spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,270 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for YakeKeywordExtraction."""
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
from sparknlp.common import *
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class YakeKeywordExtraction(AnnotatorModel):
|
|
21
|
+
"""Yake is an Unsupervised, Corpus-Independent, Domain and
|
|
22
|
+
Language-Independent and Single-Document keyword extraction algorithm.
|
|
23
|
+
|
|
24
|
+
Extracting keywords from texts has become a challenge for individuals and
|
|
25
|
+
organizations as the information grows in complexity and size. The need to
|
|
26
|
+
automate this task so that text can be processed in a timely and adequate
|
|
27
|
+
manner has led to the emergence of automatic keyword extraction tools. Yake
|
|
28
|
+
is a novel feature-based system for multi-lingual keyword extraction, which
|
|
29
|
+
supports texts of different sizes, domain or languages. Unlike other
|
|
30
|
+
approaches, Yake does not rely on dictionaries nor thesauri, neither is
|
|
31
|
+
trained against any corpora. Instead, it follows an unsupervised approach
|
|
32
|
+
which builds upon features extracted from the text, making it thus
|
|
33
|
+
applicable to documents written in different languages without the need for
|
|
34
|
+
further knowledge. This can be beneficial for a large number of tasks and a
|
|
35
|
+
plethora of situations where access to training corpora is either limited or
|
|
36
|
+
restricted. The algorithm makes use of the position of a sentence and token.
|
|
37
|
+
Therefore, to use the annotator, the text should be first sent through a
|
|
38
|
+
Sentence Boundary Detector and then a tokenizer.
|
|
39
|
+
|
|
40
|
+
See the parameters section for tweakable parameters to get the best result
|
|
41
|
+
from the annotator.
|
|
42
|
+
|
|
43
|
+
Note that each keyword will be given a keyword score greater than 0 (The
|
|
44
|
+
lower the score better the keyword). Therefore to filter the keywords, an
|
|
45
|
+
upper bound for the score can be set with :meth:`.setThreshold`.
|
|
46
|
+
|
|
47
|
+
For extended examples of usage, see the `Examples
|
|
48
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/keyword-extraction/Keyword_Extraction_YAKE.ipynb>`__.
|
|
49
|
+
|
|
50
|
+
====================== ======================
|
|
51
|
+
Input Annotation types Output Annotation type
|
|
52
|
+
====================== ======================
|
|
53
|
+
``TOKEN`` ``CHUNK``
|
|
54
|
+
====================== ======================
|
|
55
|
+
|
|
56
|
+
Parameters
|
|
57
|
+
----------
|
|
58
|
+
minNGrams
|
|
59
|
+
Minimum N-grams a keyword should have, by default 2
|
|
60
|
+
maxNGrams
|
|
61
|
+
Maximum N-grams a keyword should have, by default 3
|
|
62
|
+
threshold
|
|
63
|
+
Keyword Score threshold, by default -1
|
|
64
|
+
windowSize
|
|
65
|
+
Window size for Co-Occurrence, by default 3
|
|
66
|
+
nKeywords
|
|
67
|
+
Number of Keywords to extract, by default 30
|
|
68
|
+
stopWords
|
|
69
|
+
the words to be filtered out, by default english stop words from Spark
|
|
70
|
+
ML
|
|
71
|
+
|
|
72
|
+
References
|
|
73
|
+
----------
|
|
74
|
+
`Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A., Jorge, A., Nunes, C.
|
|
75
|
+
and Jatowt, A. (2020). YAKE! Keyword Extraction from Single Documents using
|
|
76
|
+
Multiple Local Features. In Information Sciences Journal. Elsevier, Vol 509,
|
|
77
|
+
pp 257-289
|
|
78
|
+
<https://www.sciencedirect.com/science/article/pii/S0020025519308588>`__
|
|
79
|
+
|
|
80
|
+
**Paper abstract:**
|
|
81
|
+
|
|
82
|
+
*As the amount of generated information grows, reading and summarizing texts
|
|
83
|
+
of large collections turns into a challenging task. Many documents do not
|
|
84
|
+
come with descriptive terms, thus requiring humans to generate keywords
|
|
85
|
+
on-the-fly. The need to automate this kind of task demands the development
|
|
86
|
+
of keyword extraction systems with the ability to automatically identify
|
|
87
|
+
keywords within the text. One approach is to resort to machine-learning
|
|
88
|
+
algorithms. These, however, depend on large annotated text corpora, which
|
|
89
|
+
are not always available. An alternative solution is to consider an
|
|
90
|
+
unsupervised approach. In this article, we describe YAKE!, a light-weight
|
|
91
|
+
unsupervised automatic keyword extraction method which rests on statistical
|
|
92
|
+
text features extracted from single documents to select the most relevant
|
|
93
|
+
keywords of a text. Our system does not need to be trained on a particular
|
|
94
|
+
set of documents, nor does it depend on dictionaries, external corpora, text
|
|
95
|
+
size, language, or domain. To demonstrate the merits and significance of
|
|
96
|
+
YAKE!, we compare it against ten state-of-the-art unsupervised approaches
|
|
97
|
+
and one supervised method. Experimental results carried out on top of twenty
|
|
98
|
+
datasets show that YAKE! significantly outperforms other unsupervised
|
|
99
|
+
methods on texts of different sizes, languages, and domains.*
|
|
100
|
+
|
|
101
|
+
Examples
|
|
102
|
+
--------
|
|
103
|
+
>>> import sparknlp
|
|
104
|
+
>>> from sparknlp.base import *
|
|
105
|
+
>>> from sparknlp.annotator import *
|
|
106
|
+
>>> from pyspark.ml import Pipeline
|
|
107
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
108
|
+
... .setInputCol("text") \\
|
|
109
|
+
... .setOutputCol("document")
|
|
110
|
+
>>> sentenceDetector = SentenceDetector() \\
|
|
111
|
+
... .setInputCols(["document"]) \\
|
|
112
|
+
... .setOutputCol("sentence")
|
|
113
|
+
>>> token = Tokenizer() \\
|
|
114
|
+
... .setInputCols(["sentence"]) \\
|
|
115
|
+
... .setOutputCol("token") \\
|
|
116
|
+
... .setContextChars(["(", "]", "?", "!", ".", ","])
|
|
117
|
+
>>> keywords = YakeKeywordExtraction() \\
|
|
118
|
+
... .setInputCols(["token"]) \\
|
|
119
|
+
... .setOutputCol("keywords") \\
|
|
120
|
+
... .setThreshold(0.6) \\
|
|
121
|
+
... .setMinNGrams(2) \\
|
|
122
|
+
... .setNKeywords(10)
|
|
123
|
+
>>> pipeline = Pipeline().setStages([
|
|
124
|
+
... documentAssembler,
|
|
125
|
+
... sentenceDetector,
|
|
126
|
+
... token,
|
|
127
|
+
... keywords
|
|
128
|
+
... ])
|
|
129
|
+
>>> data = spark.createDataFrame([[
|
|
130
|
+
... "Sources tell us that Google is acquiring Kaggle, a platform that hosts data science and machine learning competitions. Details about the transaction remain somewhat vague, but given that Google is hosting its Cloud Next conference in San Francisco this week, the official announcement could come as early as tomorrow. Reached by phone, Kaggle co-founder CEO Anthony Goldbloom declined to deny that the acquisition is happening. Google itself declined 'to comment on rumors'. Kaggle, which has about half a million data scientists on its platform, was founded by Goldbloom and Ben Hamner in 2010. The service got an early start and even though it has a few competitors like DrivenData, TopCoder and HackerRank, it has managed to stay well ahead of them by focusing on its specific niche. The service is basically the de facto home for running data science and machine learning competitions. With Kaggle, Google is buying one of the largest and most active communities for data scientists - and with that, it will get increased mindshare in this community, too (though it already has plenty of that thanks to Tensorflow and other projects). Kaggle has a bit of a history with Google, too, but that's pretty recent. Earlier this month, Google and Kaggle teamed up to host a $100,000 machine learning competition around classifying YouTube videos. That competition had some deep integrations with the Google Cloud Platform, too. Our understanding is that Google will keep the service running - likely under its current name. While the acquisition is probably more about Kaggle's community than technology, Kaggle did build some interesting tools for hosting its competition and 'kernels', too. On Kaggle, kernels are basically the source code for analyzing data sets and developers can share this code on the platform (the company previously called them 'scripts'). Like similar competition-centric sites, Kaggle also runs a job board, too. It's unclear what Google will do with that part of the service. According to Crunchbase, Kaggle raised $12.5 million (though PitchBook says it's $12.75) since its launch in 2010. Investors in Kaggle include Index Ventures, SV Angel, Max Levchin, NaRavikant, Google chie economist Hal Varian, Khosla Ventures and Yuri Milner"
|
|
131
|
+
... ]]).toDF("text")
|
|
132
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
133
|
+
|
|
134
|
+
Combine the result and score (contained in keywords.metadata)
|
|
135
|
+
|
|
136
|
+
>>> scores = result \\
|
|
137
|
+
... .selectExpr("explode(arrays_zip(keywords.result, keywords.metadata)) as resultTuples") \\
|
|
138
|
+
... .selectExpr("resultTuples['0'] as keyword", "resultTuples['1'].score as score")
|
|
139
|
+
|
|
140
|
+
Order ascending, as lower scores means higher importance
|
|
141
|
+
|
|
142
|
+
>>> scores.orderBy("score").show(5, truncate = False)
|
|
143
|
+
+---------------------+-------------------+
|
|
144
|
+
|keyword |score |
|
|
145
|
+
+---------------------+-------------------+
|
|
146
|
+
|google cloud |0.32051516486864573|
|
|
147
|
+
|google cloud platform|0.37786450577630676|
|
|
148
|
+
|ceo anthony goldbloom|0.39922830978423146|
|
|
149
|
+
|san francisco |0.40224744669493756|
|
|
150
|
+
|anthony goldbloom |0.41584827825302534|
|
|
151
|
+
+---------------------+-------------------+
|
|
152
|
+
"""
|
|
153
|
+
name = "YakeKeywordExtraction"
|
|
154
|
+
|
|
155
|
+
inputAnnotatorTypes = [AnnotatorType.TOKEN]
|
|
156
|
+
|
|
157
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
158
|
+
|
|
159
|
+
@keyword_only
|
|
160
|
+
def __init__(self):
|
|
161
|
+
super(YakeKeywordExtraction, self).__init__(
|
|
162
|
+
classname="com.johnsnowlabs.nlp.annotators.keyword.yake.YakeKeywordExtraction")
|
|
163
|
+
self._setDefault(
|
|
164
|
+
minNGrams=2,
|
|
165
|
+
maxNGrams=3,
|
|
166
|
+
nKeywords=30,
|
|
167
|
+
windowSize=3,
|
|
168
|
+
threshold=-1,
|
|
169
|
+
stopWords=YakeKeywordExtraction.loadDefaultStopWords("english")
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
minNGrams = Param(Params._dummy(), "minNGrams", "Minimum N-grams a keyword should have",
|
|
173
|
+
typeConverter=TypeConverters.toInt)
|
|
174
|
+
maxNGrams = Param(Params._dummy(), "maxNGrams", "Maximum N-grams a keyword should have",
|
|
175
|
+
typeConverter=TypeConverters.toInt)
|
|
176
|
+
threshold = Param(Params._dummy(), "threshold", "Keyword Score threshold", typeConverter=TypeConverters.toFloat)
|
|
177
|
+
windowSize = Param(Params._dummy(), "windowSize", "Window size for Co-Occurrence",
|
|
178
|
+
typeConverter=TypeConverters.toInt)
|
|
179
|
+
nKeywords = Param(Params._dummy(), "nKeywords", "Number of Keywords to extract", typeConverter=TypeConverters.toInt)
|
|
180
|
+
stopWords = Param(Params._dummy(), "stopWords",
|
|
181
|
+
"the words to be filtered out. by default it's english stop words from Spark ML",
|
|
182
|
+
typeConverter=TypeConverters.toListString)
|
|
183
|
+
|
|
184
|
+
def setWindowSize(self, value):
|
|
185
|
+
"""Sets window size for Co-Occurrence, by default 3.
|
|
186
|
+
|
|
187
|
+
Parameters
|
|
188
|
+
----------
|
|
189
|
+
value : int
|
|
190
|
+
Window size for Co-Occurrence
|
|
191
|
+
"""
|
|
192
|
+
return self._set(windowSize=value)
|
|
193
|
+
|
|
194
|
+
def setMinNGrams(self, value):
|
|
195
|
+
"""Sets minimum N-grams a keyword should have, by default 2.
|
|
196
|
+
|
|
197
|
+
Parameters
|
|
198
|
+
----------
|
|
199
|
+
value : int
|
|
200
|
+
Minimum N-grams a keyword should have
|
|
201
|
+
"""
|
|
202
|
+
return self._set(minNGrams=value)
|
|
203
|
+
|
|
204
|
+
def setMaxNGrams(self, value):
|
|
205
|
+
"""Sets maximum N-grams a keyword should have, by default 3.
|
|
206
|
+
|
|
207
|
+
Parameters
|
|
208
|
+
----------
|
|
209
|
+
value : int
|
|
210
|
+
Maximum N-grams a keyword should have
|
|
211
|
+
"""
|
|
212
|
+
return self._set(maxNGrams=value)
|
|
213
|
+
|
|
214
|
+
def setThreshold(self, value):
|
|
215
|
+
"""Sets keyword Score threshold, by default -1.
|
|
216
|
+
|
|
217
|
+
Parameters
|
|
218
|
+
----------
|
|
219
|
+
value : int
|
|
220
|
+
Keyword Score threshold, by default -1
|
|
221
|
+
"""
|
|
222
|
+
return self._set(threshold=value)
|
|
223
|
+
|
|
224
|
+
def setNKeywords(self, value):
|
|
225
|
+
"""Sets number of Keywords to extract, by default 30.
|
|
226
|
+
|
|
227
|
+
Parameters
|
|
228
|
+
----------
|
|
229
|
+
value : int
|
|
230
|
+
Number of Keywords to extract
|
|
231
|
+
"""
|
|
232
|
+
return self._set(nKeywords=value)
|
|
233
|
+
|
|
234
|
+
def setStopWords(self, value):
|
|
235
|
+
"""Sets the words to be filtered out, by default english stop words from
|
|
236
|
+
Spark ML.
|
|
237
|
+
|
|
238
|
+
Parameters
|
|
239
|
+
----------
|
|
240
|
+
value : List[str]
|
|
241
|
+
The words to be filtered out
|
|
242
|
+
"""
|
|
243
|
+
return self._set(stopWords=value)
|
|
244
|
+
|
|
245
|
+
def getStopWords(self):
|
|
246
|
+
"""Gets the words to be filtered out, by default english stop words from
|
|
247
|
+
Spark ML.
|
|
248
|
+
|
|
249
|
+
Returns
|
|
250
|
+
-------
|
|
251
|
+
List[str]
|
|
252
|
+
The words to be filtered out
|
|
253
|
+
"""
|
|
254
|
+
return self.getOrDefault(self.stopWords)
|
|
255
|
+
|
|
256
|
+
def loadDefaultStopWords(language="english"):
|
|
257
|
+
"""Loads the default stop words for the given language.
|
|
258
|
+
|
|
259
|
+
Supported languages: danish, dutch, english, finnish, french, german,
|
|
260
|
+
hungarian, italian, norwegian, portuguese, russian, spanish, swedish,
|
|
261
|
+
turkish
|
|
262
|
+
|
|
263
|
+
Parameters
|
|
264
|
+
----------
|
|
265
|
+
language : str, optional
|
|
266
|
+
Language stopwords to load, by default "english"
|
|
267
|
+
"""
|
|
268
|
+
from pyspark.ml.wrapper import _jvm
|
|
269
|
+
stopWordsObj = _jvm().org.apache.spark.ml.feature.StopWordsRemover
|
|
270
|
+
return list(stopWordsObj.loadDefaultStopWords(language))
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""Module of annotators for language detection."""
|
|
16
|
+
from sparknlp.annotator.ld_dl.language_detector_dl import *
|
|
@@ -0,0 +1,199 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for LanguageDetectorDL."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class LanguageDetectorDL(AnnotatorModel, HasStorageRef, HasEngine):
|
|
20
|
+
"""Language Identification and Detection by using CNN and RNN architectures
|
|
21
|
+
in TensorFlow.
|
|
22
|
+
|
|
23
|
+
``LanguageDetectorDL`` is an annotator that detects the language of
|
|
24
|
+
documents or sentences depending on the inputCols. The models are trained on
|
|
25
|
+
large datasets such as Wikipedia and Tatoeba. Depending on the language
|
|
26
|
+
(how similar the characters are), the LanguageDetectorDL works best with
|
|
27
|
+
text longer than 140 characters. The output is a language code in
|
|
28
|
+
`Wiki Code style <https://en.wikipedia.org/wiki/List_of_Wikipedias>`__.
|
|
29
|
+
|
|
30
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
31
|
+
object:
|
|
32
|
+
|
|
33
|
+
>>> languageDetector = LanguageDetectorDL.pretrained() \\
|
|
34
|
+
... .setInputCols(["sentence"]) \\
|
|
35
|
+
... .setOutputCol("language")
|
|
36
|
+
|
|
37
|
+
The default model is ``"ld_wiki_tatoeba_cnn_21"``, default language is
|
|
38
|
+
``"xx"`` (meaning multi-lingual), if no values are provided.
|
|
39
|
+
|
|
40
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Language+Detection>`__.
|
|
41
|
+
|
|
42
|
+
For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/language-detection/Language_Detection_and_Indentification.ipynb>`__.
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT`` ``LANGUAGE``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
configProtoBytes
|
|
53
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
54
|
+
threshold
|
|
55
|
+
The minimum threshold for the final result otheriwse it will be either
|
|
56
|
+
neutral or the value set in thresholdLabel, by default 0.5
|
|
57
|
+
thresholdLabel
|
|
58
|
+
In case the score is less than threshold, what should be the label, by
|
|
59
|
+
default Unknown
|
|
60
|
+
coalesceSentences
|
|
61
|
+
If sets to true the output of all sentences will be averaged to one
|
|
62
|
+
output instead of one output per sentence, by default True.
|
|
63
|
+
languages
|
|
64
|
+
The languages used to trained the model
|
|
65
|
+
|
|
66
|
+
Examples
|
|
67
|
+
--------
|
|
68
|
+
>>> import sparknlp
|
|
69
|
+
>>> from sparknlp.base import *
|
|
70
|
+
>>> from sparknlp.annotator import *
|
|
71
|
+
>>> from pyspark.ml import Pipeline
|
|
72
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
73
|
+
... .setInputCol("text") \\
|
|
74
|
+
... .setOutputCol("document")
|
|
75
|
+
>>> languageDetector = LanguageDetectorDL.pretrained() \\
|
|
76
|
+
... .setInputCols("document") \\
|
|
77
|
+
... .setOutputCol("language")
|
|
78
|
+
>>> pipeline = Pipeline() \\
|
|
79
|
+
... .setStages([
|
|
80
|
+
... documentAssembler,
|
|
81
|
+
... languageDetector
|
|
82
|
+
... ])
|
|
83
|
+
>>> data = spark.createDataFrame([
|
|
84
|
+
... ["Spark NLP is an open-source text processing library for advanced natural language processing for the Python, Java and Scala programming languages."],
|
|
85
|
+
... ["Spark NLP est une bibliothèque de traitement de texte open source pour le traitement avancé du langage naturel pour les langages de programmation Python, Java et Scala."],
|
|
86
|
+
... ["Spark NLP ist eine Open-Source-Textverarbeitungsbibliothek für fortgeschrittene natürliche Sprachverarbeitung für die Programmiersprachen Python, Java und Scala."]
|
|
87
|
+
... ]).toDF("text")
|
|
88
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
89
|
+
>>> result.select("language.result").show(truncate=False)
|
|
90
|
+
+------+
|
|
91
|
+
|result|
|
|
92
|
+
+------+
|
|
93
|
+
|[en] |
|
|
94
|
+
|[fr] |
|
|
95
|
+
|[de] |
|
|
96
|
+
+------+
|
|
97
|
+
"""
|
|
98
|
+
name = "LanguageDetectorDL"
|
|
99
|
+
|
|
100
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
101
|
+
|
|
102
|
+
outputAnnotatorType = AnnotatorType.LANGUAGE
|
|
103
|
+
|
|
104
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.ld.dl.LanguageDetectorDL", java_model=None):
|
|
105
|
+
super(LanguageDetectorDL, self).__init__(
|
|
106
|
+
classname=classname,
|
|
107
|
+
java_model=java_model
|
|
108
|
+
)
|
|
109
|
+
self._setDefault(
|
|
110
|
+
threshold=0.5,
|
|
111
|
+
thresholdLabel="Unknown",
|
|
112
|
+
coalesceSentences=True
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
configProtoBytes = Param(Params._dummy(), "configProtoBytes",
|
|
116
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
117
|
+
TypeConverters.toListInt)
|
|
118
|
+
|
|
119
|
+
threshold = Param(Params._dummy(), "threshold",
|
|
120
|
+
"The minimum threshold for the final result otheriwse it will be either neutral or the value set in thresholdLabel.",
|
|
121
|
+
TypeConverters.toFloat)
|
|
122
|
+
|
|
123
|
+
thresholdLabel = Param(Params._dummy(), "thresholdLabel",
|
|
124
|
+
"In case the score is less than threshold, what should be the label. Default is neutral.",
|
|
125
|
+
TypeConverters.toString)
|
|
126
|
+
|
|
127
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
128
|
+
"If sets to true the output of all sentences will be averaged to one output instead of one output per sentence. Default to false.",
|
|
129
|
+
TypeConverters.toBoolean)
|
|
130
|
+
|
|
131
|
+
languages = Param(Params._dummy(), "languages",
|
|
132
|
+
"get the languages used to trained the model",
|
|
133
|
+
TypeConverters.toListString)
|
|
134
|
+
|
|
135
|
+
def setConfigProtoBytes(self, b):
|
|
136
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
137
|
+
|
|
138
|
+
Parameters
|
|
139
|
+
----------
|
|
140
|
+
b : List[int]
|
|
141
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
142
|
+
"""
|
|
143
|
+
return self._set(configProtoBytes=b)
|
|
144
|
+
|
|
145
|
+
def setThreshold(self, v):
|
|
146
|
+
"""Sets the minimum threshold for the final result otherwise it will be
|
|
147
|
+
either neutral or the value set in thresholdLabel, by default 0.5.
|
|
148
|
+
|
|
149
|
+
Parameters
|
|
150
|
+
----------
|
|
151
|
+
v : float
|
|
152
|
+
Minimum threshold for the final result
|
|
153
|
+
"""
|
|
154
|
+
self._set(threshold=v)
|
|
155
|
+
return self
|
|
156
|
+
|
|
157
|
+
def setThresholdLabel(self, p):
|
|
158
|
+
"""Sets what should be the label in case the score is less than
|
|
159
|
+
threshold, by default Unknown.
|
|
160
|
+
|
|
161
|
+
Parameters
|
|
162
|
+
----------
|
|
163
|
+
p : str
|
|
164
|
+
The replacement label.
|
|
165
|
+
"""
|
|
166
|
+
return self._set(thresholdLabel=p)
|
|
167
|
+
|
|
168
|
+
def setCoalesceSentences(self, value):
|
|
169
|
+
"""Sets if the output of all sentences will be averaged to one output
|
|
170
|
+
instead of one output per sentence, by default True.
|
|
171
|
+
|
|
172
|
+
Parameters
|
|
173
|
+
----------
|
|
174
|
+
value : bool
|
|
175
|
+
If the output of all sentences will be averaged to one output
|
|
176
|
+
"""
|
|
177
|
+
return self._set(coalesceSentences=value)
|
|
178
|
+
|
|
179
|
+
@staticmethod
|
|
180
|
+
def pretrained(name="ld_wiki_tatoeba_cnn_21", lang="xx", remote_loc=None):
|
|
181
|
+
"""Downloads and loads a pretrained model.
|
|
182
|
+
|
|
183
|
+
Parameters
|
|
184
|
+
----------
|
|
185
|
+
name : str, optional
|
|
186
|
+
Name of the pretrained model, by default "ld_wiki_tatoeba_cnn_21"
|
|
187
|
+
lang : str, optional
|
|
188
|
+
Language of the pretrained model, by default "xx"
|
|
189
|
+
remote_loc : str, optional
|
|
190
|
+
Optional remote address of the resource, by default None. Will use
|
|
191
|
+
Spark NLPs repositories otherwise.
|
|
192
|
+
|
|
193
|
+
Returns
|
|
194
|
+
-------
|
|
195
|
+
LanguageDetectorDL
|
|
196
|
+
The restored model
|
|
197
|
+
"""
|
|
198
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
199
|
+
return ResourceDownloader.downloadModel(LanguageDetectorDL, name, lang, remote_loc)
|