spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (329) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. com/johnsnowlabs/nlp/__init__.py +4 -2
  4. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  5. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  6. {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  7. sparknlp/__init__.py +281 -27
  8. sparknlp/annotation.py +137 -6
  9. sparknlp/annotation_audio.py +61 -0
  10. sparknlp/annotation_image.py +82 -0
  11. sparknlp/annotator/__init__.py +93 -0
  12. sparknlp/annotator/audio/__init__.py +16 -0
  13. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  14. sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
  15. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  16. sparknlp/annotator/chunk2_doc.py +85 -0
  17. sparknlp/annotator/chunker.py +137 -0
  18. sparknlp/annotator/classifier_dl/__init__.py +61 -0
  19. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  20. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
  21. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
  22. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
  23. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  24. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  25. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  26. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
  27. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
  28. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
  29. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  30. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  31. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
  32. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
  33. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  34. sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
  35. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
  36. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
  37. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
  38. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  39. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
  40. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
  41. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
  42. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  43. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  44. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
  45. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
  46. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
  47. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  48. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  49. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  50. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
  51. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  52. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
  53. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
  54. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
  55. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  56. sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
  57. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
  60. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
  61. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
  62. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  63. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
  64. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
  65. sparknlp/annotator/cleaners/__init__.py +15 -0
  66. sparknlp/annotator/cleaners/cleaner.py +202 -0
  67. sparknlp/annotator/cleaners/extractor.py +191 -0
  68. sparknlp/annotator/coref/__init__.py +1 -0
  69. sparknlp/annotator/coref/spanbert_coref.py +221 -0
  70. sparknlp/annotator/cv/__init__.py +29 -0
  71. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  72. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  73. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  74. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  75. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  76. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  77. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  78. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  79. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  80. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  81. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  82. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  83. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  84. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  85. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  86. sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
  87. sparknlp/annotator/dataframe_optimizer.py +216 -0
  88. sparknlp/annotator/date2_chunk.py +88 -0
  89. sparknlp/annotator/dependency/__init__.py +17 -0
  90. sparknlp/annotator/dependency/dependency_parser.py +294 -0
  91. sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
  92. sparknlp/annotator/document_character_text_splitter.py +228 -0
  93. sparknlp/annotator/document_normalizer.py +235 -0
  94. sparknlp/annotator/document_token_splitter.py +175 -0
  95. sparknlp/annotator/document_token_splitter_test.py +85 -0
  96. sparknlp/annotator/embeddings/__init__.py +45 -0
  97. sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
  98. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  99. sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
  100. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
  101. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  102. sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
  103. sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
  104. sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
  105. sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
  106. sparknlp/annotator/embeddings/doc2vec.py +352 -0
  107. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  108. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  109. sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
  110. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  111. sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
  112. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  113. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  114. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  115. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  116. sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
  117. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
  118. sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
  119. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  120. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  121. sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
  122. sparknlp/annotator/embeddings/word2vec.py +353 -0
  123. sparknlp/annotator/embeddings/word_embeddings.py +385 -0
  124. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
  125. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
  126. sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
  127. sparknlp/annotator/er/__init__.py +16 -0
  128. sparknlp/annotator/er/entity_ruler.py +267 -0
  129. sparknlp/annotator/graph_extraction.py +368 -0
  130. sparknlp/annotator/keyword_extraction/__init__.py +16 -0
  131. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
  132. sparknlp/annotator/ld_dl/__init__.py +16 -0
  133. sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
  134. sparknlp/annotator/lemmatizer.py +250 -0
  135. sparknlp/annotator/matcher/__init__.py +20 -0
  136. sparknlp/annotator/matcher/big_text_matcher.py +272 -0
  137. sparknlp/annotator/matcher/date_matcher.py +303 -0
  138. sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
  139. sparknlp/annotator/matcher/regex_matcher.py +221 -0
  140. sparknlp/annotator/matcher/text_matcher.py +290 -0
  141. sparknlp/annotator/n_gram_generator.py +141 -0
  142. sparknlp/annotator/ner/__init__.py +21 -0
  143. sparknlp/annotator/ner/ner_approach.py +94 -0
  144. sparknlp/annotator/ner/ner_converter.py +148 -0
  145. sparknlp/annotator/ner/ner_crf.py +397 -0
  146. sparknlp/annotator/ner/ner_dl.py +591 -0
  147. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  148. sparknlp/annotator/ner/ner_overwriter.py +166 -0
  149. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  150. sparknlp/annotator/normalizer.py +230 -0
  151. sparknlp/annotator/openai/__init__.py +16 -0
  152. sparknlp/annotator/openai/openai_completion.py +349 -0
  153. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  154. sparknlp/annotator/param/__init__.py +17 -0
  155. sparknlp/annotator/param/classifier_encoder.py +98 -0
  156. sparknlp/annotator/param/evaluation_dl_params.py +130 -0
  157. sparknlp/annotator/pos/__init__.py +16 -0
  158. sparknlp/annotator/pos/perceptron.py +263 -0
  159. sparknlp/annotator/sentence/__init__.py +17 -0
  160. sparknlp/annotator/sentence/sentence_detector.py +290 -0
  161. sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
  162. sparknlp/annotator/sentiment/__init__.py +17 -0
  163. sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
  164. sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
  165. sparknlp/annotator/seq2seq/__init__.py +35 -0
  166. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  167. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  168. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  169. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  170. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  171. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  172. sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
  173. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  174. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  175. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  176. sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
  177. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  178. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  179. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  180. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  181. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  182. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  183. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  184. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  185. sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
  186. sparknlp/annotator/similarity/__init__.py +0 -0
  187. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  188. sparknlp/annotator/spell_check/__init__.py +18 -0
  189. sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
  190. sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
  191. sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
  192. sparknlp/annotator/stemmer.py +79 -0
  193. sparknlp/annotator/stop_words_cleaner.py +190 -0
  194. sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
  195. sparknlp/annotator/token/__init__.py +19 -0
  196. sparknlp/annotator/token/chunk_tokenizer.py +118 -0
  197. sparknlp/annotator/token/recursive_tokenizer.py +205 -0
  198. sparknlp/annotator/token/regex_tokenizer.py +208 -0
  199. sparknlp/annotator/token/tokenizer.py +561 -0
  200. sparknlp/annotator/token2_chunk.py +76 -0
  201. sparknlp/annotator/ws/__init__.py +16 -0
  202. sparknlp/annotator/ws/word_segmenter.py +429 -0
  203. sparknlp/base/__init__.py +30 -0
  204. sparknlp/base/audio_assembler.py +95 -0
  205. sparknlp/base/doc2_chunk.py +169 -0
  206. sparknlp/base/document_assembler.py +164 -0
  207. sparknlp/base/embeddings_finisher.py +201 -0
  208. sparknlp/base/finisher.py +217 -0
  209. sparknlp/base/gguf_ranking_finisher.py +234 -0
  210. sparknlp/base/graph_finisher.py +125 -0
  211. sparknlp/base/has_recursive_fit.py +24 -0
  212. sparknlp/base/has_recursive_transform.py +22 -0
  213. sparknlp/base/image_assembler.py +172 -0
  214. sparknlp/base/light_pipeline.py +429 -0
  215. sparknlp/base/multi_document_assembler.py +164 -0
  216. sparknlp/base/prompt_assembler.py +207 -0
  217. sparknlp/base/recursive_pipeline.py +107 -0
  218. sparknlp/base/table_assembler.py +145 -0
  219. sparknlp/base/token_assembler.py +124 -0
  220. sparknlp/common/__init__.py +26 -0
  221. sparknlp/common/annotator_approach.py +41 -0
  222. sparknlp/common/annotator_model.py +47 -0
  223. sparknlp/common/annotator_properties.py +114 -0
  224. sparknlp/common/annotator_type.py +38 -0
  225. sparknlp/common/completion_post_processing.py +37 -0
  226. sparknlp/common/coverage_result.py +22 -0
  227. sparknlp/common/match_strategy.py +33 -0
  228. sparknlp/common/properties.py +1298 -0
  229. sparknlp/common/read_as.py +33 -0
  230. sparknlp/common/recursive_annotator_approach.py +35 -0
  231. sparknlp/common/storage.py +149 -0
  232. sparknlp/common/utils.py +39 -0
  233. sparknlp/functions.py +315 -5
  234. sparknlp/internal/__init__.py +1199 -0
  235. sparknlp/internal/annotator_java_ml.py +32 -0
  236. sparknlp/internal/annotator_transformer.py +37 -0
  237. sparknlp/internal/extended_java_wrapper.py +63 -0
  238. sparknlp/internal/params_getters_setters.py +71 -0
  239. sparknlp/internal/recursive.py +70 -0
  240. sparknlp/logging/__init__.py +15 -0
  241. sparknlp/logging/comet.py +467 -0
  242. sparknlp/partition/__init__.py +16 -0
  243. sparknlp/partition/partition.py +244 -0
  244. sparknlp/partition/partition_properties.py +902 -0
  245. sparknlp/partition/partition_transformer.py +200 -0
  246. sparknlp/pretrained/__init__.py +17 -0
  247. sparknlp/pretrained/pretrained_pipeline.py +158 -0
  248. sparknlp/pretrained/resource_downloader.py +216 -0
  249. sparknlp/pretrained/utils.py +35 -0
  250. sparknlp/reader/__init__.py +15 -0
  251. sparknlp/reader/enums.py +19 -0
  252. sparknlp/reader/pdf_to_text.py +190 -0
  253. sparknlp/reader/reader2doc.py +124 -0
  254. sparknlp/reader/reader2image.py +136 -0
  255. sparknlp/reader/reader2table.py +44 -0
  256. sparknlp/reader/reader_assembler.py +159 -0
  257. sparknlp/reader/sparknlp_reader.py +461 -0
  258. sparknlp/training/__init__.py +20 -0
  259. sparknlp/training/_tf_graph_builders/__init__.py +0 -0
  260. sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
  261. sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
  262. sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
  263. sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
  264. sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
  265. sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
  266. sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
  267. sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
  268. sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
  269. sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
  270. sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
  271. sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
  272. sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
  273. sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
  274. sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
  275. sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
  276. sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
  277. sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
  278. sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
  279. sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
  280. sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
  281. sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
  282. sparknlp/training/conll.py +150 -0
  283. sparknlp/training/conllu.py +103 -0
  284. sparknlp/training/pos.py +103 -0
  285. sparknlp/training/pub_tator.py +76 -0
  286. sparknlp/training/spacy_to_annotation.py +57 -0
  287. sparknlp/training/tfgraphs.py +5 -0
  288. sparknlp/upload_to_hub.py +149 -0
  289. sparknlp/util.py +51 -5
  290. com/__init__.pyc +0 -0
  291. com/__pycache__/__init__.cpython-36.pyc +0 -0
  292. com/johnsnowlabs/__init__.pyc +0 -0
  293. com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
  294. com/johnsnowlabs/nlp/__init__.pyc +0 -0
  295. com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
  296. spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
  297. spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
  298. sparknlp/__init__.pyc +0 -0
  299. sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
  300. sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
  301. sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
  302. sparknlp/__pycache__/base.cpython-36.pyc +0 -0
  303. sparknlp/__pycache__/common.cpython-36.pyc +0 -0
  304. sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
  305. sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
  306. sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
  307. sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
  308. sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
  309. sparknlp/__pycache__/training.cpython-36.pyc +0 -0
  310. sparknlp/__pycache__/util.cpython-36.pyc +0 -0
  311. sparknlp/annotation.pyc +0 -0
  312. sparknlp/annotator.py +0 -3006
  313. sparknlp/annotator.pyc +0 -0
  314. sparknlp/base.py +0 -347
  315. sparknlp/base.pyc +0 -0
  316. sparknlp/common.py +0 -193
  317. sparknlp/common.pyc +0 -0
  318. sparknlp/embeddings.py +0 -40
  319. sparknlp/embeddings.pyc +0 -0
  320. sparknlp/internal.py +0 -288
  321. sparknlp/internal.pyc +0 -0
  322. sparknlp/pretrained.py +0 -123
  323. sparknlp/pretrained.pyc +0 -0
  324. sparknlp/storage.py +0 -32
  325. sparknlp/storage.pyc +0 -0
  326. sparknlp/training.py +0 -62
  327. sparknlp/training.pyc +0 -0
  328. sparknlp/util.pyc +0 -0
  329. {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,242 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for ViveknSentiment."""
15
+
16
+
17
+ from sparknlp.common import *
18
+ from sparknlp.common.annotator_type import AnnotatorType
19
+
20
+
21
+ class ViveknSentimentApproach(AnnotatorApproach):
22
+ """Trains a sentiment analyser inspired by the algorithm by Vivek Narayanan.
23
+
24
+ The analyzer requires sentence boundaries to give a score in context.
25
+ Tokenization is needed to make sure tokens are within bounds. Transitivity
26
+ requirements are also required.
27
+
28
+ The training data needs to consist of a column for normalized text and a
29
+ label column (either ``"positive"`` or ``"negative"``).
30
+
31
+ For extended examples of usage, see the `Examples
32
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/vivekn-sentiment/VivekNarayanSentimentApproach.ipynb>`__.
33
+
34
+ ====================== ======================
35
+ Input Annotation types Output Annotation type
36
+ ====================== ======================
37
+ ``TOKEN, DOCUMENT`` ``SENTIMENT``
38
+ ====================== ======================
39
+
40
+ Parameters
41
+ ----------
42
+ sentimentCol
43
+ column with the sentiment result of every row. Must be 'positive' or 'negative'
44
+ pruneCorpus
45
+ Removes unfrequent scenarios from scope. The higher the better performance. Defaults 1
46
+
47
+ References
48
+ ----------
49
+ The algorithm is based on the paper `"Fast and accurate sentiment
50
+ classification using an enhanced Naive Bayes model"
51
+ <https://arxiv.org/abs/1305.6143>`__.
52
+
53
+ https://github.com/vivekn/sentiment/
54
+
55
+ Examples
56
+ --------
57
+ >>> import sparknlp
58
+ >>> from sparknlp.base import *
59
+ >>> from sparknlp.annotator import *
60
+ >>> from pyspark.ml import Pipeline
61
+ >>> document = DocumentAssembler() \\
62
+ ... .setInputCol("text") \\
63
+ ... .setOutputCol("document")
64
+ >>> token = Tokenizer() \\
65
+ ... .setInputCols(["document"]) \\
66
+ ... .setOutputCol("token")
67
+ >>> normalizer = Normalizer() \\
68
+ ... .setInputCols(["token"]) \\
69
+ ... .setOutputCol("normal")
70
+ >>> vivekn = ViveknSentimentApproach() \\
71
+ ... .setInputCols(["document", "normal"]) \\
72
+ ... .setSentimentCol("train_sentiment") \\
73
+ ... .setOutputCol("result_sentiment")
74
+ >>> finisher = Finisher() \\
75
+ ... .setInputCols(["result_sentiment"]) \\
76
+ ... .setOutputCols("final_sentiment")
77
+ >>> pipeline = Pipeline().setStages([document, token, normalizer, vivekn, finisher])
78
+ >>> training = spark.createDataFrame([
79
+ ... ("I really liked this movie!", "positive"),
80
+ ... ("The cast was horrible", "negative"),
81
+ ... ("Never going to watch this again or recommend it to anyone", "negative"),
82
+ ... ("It's a waste of time", "negative"),
83
+ ... ("I loved the protagonist", "positive"),
84
+ ... ("The music was really really good", "positive")
85
+ ... ]).toDF("text", "train_sentiment")
86
+ >>> pipelineModel = pipeline.fit(training)
87
+ >>> data = spark.createDataFrame([
88
+ ... ["I recommend this movie"],
89
+ ... ["Dont waste your time!!!"]
90
+ ... ]).toDF("text")
91
+ >>> result = pipelineModel.transform(data)
92
+ >>> result.select("final_sentiment").show(truncate=False)
93
+ +---------------+
94
+ |final_sentiment|
95
+ +---------------+
96
+ |[positive] |
97
+ |[negative] |
98
+ +---------------+
99
+ """
100
+
101
+ inputAnnotatorTypes = [AnnotatorType.TOKEN, AnnotatorType.DOCUMENT]
102
+
103
+ outputAnnotatorType = AnnotatorType.SENTIMENT
104
+
105
+ sentimentCol = Param(Params._dummy(),
106
+ "sentimentCol",
107
+ "column with the sentiment result of every row. Must be 'positive' or 'negative'",
108
+ typeConverter=TypeConverters.toString)
109
+
110
+ pruneCorpus = Param(Params._dummy(),
111
+ "pruneCorpus",
112
+ "Removes unfrequent scenarios from scope. The higher the better performance. Defaults 1",
113
+ typeConverter=TypeConverters.toInt)
114
+
115
+ importantFeatureRatio = Param(Params._dummy(),
116
+ "importantFeatureRatio",
117
+ "proportion of feature content to be considered relevant. Defaults to 0.5",
118
+ typeConverter=TypeConverters.toFloat)
119
+
120
+ unimportantFeatureStep = Param(Params._dummy(),
121
+ "unimportantFeatureStep",
122
+ "proportion to lookahead in unimportant features. Defaults to 0.025",
123
+ typeConverter=TypeConverters.toFloat)
124
+
125
+ featureLimit = Param(Params._dummy(),
126
+ "featureLimit",
127
+ "content feature limit, to boost performance in very dirt text. Default disabled with -1",
128
+ typeConverter=TypeConverters.toInt)
129
+
130
+ @keyword_only
131
+ def __init__(self):
132
+ super(ViveknSentimentApproach, self).__init__(
133
+ classname="com.johnsnowlabs.nlp.annotators.sda.vivekn.ViveknSentimentApproach")
134
+ self._setDefault(pruneCorpus=1, importantFeatureRatio=0.5, unimportantFeatureStep=0.025, featureLimit=-1)
135
+
136
+ def setSentimentCol(self, value):
137
+ """Sets column with the sentiment result of every row.
138
+
139
+ Must be either 'positive' or 'negative'.
140
+
141
+ Parameters
142
+ ----------
143
+ value : str
144
+ Name of the column
145
+ """
146
+ return self._set(sentimentCol=value)
147
+
148
+ def setPruneCorpus(self, value):
149
+ """Sets the removal of unfrequent scenarios from scope, by default 1.
150
+
151
+ The higher the better performance.
152
+
153
+ Parameters
154
+ ----------
155
+ value : int
156
+ The frequency
157
+ """
158
+ return self._set(pruneCorpus=value)
159
+
160
+ def _create_model(self, java_model):
161
+ return ViveknSentimentModel(java_model=java_model)
162
+
163
+
164
+ class ViveknSentimentModel(AnnotatorModel):
165
+ """Sentiment analyser inspired by the algorithm by Vivek Narayanan.
166
+
167
+ This is the instantiated model of the :class:`.ViveknSentimentApproach`. For
168
+ training your own model, please see the documentation of that class.
169
+
170
+ The analyzer requires sentence boundaries to give a score in context.
171
+ Tokenization is needed to make sure tokens are within bounds. Transitivity
172
+ requirements are also required.
173
+
174
+ For extended examples of usage, see the `Examples
175
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/vivekn-sentiment/VivekNarayanSentimentApproach.ipynb>`__.
176
+
177
+ ====================== ======================
178
+ Input Annotation types Output Annotation type
179
+ ====================== ======================
180
+ ``TOKEN, DOCUMENT`` ``SENTIMENT``
181
+ ====================== ======================
182
+
183
+ Parameters
184
+ ----------
185
+ None
186
+
187
+ References
188
+ ----------
189
+ The algorithm is based on the paper `"Fast and accurate sentiment
190
+ classification using an enhanced Naive Bayes model"
191
+ <https://arxiv.org/abs/1305.6143>`__.
192
+
193
+ https://github.com/vivekn/sentiment/
194
+ """
195
+ name = "ViveknSentimentModel"
196
+
197
+ inputAnnotatorTypes = [AnnotatorType.TOKEN, AnnotatorType.DOCUMENT]
198
+
199
+ outputAnnotatorType = AnnotatorType.SENTIMENT
200
+
201
+ importantFeatureRatio = Param(Params._dummy(),
202
+ "importantFeatureRatio",
203
+ "proportion of feature content to be considered relevant. Defaults to 0.5",
204
+ typeConverter=TypeConverters.toFloat)
205
+
206
+ unimportantFeatureStep = Param(Params._dummy(),
207
+ "unimportantFeatureStep",
208
+ "proportion to lookahead in unimportant features. Defaults to 0.025",
209
+ typeConverter=TypeConverters.toFloat)
210
+
211
+ featureLimit = Param(Params._dummy(),
212
+ "featureLimit",
213
+ "content feature limit, to boost performance in very dirt text. Default disabled with -1",
214
+ typeConverter=TypeConverters.toInt)
215
+
216
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.sda.vivekn.ViveknSentimentModel", java_model=None):
217
+ super(ViveknSentimentModel, self).__init__(
218
+ classname=classname,
219
+ java_model=java_model
220
+ )
221
+
222
+ @staticmethod
223
+ def pretrained(name="sentiment_vivekn", lang="en", remote_loc=None):
224
+ """Downloads and loads a pretrained model.
225
+
226
+ Parameters
227
+ ----------
228
+ name : str, optional
229
+ Name of the pretrained model, by default "sentiment_vivekn"
230
+ lang : str, optional
231
+ Language of the pretrained model, by default "en"
232
+ remote_loc : str, optional
233
+ Optional remote address of the resource, by default None. Will use
234
+ Spark NLPs repositories otherwise.
235
+
236
+ Returns
237
+ -------
238
+ ViveknSentimentModel
239
+ The restored model
240
+ """
241
+ from sparknlp.pretrained import ResourceDownloader
242
+ return ResourceDownloader.downloadModel(ViveknSentimentModel, name, lang, remote_loc)
@@ -0,0 +1,35 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Module of annotators for sequence-to-sequence transformers."""
16
+ from sparknlp.annotator.seq2seq.gpt2_transformer import *
17
+ from sparknlp.annotator.seq2seq.marian_transformer import *
18
+ from sparknlp.annotator.seq2seq.t5_transformer import *
19
+ from sparknlp.annotator.seq2seq.bart_transformer import *
20
+ from sparknlp.annotator.seq2seq.llama2_transformer import *
21
+ from sparknlp.annotator.seq2seq.m2m100_transformer import *
22
+ from sparknlp.annotator.seq2seq.phi2_transformer import *
23
+ from sparknlp.annotator.seq2seq.mistral_transformer import *
24
+ from sparknlp.annotator.seq2seq.auto_gguf_model import *
25
+ from sparknlp.annotator.seq2seq.auto_gguf_vision_model import *
26
+ from sparknlp.annotator.seq2seq.phi3_transformer import *
27
+ from sparknlp.annotator.seq2seq.nllb_transformer import *
28
+ from sparknlp.annotator.seq2seq.cpm_transformer import *
29
+ from sparknlp.annotator.seq2seq.qwen_transformer import *
30
+ from sparknlp.annotator.seq2seq.starcoder_transformer import *
31
+ from sparknlp.annotator.seq2seq.llama3_transformer import *
32
+ from sparknlp.annotator.seq2seq.cohere_transformer import *
33
+ from sparknlp.annotator.seq2seq.olmo_transformer import *
34
+ from sparknlp.annotator.seq2seq.phi4_transformer import *
35
+ from sparknlp.annotator.seq2seq.auto_gguf_reranker import *
@@ -0,0 +1,304 @@
1
+ # Copyright 2017-2023 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the AutoGGUFModel."""
15
+ from sparknlp.common import *
16
+
17
+
18
+ class AutoGGUFModel(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppProperties, CompletionPostProcessing):
19
+ """
20
+ Annotator that uses the llama.cpp library to generate text completions with large language
21
+ models.
22
+
23
+ For settable parameters, and their explanations, see the parameters of this class and refer to
24
+ the llama.cpp documentation of
25
+ `server.cpp <https://github.com/ggerganov/llama.cpp/tree/7d5e8777ae1d21af99d4f95be10db4870720da91/examples/server>`__
26
+ for more information.
27
+
28
+ If the parameters are not set, the annotator will default to use the parameters provided by
29
+ the model.
30
+
31
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
32
+ object:
33
+
34
+ >>> auto_gguf_model = AutoGGUFModel.pretrained() \\
35
+ ... .setInputCols(["document"]) \\
36
+ ... .setOutputCol("completions")
37
+
38
+ The default model is ``"Phi_4_mini_instruct_Q4_K_M_gguf"``, if no name is provided.
39
+
40
+ AutoGGUFModel is also able to load pretrained models from AutoGGUFVisionModel. Just
41
+ specify the same name for the pretrained method, and it will load the text-part of the
42
+ multimodal model automatically.
43
+
44
+ For extended examples of usage, see the
45
+ `AutoGGUFModelTest <https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/AutoGGUFModelTest.scala>`__
46
+ and the
47
+ `example notebook <https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/llama.cpp/llama.cpp_in_Spark_NLP_AutoGGUFModel.ipynb>`__.
48
+
49
+ For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__.
50
+
51
+ ====================== ======================
52
+ Input Annotation types Output Annotation type
53
+ ====================== ======================
54
+ ``DOCUMENT`` ``DOCUMENT``
55
+ ====================== ======================
56
+
57
+ Parameters
58
+ ----------
59
+ nThreads
60
+ Set the number of threads to use during generation
61
+ nThreadsDraft
62
+ Set the number of threads to use during draft generation
63
+ nThreadsBatch
64
+ Set the number of threads to use during batch and prompt processing
65
+ nThreadsBatchDraft
66
+ Set the number of threads to use during batch and prompt processing
67
+ nCtx
68
+ Set the size of the prompt context
69
+ nBatch
70
+ Set the logical batch size for prompt processing (must be >=32 to use BLAS)
71
+ nUbatch
72
+ Set the physical batch size for prompt processing (must be >=32 to use BLAS)
73
+ nDraft
74
+ Set the number of tokens to draft for speculative decoding
75
+ nChunks
76
+ Set the maximal number of chunks to process
77
+ nSequences
78
+ Set the number of sequences to decode
79
+ pSplit
80
+ Set the speculative decoding split probability
81
+ nGpuLayers
82
+ Set the number of layers to store in VRAM (-1 - use default)
83
+ nGpuLayersDraft
84
+ Set the number of layers to store in VRAM for the draft model (-1 - use default)
85
+ gpuSplitMode
86
+ Set how to split the model across GPUs
87
+ mainGpu
88
+ Set the main GPU that is used for scratch and small tensors.
89
+ tensorSplit
90
+ Set how split tensors should be distributed across GPUs
91
+ grpAttnN
92
+ Set the group-attention factor
93
+ grpAttnW
94
+ Set the group-attention width
95
+ ropeFreqBase
96
+ Set the RoPE base frequency, used by NTK-aware scaling
97
+ ropeFreqScale
98
+ Set the RoPE frequency scaling factor, expands context by a factor of 1/N
99
+ yarnExtFactor
100
+ Set the YaRN extrapolation mix factor
101
+ yarnAttnFactor
102
+ Set the YaRN scale sqrt(t) or attention magnitude
103
+ yarnBetaFast
104
+ Set the YaRN low correction dim or beta
105
+ yarnBetaSlow
106
+ Set the YaRN high correction dim or alpha
107
+ yarnOrigCtx
108
+ Set the YaRN original context size of model
109
+ defragmentationThreshold
110
+ Set the KV cache defragmentation threshold
111
+ numaStrategy
112
+ Set optimization strategies that help on some NUMA systems (if available)
113
+ ropeScalingType
114
+ Set the RoPE frequency scaling method, defaults to linear unless specified by the model
115
+ poolingType
116
+ Set the pooling type for embeddings, use model default if unspecified
117
+ modelDraft
118
+ Set the draft model for speculative decoding
119
+ modelAlias
120
+ Set a model alias
121
+ lookupCacheStaticFilePath
122
+ Set path to static lookup cache to use for lookup decoding (not updated by generation)
123
+ lookupCacheDynamicFilePath
124
+ Set path to dynamic lookup cache to use for lookup decoding (updated by generation)
125
+ flashAttention
126
+ Whether to enable Flash Attention
127
+ inputPrefixBos
128
+ Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string
129
+ useMmap
130
+ Whether to use memory-map model (faster load but may increase pageouts if not using mlock)
131
+ useMlock
132
+ Whether to force the system to keep model in RAM rather than swapping or compressing
133
+ noKvOffload
134
+ Whether to disable KV offload
135
+ systemPrompt
136
+ Set a system prompt to use
137
+ chatTemplate
138
+ The chat template to use
139
+ inputPrefix
140
+ Set the prompt to start generation with
141
+ inputSuffix
142
+ Set a suffix for infilling
143
+ cachePrompt
144
+ Whether to remember the prompt to avoid reprocessing it
145
+ nPredict
146
+ Set the number of tokens to predict
147
+ topK
148
+ Set top-k sampling
149
+ topP
150
+ Set top-p sampling
151
+ minP
152
+ Set min-p sampling
153
+ tfsZ
154
+ Set tail free sampling, parameter z
155
+ typicalP
156
+ Set locally typical sampling, parameter p
157
+ temperature
158
+ Set the temperature
159
+ dynatempRange
160
+ Set the dynamic temperature range
161
+ dynatempExponent
162
+ Set the dynamic temperature exponent
163
+ repeatLastN
164
+ Set the last n tokens to consider for penalties
165
+ repeatPenalty
166
+ Set the penalty of repeated sequences of tokens
167
+ frequencyPenalty
168
+ Set the repetition alpha frequency penalty
169
+ presencePenalty
170
+ Set the repetition alpha presence penalty
171
+ miroStat
172
+ Set MiroStat sampling strategies.
173
+ mirostatTau
174
+ Set the MiroStat target entropy, parameter tau
175
+ mirostatEta
176
+ Set the MiroStat learning rate, parameter eta
177
+ penalizeNl
178
+ Whether to penalize newline tokens
179
+ nKeep
180
+ Set the number of tokens to keep from the initial prompt
181
+ seed
182
+ Set the RNG seed
183
+ nProbs
184
+ Set the amount top tokens probabilities to output if greater than 0.
185
+ minKeep
186
+ Set the amount of tokens the samplers should return at least (0 = disabled)
187
+ grammar
188
+ Set BNF-like grammar to constrain generations
189
+ penaltyPrompt
190
+ Override which part of the prompt is penalized for repetition.
191
+ ignoreEos
192
+ Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf)
193
+ disableTokenIds
194
+ Set the token ids to disable in the completion
195
+ stopStrings
196
+ Set strings upon seeing which token generation is stopped
197
+ samplers
198
+ Set which samplers to use for token generation in the given order
199
+ useChatTemplate
200
+ Set whether or not generate should apply a chat template
201
+
202
+ Notes
203
+ -----
204
+ To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set
205
+ the number of GPU layers with the `setNGpuLayers` method.
206
+
207
+ When using larger models, we recommend adjusting GPU usage with `setNCtx` and `setNGpuLayers`
208
+ according to your hardware to avoid out-of-memory errors.
209
+
210
+ Examples
211
+ --------
212
+ >>> import sparknlp
213
+ >>> from sparknlp.base import *
214
+ >>> from sparknlp.annotator import *
215
+ >>> from pyspark.ml import Pipeline
216
+ >>> document = DocumentAssembler() \\
217
+ ... .setInputCol("text") \\
218
+ ... .setOutputCol("document")
219
+ >>> autoGGUFModel = AutoGGUFModel.pretrained() \\
220
+ ... .setInputCols(["document"]) \\
221
+ ... .setOutputCol("completions") \\
222
+ ... .setBatchSize(4) \\
223
+ ... .setNPredict(20) \\
224
+ ... .setNGpuLayers(99) \\
225
+ ... .setTemperature(0.4) \\
226
+ ... .setTopK(40) \\
227
+ ... .setTopP(0.9) \\
228
+ ... .setPenalizeNl(True)
229
+ >>> pipeline = Pipeline().setStages([document, autoGGUFModel])
230
+ >>> data = spark.createDataFrame([["Hello, I am a"]]).toDF("text")
231
+ >>> result = pipeline.fit(data).transform(data)
232
+ >>> result.select("completions").show(truncate = False)
233
+ +-----------------------------------------------------------------------------------------------------------------------------------+
234
+ |completions |
235
+ +-----------------------------------------------------------------------------------------------------------------------------------+
236
+ |[{document, 0, 78, new user. I am currently working on a project and I need to create a list of , {prompt -> Hello, I am a}, []}]|
237
+ +-----------------------------------------------------------------------------------------------------------------------------------+
238
+ """
239
+
240
+ name = "AutoGGUFModel"
241
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
242
+ outputAnnotatorType = AnnotatorType.DOCUMENT
243
+
244
+ @keyword_only
245
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFModel", java_model=None):
246
+ super(AutoGGUFModel, self).__init__(
247
+ classname=classname,
248
+ java_model=java_model
249
+ )
250
+ self._setDefault(
251
+ useChatTemplate=True,
252
+ nCtx=4096,
253
+ nBatch=512,
254
+ nPredict=100,
255
+ nGpuLayers=99,
256
+ systemPrompt="You are a helpful assistant."
257
+ )
258
+
259
+ @staticmethod
260
+ def loadSavedModel(path, spark_session):
261
+ """Loads a locally saved model.
262
+
263
+ Parameters
264
+ ----------
265
+ path : str
266
+ Path to the gguf model
267
+ spark_session : pyspark.sql.SparkSession
268
+ The current SparkSession
269
+
270
+ Returns
271
+ -------
272
+ AutoGGUFModel
273
+ The restored model
274
+ """
275
+ from sparknlp.internal import _AutoGGUFLoader
276
+ jModel = _AutoGGUFLoader(path, spark_session._jsparkSession)._java_obj
277
+ return AutoGGUFModel(java_model=jModel)
278
+
279
+ @staticmethod
280
+ def pretrained(name="Phi_4_mini_instruct_Q4_K_M_gguf", lang="en", remote_loc=None):
281
+ """Downloads and loads a pretrained model.
282
+
283
+ Parameters
284
+ ----------
285
+ name : str, optional
286
+ Name of the pretrained model, by default "Phi_4_mini_instruct_Q4_K_M_gguf"
287
+ lang : str, optional
288
+ Language of the pretrained model, by default "en"
289
+ remote_loc : str, optional
290
+ Optional remote address of the resource, by default None. Will use
291
+ Spark NLPs repositories otherwise.
292
+
293
+ Returns
294
+ -------
295
+ AutoGGUFModel
296
+ The restored model
297
+ """
298
+ from sparknlp.pretrained import ResourceDownloader
299
+ return ResourceDownloader.downloadModel(AutoGGUFModel, name, lang, remote_loc)
300
+
301
+ def close(self):
302
+ """Closes the llama.cpp model backend freeing resources. The model is reloaded when used again.
303
+ """
304
+ self._java_obj.close()