spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,245 @@
|
|
|
1
|
+
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""RNN helpers for TensorFlow models."""
|
|
16
|
+
from __future__ import absolute_import
|
|
17
|
+
from __future__ import division
|
|
18
|
+
from __future__ import print_function
|
|
19
|
+
|
|
20
|
+
from tensorflow.python.ops import array_ops
|
|
21
|
+
from tensorflow.python.ops import rnn
|
|
22
|
+
from tensorflow.python.ops import variable_scope as vs
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def stack_bidirectional_rnn(cells_fw,
|
|
26
|
+
cells_bw,
|
|
27
|
+
inputs,
|
|
28
|
+
initial_states_fw=None,
|
|
29
|
+
initial_states_bw=None,
|
|
30
|
+
dtype=None,
|
|
31
|
+
sequence_length=None,
|
|
32
|
+
scope=None):
|
|
33
|
+
"""Creates a bidirectional recurrent neural network.
|
|
34
|
+
|
|
35
|
+
Stacks several bidirectional rnn layers. The combined forward and backward
|
|
36
|
+
layer outputs are used as input of the next layer. tf.bidirectional_rnn
|
|
37
|
+
does not allow to share forward and backward information between layers.
|
|
38
|
+
The input_size of the first forward and backward cells must match.
|
|
39
|
+
The initial state for both directions is zero and no intermediate states
|
|
40
|
+
are returned.
|
|
41
|
+
|
|
42
|
+
As described in https://arxiv.org/abs/1303.5778
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
cells_fw: List of instances of RNNCell, one per layer,
|
|
46
|
+
to be used for forward direction.
|
|
47
|
+
cells_bw: List of instances of RNNCell, one per layer,
|
|
48
|
+
to be used for backward direction.
|
|
49
|
+
inputs: A length T list of inputs, each a tensor of shape
|
|
50
|
+
[batch_size, input_size], or a nested tuple of such elements.
|
|
51
|
+
initial_states_fw: (optional) A list of the initial states (one per layer)
|
|
52
|
+
for the forward RNN.
|
|
53
|
+
Each tensor must has an appropriate type and shape
|
|
54
|
+
`[batch_size, cell_fw.state_size]`.
|
|
55
|
+
initial_states_bw: (optional) Same as for `initial_states_fw`, but using
|
|
56
|
+
the corresponding properties of `cells_bw`.
|
|
57
|
+
dtype: (optional) The data type for the initial state. Required if
|
|
58
|
+
either of the initial states are not provided.
|
|
59
|
+
sequence_length: (optional) An int32/int64 vector, size `[batch_size]`,
|
|
60
|
+
containing the actual lengths for each of the sequences.
|
|
61
|
+
scope: VariableScope for the created subgraph; defaults to None.
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
A tuple (outputs, output_state_fw, output_state_bw) where:
|
|
65
|
+
outputs is a length `T` list of outputs (one for each input), which
|
|
66
|
+
are depth-concatenated forward and backward outputs.
|
|
67
|
+
output_states_fw is the final states, one tensor per layer,
|
|
68
|
+
of the forward rnn.
|
|
69
|
+
output_states_bw is the final states, one tensor per layer,
|
|
70
|
+
of the backward rnn.
|
|
71
|
+
|
|
72
|
+
Raises:
|
|
73
|
+
TypeError: If `cell_fw` or `cell_bw` is not an instance of `RNNCell`.
|
|
74
|
+
ValueError: If inputs is None, not a list or an empty list.
|
|
75
|
+
"""
|
|
76
|
+
if not cells_fw:
|
|
77
|
+
raise ValueError("Must specify at least one fw cell for BidirectionalRNN.")
|
|
78
|
+
if not cells_bw:
|
|
79
|
+
raise ValueError("Must specify at least one bw cell for BidirectionalRNN.")
|
|
80
|
+
if not isinstance(cells_fw, list):
|
|
81
|
+
raise ValueError("cells_fw must be a list of RNNCells (one per layer).")
|
|
82
|
+
if not isinstance(cells_bw, list):
|
|
83
|
+
raise ValueError("cells_bw must be a list of RNNCells (one per layer).")
|
|
84
|
+
if len(cells_fw) != len(cells_bw):
|
|
85
|
+
raise ValueError("Forward and Backward cells must have the same depth.")
|
|
86
|
+
if (initial_states_fw is not None and
|
|
87
|
+
(not isinstance(initial_states_fw, list) or
|
|
88
|
+
len(initial_states_fw) != len(cells_fw))):
|
|
89
|
+
raise ValueError(
|
|
90
|
+
"initial_states_fw must be a list of state tensors (one per layer).")
|
|
91
|
+
if (initial_states_bw is not None and
|
|
92
|
+
(not isinstance(initial_states_bw, list) or
|
|
93
|
+
len(initial_states_bw) != len(cells_bw))):
|
|
94
|
+
raise ValueError(
|
|
95
|
+
"initial_states_bw must be a list of state tensors (one per layer).")
|
|
96
|
+
states_fw = []
|
|
97
|
+
states_bw = []
|
|
98
|
+
prev_layer = inputs
|
|
99
|
+
|
|
100
|
+
with vs.variable_scope(scope or "stack_bidirectional_rnn"):
|
|
101
|
+
for i, (cell_fw, cell_bw) in enumerate(zip(cells_fw, cells_bw)):
|
|
102
|
+
initial_state_fw = None
|
|
103
|
+
initial_state_bw = None
|
|
104
|
+
if initial_states_fw:
|
|
105
|
+
initial_state_fw = initial_states_fw[i]
|
|
106
|
+
if initial_states_bw:
|
|
107
|
+
initial_state_bw = initial_states_bw[i]
|
|
108
|
+
|
|
109
|
+
with vs.variable_scope("cell_%d" % i) as cell_scope:
|
|
110
|
+
prev_layer, state_fw, state_bw = rnn.static_bidirectional_rnn(
|
|
111
|
+
cell_fw,
|
|
112
|
+
cell_bw,
|
|
113
|
+
prev_layer,
|
|
114
|
+
initial_state_fw=initial_state_fw,
|
|
115
|
+
initial_state_bw=initial_state_bw,
|
|
116
|
+
sequence_length=sequence_length,
|
|
117
|
+
dtype=dtype,
|
|
118
|
+
scope=cell_scope)
|
|
119
|
+
states_fw.append(state_fw)
|
|
120
|
+
states_bw.append(state_bw)
|
|
121
|
+
|
|
122
|
+
return prev_layer, tuple(states_fw), tuple(states_bw)
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def stack_bidirectional_dynamic_rnn(cells_fw,
|
|
126
|
+
cells_bw,
|
|
127
|
+
inputs,
|
|
128
|
+
initial_states_fw=None,
|
|
129
|
+
initial_states_bw=None,
|
|
130
|
+
dtype=None,
|
|
131
|
+
sequence_length=None,
|
|
132
|
+
parallel_iterations=None,
|
|
133
|
+
time_major=False,
|
|
134
|
+
scope=None,
|
|
135
|
+
swap_memory=False):
|
|
136
|
+
"""Creates a dynamic bidirectional recurrent neural network.
|
|
137
|
+
|
|
138
|
+
Stacks several bidirectional rnn layers. The combined forward and backward
|
|
139
|
+
layer outputs are used as input of the next layer. tf.bidirectional_rnn
|
|
140
|
+
does not allow to share forward and backward information between layers.
|
|
141
|
+
The input_size of the first forward and backward cells must match.
|
|
142
|
+
The initial state for both directions is zero and no intermediate states
|
|
143
|
+
are returned.
|
|
144
|
+
|
|
145
|
+
Args:
|
|
146
|
+
cells_fw: List of instances of RNNCell, one per layer,
|
|
147
|
+
to be used for forward direction.
|
|
148
|
+
cells_bw: List of instances of RNNCell, one per layer,
|
|
149
|
+
to be used for backward direction.
|
|
150
|
+
inputs: The RNN inputs. this must be a tensor of shape:
|
|
151
|
+
`[batch_size, max_time, ...]`, or a nested tuple of such elements.
|
|
152
|
+
initial_states_fw: (optional) A list of the initial states (one per layer)
|
|
153
|
+
for the forward RNN.
|
|
154
|
+
Each tensor must has an appropriate type and shape
|
|
155
|
+
`[batch_size, cell_fw.state_size]`.
|
|
156
|
+
initial_states_bw: (optional) Same as for `initial_states_fw`, but using
|
|
157
|
+
the corresponding properties of `cells_bw`.
|
|
158
|
+
dtype: (optional) The data type for the initial state. Required if
|
|
159
|
+
either of the initial states are not provided.
|
|
160
|
+
sequence_length: (optional) An int32/int64 vector, size `[batch_size]`,
|
|
161
|
+
containing the actual lengths for each of the sequences.
|
|
162
|
+
parallel_iterations: (Default: 32). The number of iterations to run in
|
|
163
|
+
parallel. Those operations which do not have any temporal dependency
|
|
164
|
+
and can be run in parallel, will be. This parameter trades off
|
|
165
|
+
time for space. Values >> 1 use more memory but take less time,
|
|
166
|
+
while smaller values use less memory but computations take longer.
|
|
167
|
+
time_major: The shape format of the inputs and outputs Tensors. If true,
|
|
168
|
+
these Tensors must be shaped [max_time, batch_size, depth]. If false,
|
|
169
|
+
these Tensors must be shaped [batch_size, max_time, depth]. Using
|
|
170
|
+
time_major = True is a bit more efficient because it avoids transposes at
|
|
171
|
+
the beginning and end of the RNN calculation. However, most TensorFlow
|
|
172
|
+
data is batch-major, so by default this function accepts input and emits
|
|
173
|
+
output in batch-major form.
|
|
174
|
+
scope: VariableScope for the created subgraph; defaults to None.
|
|
175
|
+
swap_memory: Transparently swap the tensors produced in forward inference
|
|
176
|
+
but needed for back prop from GPU to CPU. This allows training RNNs
|
|
177
|
+
which would typically not fit on a single GPU, with very minimal (or no)
|
|
178
|
+
performance penalty.
|
|
179
|
+
|
|
180
|
+
Returns:
|
|
181
|
+
A tuple (outputs, output_state_fw, output_state_bw) where:
|
|
182
|
+
outputs: Output `Tensor` shaped:
|
|
183
|
+
`[batch_size, max_time, layers_output]`. Where layers_output
|
|
184
|
+
are depth-concatenated forward and backward outputs.
|
|
185
|
+
output_states_fw is the final states, one tensor per layer,
|
|
186
|
+
of the forward rnn.
|
|
187
|
+
output_states_bw is the final states, one tensor per layer,
|
|
188
|
+
of the backward rnn.
|
|
189
|
+
|
|
190
|
+
Raises:
|
|
191
|
+
TypeError: If `cell_fw` or `cell_bw` is not an instance of `RNNCell`.
|
|
192
|
+
ValueError: If inputs is `None`.
|
|
193
|
+
"""
|
|
194
|
+
if not cells_fw:
|
|
195
|
+
raise ValueError("Must specify at least one fw cell for BidirectionalRNN.")
|
|
196
|
+
if not cells_bw:
|
|
197
|
+
raise ValueError("Must specify at least one bw cell for BidirectionalRNN.")
|
|
198
|
+
if not isinstance(cells_fw, list):
|
|
199
|
+
raise ValueError("cells_fw must be a list of RNNCells (one per layer).")
|
|
200
|
+
if not isinstance(cells_bw, list):
|
|
201
|
+
raise ValueError("cells_bw must be a list of RNNCells (one per layer).")
|
|
202
|
+
if len(cells_fw) != len(cells_bw):
|
|
203
|
+
raise ValueError("Forward and Backward cells must have the same depth.")
|
|
204
|
+
if (initial_states_fw is not None and
|
|
205
|
+
(not isinstance(initial_states_fw, list) or
|
|
206
|
+
len(initial_states_fw) != len(cells_fw))):
|
|
207
|
+
raise ValueError(
|
|
208
|
+
"initial_states_fw must be a list of state tensors (one per layer).")
|
|
209
|
+
if (initial_states_bw is not None and
|
|
210
|
+
(not isinstance(initial_states_bw, list) or
|
|
211
|
+
len(initial_states_bw) != len(cells_bw))):
|
|
212
|
+
raise ValueError(
|
|
213
|
+
"initial_states_bw must be a list of state tensors (one per layer).")
|
|
214
|
+
|
|
215
|
+
states_fw = []
|
|
216
|
+
states_bw = []
|
|
217
|
+
prev_layer = inputs
|
|
218
|
+
|
|
219
|
+
with vs.variable_scope(scope or "stack_bidirectional_rnn"):
|
|
220
|
+
for i, (cell_fw, cell_bw) in enumerate(zip(cells_fw, cells_bw)):
|
|
221
|
+
initial_state_fw = None
|
|
222
|
+
initial_state_bw = None
|
|
223
|
+
if initial_states_fw:
|
|
224
|
+
initial_state_fw = initial_states_fw[i]
|
|
225
|
+
if initial_states_bw:
|
|
226
|
+
initial_state_bw = initial_states_bw[i]
|
|
227
|
+
|
|
228
|
+
with vs.variable_scope("cell_%d" % i):
|
|
229
|
+
outputs, (state_fw, state_bw) = rnn.bidirectional_dynamic_rnn(
|
|
230
|
+
cell_fw,
|
|
231
|
+
cell_bw,
|
|
232
|
+
prev_layer,
|
|
233
|
+
initial_state_fw=initial_state_fw,
|
|
234
|
+
initial_state_bw=initial_state_bw,
|
|
235
|
+
sequence_length=sequence_length,
|
|
236
|
+
parallel_iterations=parallel_iterations,
|
|
237
|
+
dtype=dtype,
|
|
238
|
+
swap_memory=swap_memory,
|
|
239
|
+
time_major=time_major)
|
|
240
|
+
# Concat the outputs to create the new input.
|
|
241
|
+
prev_layer = array_ops.concat(outputs, 2)
|
|
242
|
+
states_fw.append(state_fw)
|
|
243
|
+
states_bw.append(state_bw)
|
|
244
|
+
|
|
245
|
+
return prev_layer, tuple(states_fw), tuple(states_bw)
|