml import Pipeline
|
|
125
|
+
>>> smallCorpus = spark.read.option("header", "True").csv("src/test/resources/classifier/sentiment.csv")
|
|
126
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
127
|
+
... .setInputCol("text") \\
|
|
128
|
+
... .setOutputCol("document")
|
|
129
|
+
>>> useEmbeddings = UniversalSentenceEncoder.pretrained() \\
|
|
130
|
+
... .setInputCols(["document"]) \\
|
|
131
|
+
... .setOutputCol("sentence_embeddings")
|
|
132
|
+
>>> docClassifier = SentimentDLApproach() \\
|
|
133
|
+
... .setInputCols(["sentence_embeddings"]) \\
|
|
134
|
+
... .setOutputCol("sentiment") \\
|
|
135
|
+
... .setLabelColumn("label") \\
|
|
136
|
+
... .setBatchSize(32) \\
|
|
137
|
+
... .setMaxEpochs(1) \\
|
|
138
|
+
... .setLr(5e-3) \\
|
|
139
|
+
... .setDropout(0.5)
|
|
140
|
+
>>> pipeline = Pipeline().setStages([
|
|
141
|
+
... documentAssembler,
|
|
142
|
+
... useEmbeddings,
|
|
143
|
+
... docClassifier
|
|
144
|
+
... ])
|
|
145
|
+
>>> pipelineModel = pipeline.fit(smallCorpus)
|
|
146
|
+
"""
|
|
147
|
+
|
|
148
|
+
inputAnnotatorTypes = [AnnotatorType.SENTENCE_EMBEDDINGS]
|
|
149
|
+
|
|
150
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
151
|
+
|
|
152
|
+
dropout = Param(Params._dummy(), "dropout", "Dropout coefficient", TypeConverters.toFloat)
|
|
153
|
+
|
|
154
|
+
threshold = Param(Params._dummy(), "threshold",
|
|
155
|
+
"The minimum threshold for the final result otheriwse it will be neutral", TypeConverters.toFloat)
|
|
156
|
+
|
|
157
|
+
thresholdLabel = Param(Params._dummy(), "thresholdLabel",
|
|
158
|
+
"In case the score is less than threshold, what should be the label. Default is neutral.",
|
|
159
|
+
TypeConverters.toString)
|
|
160
|
+
|
|
161
|
+
def setDropout(self, v):
|
|
162
|
+
"""Sets dropout coefficient, by default 0.5.
|
|
163
|
+
|
|
164
|
+
Parameters
|
|
165
|
+
----------
|
|
166
|
+
v : float
|
|
167
|
+
Dropout coefficient
|
|
168
|
+
"""
|
|
169
|
+
self._set(dropout=v)
|
|
170
|
+
return self
|
|
171
|
+
|
|
172
|
+
def setThreshold(self, v):
|
|
173
|
+
"""Sets the minimum threshold for the final result otheriwse it will be
|
|
174
|
+
neutral, by default 0.6.
|
|
175
|
+
|
|
176
|
+
Parameters
|
|
177
|
+
----------
|
|
178
|
+
v : float
|
|
179
|
+
Minimum threshold for the final result
|
|
180
|
+
"""
|
|
181
|
+
self._set(threshold=v)
|
|
182
|
+
return self
|
|
183
|
+
|
|
184
|
+
def setThresholdLabel(self, p):
|
|
185
|
+
"""Sets what the label should be, if the score is less than threshold,
|
|
186
|
+
by default "neutral".
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
p : str
|
|
191
|
+
The label, if the score is less than threshold
|
|
192
|
+
"""
|
|
193
|
+
return self._set(thresholdLabel=p)
|
|
194
|
+
|
|
195
|
+
def _create_model(self, java_model):
|
|
196
|
+
return SentimentDLModel(java_model=java_model)
|
|
197
|
+
|
|
198
|
+
@keyword_only
|
|
199
|
+
def __init__(self):
|
|
200
|
+
super(SentimentDLApproach, self).__init__(
|
|
201
|
+
classname="com.johnsnowlabs.nlp.annotators.classifier.dl.SentimentDLApproach")
|
|
202
|
+
self._setDefault(
|
|
203
|
+
maxEpochs=30,
|
|
204
|
+
lr=float(0.005),
|
|
205
|
+
batchSize=64,
|
|
206
|
+
dropout=float(0.5),
|
|
207
|
+
enableOutputLogs=False,
|
|
208
|
+
evaluationLogExtended=False,
|
|
209
|
+
threshold=0.6,
|
|
210
|
+
thresholdLabel="neutral"
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
|
|
214
|
+
class SentimentDLModel(AnnotatorModel, HasStorageRef, HasEngine):
|
|
215
|
+
"""SentimentDL, an annotator for multi-class sentiment analysis.
|
|
216
|
+
|
|
217
|
+
In natural language processing, sentiment analysis is the task of
|
|
218
|
+
classifying the affective state or subjective view of a text. A common
|
|
219
|
+
example is if either a product review or tweet can be interpreted positively
|
|
220
|
+
or negatively.
|
|
221
|
+
|
|
222
|
+
This is the instantiated model of the :class:`.SentimentDLApproach`. For
|
|
223
|
+
training your own model, please see the documentation of that class.
|
|
224
|
+
|
|
225
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
226
|
+
object:
|
|
227
|
+
|
|
228
|
+
>>> sentiment = SentimentDLModel.pretrained() \\
|
|
229
|
+
... .setInputCols(["sentence_embeddings"]) \\
|
|
230
|
+
... .setOutputCol("sentiment")
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
The default model is ``"sentimentdl_use_imdb"``, if no name is provided. It
|
|
234
|
+
is english sentiment analysis trained on the IMDB dataset. For available
|
|
235
|
+
pretrained models please see the `Models Hub
|
|
236
|
+
<https://sparknlp.org/models?task=Sentiment+Analysis>`__.
|
|
237
|
+
|
|
238
|
+
For extended examples of usage, see the `Examples
|
|
239
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/SentimentDL_train_multiclass_sentiment_classifier.ipynb>`__.
|
|
240
|
+
|
|
241
|
+
======================= ======================
|
|
242
|
+
Input Annotation types Output Annotation type
|
|
243
|
+
======================= ======================
|
|
244
|
+
``SENTENCE_EMBEDDINGS`` ``CATEGORY``
|
|
245
|
+
======================= ======================
|
|
246
|
+
|
|
247
|
+
Parameters
|
|
248
|
+
----------
|
|
249
|
+
configProtoBytes
|
|
250
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
251
|
+
threshold
|
|
252
|
+
The minimum threshold for the final result otheriwse it will be neutral,
|
|
253
|
+
by default 0.6
|
|
254
|
+
thresholdLabel
|
|
255
|
+
In case the score is less than threshold, what should be the label.
|
|
256
|
+
Default is neutral, by default "neutral"
|
|
257
|
+
classes
|
|
258
|
+
Tags used to trained this SentimentDLModel
|
|
259
|
+
|
|
260
|
+
Examples
|
|
261
|
+
--------
|
|
262
|
+
>>> import sparknlp
|
|
263
|
+
>>> from sparknlp.base import *
|
|
264
|
+
>>> from sparknlp.annotator import *
|
|
265
|
+
>>> from pyspark.ml import Pipeline
|
|
266
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
267
|
+
... .setInputCol("text") \\
|
|
268
|
+
... .setOutputCol("document")
|
|
269
|
+
>>> useEmbeddings = UniversalSentenceEncoder.pretrained() \\
|
|
270
|
+
... .setInputCols(["document"]) \\
|
|
271
|
+
... .setOutputCol("sentence_embeddings")
|
|
272
|
+
>>> sentiment = SentimentDLModel.pretrained("sentimentdl_use_twitter") \\
|
|
273
|
+
... .setInputCols(["sentence_embeddings"]) \\
|
|
274
|
+
... .setThreshold(0.7) \\
|
|
275
|
+
... .setOutputCol("sentiment")
|
|
276
|
+
>>> pipeline = Pipeline().setStages([
|
|
277
|
+
... documentAssembler,
|
|
278
|
+
... useEmbeddings,
|
|
279
|
+
... sentiment
|
|
280
|
+
... ])
|
|
281
|
+
>>> data = spark.createDataFrame([
|
|
282
|
+
... ["Wow, the new video is awesome!"],
|
|
283
|
+
... ["bruh what a damn waste of time"]
|
|
284
|
+
... ]).toDF("text")
|
|
285
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
286
|
+
>>> result.select("text", "sentiment.result").show(truncate=False)
|
|
287
|
+
+------------------------------+----------+
|
|
288
|
+
|text |result |
|
|
289
|
+
+------------------------------+----------+
|
|
290
|
+
|Wow, the new video is awesome!|[positive]|
|
|
291
|
+
|bruh what a damn waste of time|[negative]|
|
|
292
|
+
+------------------------------+----------+
|
|
293
|
+
"""
|
|
294
|
+
name = "SentimentDLModel"
|
|
295
|
+
|
|
296
|
+
inputAnnotatorTypes = [AnnotatorType.SENTENCE_EMBEDDINGS]
|
|
297
|
+
|
|
298
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
299
|
+
|
|
300
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.SentimentDLModel", java_model=None):
|
|
301
|
+
super(SentimentDLModel, self).__init__(
|
|
302
|
+
classname=classname,
|
|
303
|
+
java_model=java_model
|
|
304
|
+
)
|
|
305
|
+
self._setDefault(
|
|
306
|
+
threshold=0.6,
|
|
307
|
+
thresholdLabel="neutral"
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
configProtoBytes = Param(Params._dummy(), "configProtoBytes",
|
|
311
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
312
|
+
TypeConverters.toListInt)
|
|
313
|
+
|
|
314
|
+
threshold = Param(Params._dummy(), "threshold",
|
|
315
|
+
"The minimum threshold for the final result otheriwse it will be neutral", TypeConverters.toFloat)
|
|
316
|
+
|
|
317
|
+
thresholdLabel = Param(Params._dummy(), "thresholdLabel",
|
|
318
|
+
"In case the score is less than threshold, what should be the label. Default is neutral.",
|
|
319
|
+
TypeConverters.toString)
|
|
320
|
+
|
|
321
|
+
classes = Param(Params._dummy(), "classes",
|
|
322
|
+
"get the tags used to trained this SentimentDLModel",
|
|
323
|
+
TypeConverters.toListString)
|
|
324
|
+
|
|
325
|
+
def setConfigProtoBytes(self, b):
|
|
326
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
327
|
+
|
|
328
|
+
Parameters
|
|
329
|
+
----------
|
|
330
|
+
b : List[int]
|
|
331
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
332
|
+
"""
|
|
333
|
+
return self._set(configProtoBytes=b)
|
|
334
|
+
|
|
335
|
+
def setThreshold(self, v):
|
|
336
|
+
"""Sets the minimum threshold for the final result otheriwse it will be
|
|
337
|
+
neutral, by default 0.6.
|
|
338
|
+
|
|
339
|
+
Parameters
|
|
340
|
+
----------
|
|
341
|
+
v : float
|
|
342
|
+
Minimum threshold for the final result
|
|
343
|
+
"""
|
|
344
|
+
self._set(threshold=v)
|
|
345
|
+
return self
|
|
346
|
+
|
|
347
|
+
def setThresholdLabel(self, p):
|
|
348
|
+
"""Sets what the label should be, if the score is less than threshold,
|
|
349
|
+
by default "neutral".
|
|
350
|
+
|
|
351
|
+
Parameters
|
|
352
|
+
----------
|
|
353
|
+
p : str
|
|
354
|
+
The label, if the score is less than threshold
|
|
355
|
+
"""
|
|
356
|
+
return self._set(thresholdLabel=p)
|
|
357
|
+
|
|
358
|
+
@staticmethod
|
|
359
|
+
def pretrained(name="sentimentdl_use_imdb", lang="en", remote_loc=None):
|
|
360
|
+
"""Downloads and loads a pretrained model.
|
|
361
|
+
|
|
362
|
+
Parameters
|
|
363
|
+
----------
|
|
364
|
+
name : str, optional
|
|
365
|
+
Name of the pretrained model, by default "sentimentdl_use_imdb"
|
|
366
|
+
lang : str, optional
|
|
367
|
+
Language of the pretrained model, by default "en"
|
|
368
|
+
remote_loc : str, optional
|
|
369
|
+
Optional remote address of the resource, by default None. Will use
|
|
370
|
+
Spark NLPs repositories otherwise.
|
|
371
|
+
|
|
372
|
+
Returns
|
|
373
|
+
-------
|
|
374
|
+
SentimentDLModel
|
|
375
|
+
The restored model
|
|
376
|
+
"""
|
|
377
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
378
|
+
return ResourceDownloader.downloadModel(SentimentDLModel, name, lang, remote_loc)
|