spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- com/johnsnowlabs/nlp/__init__.py +4 -2
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +281 -27
- sparknlp/annotation.py +137 -6
- sparknlp/annotation_audio.py +61 -0
- sparknlp/annotation_image.py +82 -0
- sparknlp/annotator/__init__.py +93 -0
- sparknlp/annotator/audio/__init__.py +16 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/annotator/chunk2_doc.py +85 -0
- sparknlp/annotator/chunker.py +137 -0
- sparknlp/annotator/classifier_dl/__init__.py +61 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/__init__.py +1 -0
- sparknlp/annotator/coref/spanbert_coref.py +221 -0
- sparknlp/annotator/cv/__init__.py +29 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/__init__.py +17 -0
- sparknlp/annotator/dependency/dependency_parser.py +294 -0
- sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +235 -0
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +45 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
- sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
- sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
- sparknlp/annotator/embeddings/doc2vec.py +352 -0
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
- sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
- sparknlp/annotator/embeddings/word2vec.py +353 -0
- sparknlp/annotator/embeddings/word_embeddings.py +385 -0
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
- sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
- sparknlp/annotator/er/__init__.py +16 -0
- sparknlp/annotator/er/entity_ruler.py +267 -0
- sparknlp/annotator/graph_extraction.py +368 -0
- sparknlp/annotator/keyword_extraction/__init__.py +16 -0
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
- sparknlp/annotator/ld_dl/__init__.py +16 -0
- sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
- sparknlp/annotator/lemmatizer.py +250 -0
- sparknlp/annotator/matcher/__init__.py +20 -0
- sparknlp/annotator/matcher/big_text_matcher.py +272 -0
- sparknlp/annotator/matcher/date_matcher.py +303 -0
- sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
- sparknlp/annotator/matcher/regex_matcher.py +221 -0
- sparknlp/annotator/matcher/text_matcher.py +290 -0
- sparknlp/annotator/n_gram_generator.py +141 -0
- sparknlp/annotator/ner/__init__.py +21 -0
- sparknlp/annotator/ner/ner_approach.py +94 -0
- sparknlp/annotator/ner/ner_converter.py +148 -0
- sparknlp/annotator/ner/ner_crf.py +397 -0
- sparknlp/annotator/ner/ner_dl.py +591 -0
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +166 -0
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +230 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/param/__init__.py +17 -0
- sparknlp/annotator/param/classifier_encoder.py +98 -0
- sparknlp/annotator/param/evaluation_dl_params.py +130 -0
- sparknlp/annotator/pos/__init__.py +16 -0
- sparknlp/annotator/pos/perceptron.py +263 -0
- sparknlp/annotator/sentence/__init__.py +17 -0
- sparknlp/annotator/sentence/sentence_detector.py +290 -0
- sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
- sparknlp/annotator/sentiment/__init__.py +17 -0
- sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
- sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
- sparknlp/annotator/seq2seq/__init__.py +35 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/__init__.py +18 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
- sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
- sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
- sparknlp/annotator/stemmer.py +79 -0
- sparknlp/annotator/stop_words_cleaner.py +190 -0
- sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
- sparknlp/annotator/token/__init__.py +19 -0
- sparknlp/annotator/token/chunk_tokenizer.py +118 -0
- sparknlp/annotator/token/recursive_tokenizer.py +205 -0
- sparknlp/annotator/token/regex_tokenizer.py +208 -0
- sparknlp/annotator/token/tokenizer.py +561 -0
- sparknlp/annotator/token2_chunk.py +76 -0
- sparknlp/annotator/ws/__init__.py +16 -0
- sparknlp/annotator/ws/word_segmenter.py +429 -0
- sparknlp/base/__init__.py +30 -0
- sparknlp/base/audio_assembler.py +95 -0
- sparknlp/base/doc2_chunk.py +169 -0
- sparknlp/base/document_assembler.py +164 -0
- sparknlp/base/embeddings_finisher.py +201 -0
- sparknlp/base/finisher.py +217 -0
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/graph_finisher.py +125 -0
- sparknlp/base/has_recursive_fit.py +24 -0
- sparknlp/base/has_recursive_transform.py +22 -0
- sparknlp/base/image_assembler.py +172 -0
- sparknlp/base/light_pipeline.py +429 -0
- sparknlp/base/multi_document_assembler.py +164 -0
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/recursive_pipeline.py +107 -0
- sparknlp/base/table_assembler.py +145 -0
- sparknlp/base/token_assembler.py +124 -0
- sparknlp/common/__init__.py +26 -0
- sparknlp/common/annotator_approach.py +41 -0
- sparknlp/common/annotator_model.py +47 -0
- sparknlp/common/annotator_properties.py +114 -0
- sparknlp/common/annotator_type.py +38 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/coverage_result.py +22 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +1298 -0
- sparknlp/common/read_as.py +33 -0
- sparknlp/common/recursive_annotator_approach.py +35 -0
- sparknlp/common/storage.py +149 -0
- sparknlp/common/utils.py +39 -0
- sparknlp/functions.py +315 -5
- sparknlp/internal/__init__.py +1199 -0
- sparknlp/internal/annotator_java_ml.py +32 -0
- sparknlp/internal/annotator_transformer.py +37 -0
- sparknlp/internal/extended_java_wrapper.py +63 -0
- sparknlp/internal/params_getters_setters.py +71 -0
- sparknlp/internal/recursive.py +70 -0
- sparknlp/logging/__init__.py +15 -0
- sparknlp/logging/comet.py +467 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/__init__.py +17 -0
- sparknlp/pretrained/pretrained_pipeline.py +158 -0
- sparknlp/pretrained/resource_downloader.py +216 -0
- sparknlp/pretrained/utils.py +35 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +20 -0
- sparknlp/training/_tf_graph_builders/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
- sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
- sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
- sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
- sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
- sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
- sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
- sparknlp/training/conll.py +150 -0
- sparknlp/training/conllu.py +103 -0
- sparknlp/training/pos.py +103 -0
- sparknlp/training/pub_tator.py +76 -0
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/training/tfgraphs.py +5 -0
- sparknlp/upload_to_hub.py +149 -0
- sparknlp/util.py +51 -5
- com/__init__.pyc +0 -0
- com/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/__init__.pyc +0 -0
- com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
- com/johnsnowlabs/nlp/__init__.pyc +0 -0
- com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
- spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
- spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
- sparknlp/__init__.pyc +0 -0
- sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
- sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
- sparknlp/__pycache__/base.cpython-36.pyc +0 -0
- sparknlp/__pycache__/common.cpython-36.pyc +0 -0
- sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
- sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
- sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
- sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
- sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
- sparknlp/__pycache__/training.cpython-36.pyc +0 -0
- sparknlp/__pycache__/util.cpython-36.pyc +0 -0
- sparknlp/annotation.pyc +0 -0
- sparknlp/annotator.py +0 -3006
- sparknlp/annotator.pyc +0 -0
- sparknlp/base.py +0 -347
- sparknlp/base.pyc +0 -0
- sparknlp/common.py +0 -193
- sparknlp/common.pyc +0 -0
- sparknlp/embeddings.py +0 -40
- sparknlp/embeddings.pyc +0 -0
- sparknlp/internal.py +0 -288
- sparknlp/internal.pyc +0 -0
- sparknlp/pretrained.py +0 -123
- sparknlp/pretrained.pyc +0 -0
- sparknlp/storage.py +0 -32
- sparknlp/storage.pyc +0 -0
- sparknlp/training.py +0 -62
- sparknlp/training.pyc +0 -0
- sparknlp/util.pyc +0 -0
- {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""Module of annotators for text classification."""
|
|
16
|
+
from sparknlp.annotator.classifier_dl.albert_for_sequence_classification import *
|
|
17
|
+
from sparknlp.annotator.classifier_dl.albert_for_token_classification import *
|
|
18
|
+
from sparknlp.annotator.classifier_dl.albert_for_question_answering import *
|
|
19
|
+
from sparknlp.annotator.classifier_dl.bert_for_sequence_classification import *
|
|
20
|
+
from sparknlp.annotator.classifier_dl.bert_for_token_classification import *
|
|
21
|
+
from sparknlp.annotator.classifier_dl.bert_for_question_answering import *
|
|
22
|
+
from sparknlp.annotator.classifier_dl.classifier_dl import *
|
|
23
|
+
from sparknlp.annotator.classifier_dl.deberta_for_sequence_classification import *
|
|
24
|
+
from sparknlp.annotator.classifier_dl.deberta_for_token_classification import *
|
|
25
|
+
from sparknlp.annotator.classifier_dl.deberta_for_question_answering import *
|
|
26
|
+
from sparknlp.annotator.classifier_dl.distil_bert_for_sequence_classification import *
|
|
27
|
+
from sparknlp.annotator.classifier_dl.distil_bert_for_token_classification import *
|
|
28
|
+
from sparknlp.annotator.classifier_dl.distil_bert_for_question_answering import *
|
|
29
|
+
from sparknlp.annotator.classifier_dl.longformer_for_sequence_classification import *
|
|
30
|
+
from sparknlp.annotator.classifier_dl.longformer_for_token_classification import *
|
|
31
|
+
from sparknlp.annotator.classifier_dl.longformer_for_question_answering import *
|
|
32
|
+
from sparknlp.annotator.classifier_dl.multi_classifier_dl import *
|
|
33
|
+
from sparknlp.annotator.classifier_dl.roberta_for_sequence_classification import *
|
|
34
|
+
from sparknlp.annotator.classifier_dl.roberta_for_token_classification import *
|
|
35
|
+
from sparknlp.annotator.classifier_dl.roberta_for_question_answering import *
|
|
36
|
+
from sparknlp.annotator.classifier_dl.sentiment_dl import *
|
|
37
|
+
from sparknlp.annotator.classifier_dl.xlm_roberta_for_sequence_classification import *
|
|
38
|
+
from sparknlp.annotator.classifier_dl.xlm_roberta_for_token_classification import *
|
|
39
|
+
from sparknlp.annotator.classifier_dl.xlm_roberta_for_question_answering import *
|
|
40
|
+
from sparknlp.annotator.classifier_dl.xlnet_for_sequence_classification import *
|
|
41
|
+
from sparknlp.annotator.classifier_dl.xlnet_for_token_classification import *
|
|
42
|
+
from sparknlp.annotator.classifier_dl.camembert_for_token_classification import *
|
|
43
|
+
from sparknlp.annotator.classifier_dl.tapas_for_question_answering import *
|
|
44
|
+
from sparknlp.annotator.classifier_dl.camembert_for_sequence_classification import *
|
|
45
|
+
from sparknlp.annotator.classifier_dl.camembert_for_question_answering import *
|
|
46
|
+
from sparknlp.annotator.classifier_dl.bert_for_zero_shot_classification import *
|
|
47
|
+
from sparknlp.annotator.classifier_dl.distil_bert_for_zero_shot_classification import *
|
|
48
|
+
from sparknlp.annotator.classifier_dl.roberta_for_zero_shot_classification import *
|
|
49
|
+
from sparknlp.annotator.classifier_dl.xlm_roberta_for_zero_shot_classification import *
|
|
50
|
+
from sparknlp.annotator.classifier_dl.bart_for_zero_shot_classification import *
|
|
51
|
+
from sparknlp.annotator.classifier_dl.deberta_for_zero_shot_classification import *
|
|
52
|
+
from sparknlp.annotator.classifier_dl.mpnet_for_sequence_classification import *
|
|
53
|
+
from sparknlp.annotator.classifier_dl.mpnet_for_question_answering import *
|
|
54
|
+
from sparknlp.annotator.classifier_dl.mpnet_for_token_classification import *
|
|
55
|
+
from sparknlp.annotator.classifier_dl.albert_for_zero_shot_classification import *
|
|
56
|
+
from sparknlp.annotator.classifier_dl.camembert_for_zero_shot_classification import *
|
|
57
|
+
from sparknlp.annotator.classifier_dl.bert_for_multiple_choice import *
|
|
58
|
+
from sparknlp.annotator.classifier_dl.xlm_roberta_for_multiple_choice import *
|
|
59
|
+
from sparknlp.annotator.classifier_dl.roberta_for_multiple_choice import *
|
|
60
|
+
from sparknlp.annotator.classifier_dl.distilbert_for_multiple_choice import *
|
|
61
|
+
from sparknlp.annotator.classifier_dl.albert_for_multiple_choice import *
|
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class AlbertForMultipleChoice(AnnotatorModel,
|
|
18
|
+
HasCaseSensitiveProperties,
|
|
19
|
+
HasBatchedAnnotate,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasMaxSentenceLengthLimit):
|
|
22
|
+
"""AlbertForMultipleChoice can load ALBERT Models with a multiple choice classification head on top
|
|
23
|
+
(a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
|
|
24
|
+
|
|
25
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
26
|
+
object:
|
|
27
|
+
|
|
28
|
+
>>> spanClassifier = AlbertForMultipleChoice.pretrained() \\
|
|
29
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
30
|
+
... .setOutputCol("answer")
|
|
31
|
+
|
|
32
|
+
The default model is ``"albert_base_uncased_multiple_choice"``, if no name is
|
|
33
|
+
provided.
|
|
34
|
+
|
|
35
|
+
For available pretrained models please see the `Models Hub
|
|
36
|
+
<https://sparknlp.org/models?task=Multiple+Choice>`__.
|
|
37
|
+
|
|
38
|
+
To see which models are compatible and how to import them see
|
|
39
|
+
`Import Transformers into Spark NLP 🚀
|
|
40
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
41
|
+
|
|
42
|
+
====================== ======================
|
|
43
|
+
Input Annotation types Output Annotation type
|
|
44
|
+
====================== ======================
|
|
45
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
46
|
+
====================== ======================
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
batchSize
|
|
51
|
+
Batch size. Large values allows faster processing but requires more
|
|
52
|
+
memory, by default 8
|
|
53
|
+
caseSensitive
|
|
54
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
55
|
+
False
|
|
56
|
+
maxSentenceLength
|
|
57
|
+
Max sentence length to process, by default 512
|
|
58
|
+
|
|
59
|
+
Examples
|
|
60
|
+
--------
|
|
61
|
+
>>> import sparknlp
|
|
62
|
+
>>> from sparknlp.base import *
|
|
63
|
+
>>> from sparknlp.annotator import *
|
|
64
|
+
>>> from pyspark.ml import Pipeline
|
|
65
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
66
|
+
... .setInputCols(["question", "context"]) \\
|
|
67
|
+
... .setOutputCols(["document_question", "document_context"])
|
|
68
|
+
>>> questionAnswering = AlbertForMultipleChoice.pretrained() \\
|
|
69
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
70
|
+
... .setOutputCol("answer") \\
|
|
71
|
+
... .setCaseSensitive(False)
|
|
72
|
+
>>> pipeline = Pipeline().setStages([
|
|
73
|
+
... documentAssembler,
|
|
74
|
+
... questionAnswering
|
|
75
|
+
... ])
|
|
76
|
+
>>> data = spark.createDataFrame([["The Eiffel Tower is located in which country??", "Germany, France, Italy"]]).toDF("question", "context")
|
|
77
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
78
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
79
|
+
+--------------------+
|
|
80
|
+
|result |
|
|
81
|
+
+--------------------+
|
|
82
|
+
|[France] |
|
|
83
|
+
+--------------------+
|
|
84
|
+
"""
|
|
85
|
+
name = "AlbertForMultipleChoice"
|
|
86
|
+
|
|
87
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
88
|
+
|
|
89
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
90
|
+
|
|
91
|
+
choicesDelimiter = Param(Params._dummy(),
|
|
92
|
+
"choicesDelimiter",
|
|
93
|
+
"Delimiter character use to split the choices",
|
|
94
|
+
TypeConverters.toString)
|
|
95
|
+
|
|
96
|
+
def setChoicesDelimiter(self, value):
|
|
97
|
+
"""Sets delimiter character use to split the choices
|
|
98
|
+
|
|
99
|
+
Parameters
|
|
100
|
+
----------
|
|
101
|
+
value : string
|
|
102
|
+
Delimiter character use to split the choices
|
|
103
|
+
"""
|
|
104
|
+
return self._set(caseSensitive=value)
|
|
105
|
+
|
|
106
|
+
@keyword_only
|
|
107
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.AlbertForMultipleChoice",
|
|
108
|
+
java_model=None):
|
|
109
|
+
super(AlbertForMultipleChoice, self).__init__(
|
|
110
|
+
classname=classname,
|
|
111
|
+
java_model=java_model
|
|
112
|
+
)
|
|
113
|
+
self._setDefault(
|
|
114
|
+
batchSize=4,
|
|
115
|
+
maxSentenceLength=512,
|
|
116
|
+
caseSensitive=False,
|
|
117
|
+
choicesDelimiter = ","
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
@staticmethod
|
|
121
|
+
def loadSavedModel(folder, spark_session):
|
|
122
|
+
"""Loads a locally saved model.
|
|
123
|
+
|
|
124
|
+
Parameters
|
|
125
|
+
----------
|
|
126
|
+
folder : str
|
|
127
|
+
Folder of the saved model
|
|
128
|
+
spark_session : pyspark.sql.SparkSession
|
|
129
|
+
The current SparkSession
|
|
130
|
+
|
|
131
|
+
Returns
|
|
132
|
+
-------
|
|
133
|
+
BertForQuestionAnswering
|
|
134
|
+
The restored model
|
|
135
|
+
"""
|
|
136
|
+
from sparknlp.internal import _AlbertMultipleChoiceLoader
|
|
137
|
+
jModel = _AlbertMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
|
|
138
|
+
return AlbertForMultipleChoice(java_model=jModel)
|
|
139
|
+
|
|
140
|
+
@staticmethod
|
|
141
|
+
def pretrained(name="albert_base_uncased_multiple_choice", lang="en", remote_loc=None):
|
|
142
|
+
"""Downloads and loads a pretrained model.
|
|
143
|
+
|
|
144
|
+
Parameters
|
|
145
|
+
----------
|
|
146
|
+
name : str, optional
|
|
147
|
+
Name of the pretrained model, by default
|
|
148
|
+
"bert_base_uncased_multiple_choice"
|
|
149
|
+
lang : str, optional
|
|
150
|
+
Language of the pretrained model, by default "en"
|
|
151
|
+
remote_loc : str, optional
|
|
152
|
+
Optional remote address of the resource, by default None. Will use
|
|
153
|
+
Spark NLPs repositories otherwise.
|
|
154
|
+
|
|
155
|
+
Returns
|
|
156
|
+
-------
|
|
157
|
+
BertForQuestionAnswering
|
|
158
|
+
The restored model
|
|
159
|
+
"""
|
|
160
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
161
|
+
return ResourceDownloader.downloadModel(AlbertForMultipleChoice, name, lang, remote_loc)
|
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class AlbertForQuestionAnswering(AnnotatorModel,
|
|
19
|
+
HasCaseSensitiveProperties,
|
|
20
|
+
HasBatchedAnnotate,
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
23
|
+
"""AlbertForQuestionAnswering can load ALBERT Models with a span classification head on top for extractive
|
|
24
|
+
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
25
|
+
logits and span end logits).
|
|
26
|
+
|
|
27
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
28
|
+
object:
|
|
29
|
+
|
|
30
|
+
>>> spanClassifier = AlbertForQuestionAnswering.pretrained() \\
|
|
31
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
32
|
+
... .setOutputCol("answer")
|
|
33
|
+
|
|
34
|
+
The default model is ``"albert_base_qa_squad2"``, if no name is
|
|
35
|
+
provided.
|
|
36
|
+
|
|
37
|
+
For available pretrained models please see the `Models Hub
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
39
|
+
|
|
40
|
+
To see which models are compatible and how to import them see
|
|
41
|
+
`Import Transformers into Spark NLP 🚀
|
|
42
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Batch size. Large values allows faster processing but requires more
|
|
54
|
+
memory, by default 8
|
|
55
|
+
caseSensitive
|
|
56
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
57
|
+
False
|
|
58
|
+
configProtoBytes
|
|
59
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
60
|
+
maxSentenceLength
|
|
61
|
+
Max sentence length to process, by default 128
|
|
62
|
+
|
|
63
|
+
Examples
|
|
64
|
+
--------
|
|
65
|
+
>>> import sparknlp
|
|
66
|
+
>>> from sparknlp.base import *
|
|
67
|
+
>>> from sparknlp.annotator import *
|
|
68
|
+
>>> from pyspark.ml import Pipeline
|
|
69
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
70
|
+
... .setInputCols(["question", "context"]) \\
|
|
71
|
+
... .setOutputCol(["document_question", "document_context"])
|
|
72
|
+
>>> spanClassifier = AlbertForQuestionAnswering.pretrained() \\
|
|
73
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
74
|
+
... .setOutputCol("answer") \\
|
|
75
|
+
... .setCaseSensitive(False)
|
|
76
|
+
>>> pipeline = Pipeline().setStages([
|
|
77
|
+
... documentAssembler,
|
|
78
|
+
... spanClassifier
|
|
79
|
+
... ])
|
|
80
|
+
>>> data = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")
|
|
81
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
82
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
83
|
+
+--------------------+
|
|
84
|
+
|result |
|
|
85
|
+
+--------------------+
|
|
86
|
+
|[Clara] |
|
|
87
|
+
+--------------------+
|
|
88
|
+
"""
|
|
89
|
+
name = "AlbertForQuestionAnswering"
|
|
90
|
+
|
|
91
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
92
|
+
|
|
93
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
94
|
+
|
|
95
|
+
configProtoBytes = Param(Params._dummy(),
|
|
96
|
+
"configProtoBytes",
|
|
97
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with "
|
|
98
|
+
"config_proto.SerializeToString()",
|
|
99
|
+
TypeConverters.toListInt)
|
|
100
|
+
|
|
101
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
102
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per "
|
|
103
|
+
"document by averaging probabilities in all sentences.",
|
|
104
|
+
TypeConverters.toBoolean)
|
|
105
|
+
|
|
106
|
+
def setConfigProtoBytes(self, b):
|
|
107
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
108
|
+
|
|
109
|
+
Parameters
|
|
110
|
+
----------
|
|
111
|
+
b : List[int]
|
|
112
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
113
|
+
"""
|
|
114
|
+
return self._set(configProtoBytes=b)
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
@keyword_only
|
|
119
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.AlbertForQuestionAnswering",
|
|
120
|
+
java_model=None):
|
|
121
|
+
super(AlbertForQuestionAnswering, self).__init__(
|
|
122
|
+
classname=classname,
|
|
123
|
+
java_model=java_model
|
|
124
|
+
)
|
|
125
|
+
self._setDefault(
|
|
126
|
+
batchSize=8,
|
|
127
|
+
maxSentenceLength=128,
|
|
128
|
+
caseSensitive=False
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
@staticmethod
|
|
132
|
+
def loadSavedModel(folder, spark_session):
|
|
133
|
+
"""Loads a locally saved model.
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
folder : str
|
|
138
|
+
Folder of the saved model
|
|
139
|
+
spark_session : pyspark.sql.SparkSession
|
|
140
|
+
The current SparkSession
|
|
141
|
+
|
|
142
|
+
Returns
|
|
143
|
+
-------
|
|
144
|
+
AlbertForQuestionAnswering
|
|
145
|
+
The restored model
|
|
146
|
+
"""
|
|
147
|
+
from sparknlp.internal import _AlbertQuestionAnsweringLoader
|
|
148
|
+
jModel = _AlbertQuestionAnsweringLoader(folder, spark_session._jsparkSession)._java_obj
|
|
149
|
+
return AlbertForQuestionAnswering(java_model=jModel)
|
|
150
|
+
|
|
151
|
+
@staticmethod
|
|
152
|
+
def pretrained(name="albert_base_qa_squad2", lang="en", remote_loc=None):
|
|
153
|
+
"""Downloads and loads a pretrained model.
|
|
154
|
+
|
|
155
|
+
Parameters
|
|
156
|
+
----------
|
|
157
|
+
name : str, optional
|
|
158
|
+
Name of the pretrained model, by default
|
|
159
|
+
"albert_base_qa_squad2"
|
|
160
|
+
lang : str, optional
|
|
161
|
+
Language of the pretrained model, by default "en"
|
|
162
|
+
remote_loc : str, optional
|
|
163
|
+
Optional remote address of the resource, by default None. Will use
|
|
164
|
+
Spark NLPs repositories otherwise.
|
|
165
|
+
|
|
166
|
+
Returns
|
|
167
|
+
-------
|
|
168
|
+
AlbertForQuestionAnswering
|
|
169
|
+
The restored model
|
|
170
|
+
"""
|
|
171
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
172
|
+
return ResourceDownloader.downloadModel(AlbertForQuestionAnswering, name, lang, remote_loc)
|
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes concerning AlbertForSequenceClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class AlbertForSequenceClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasEngine,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""AlbertForSequenceClassification can load Albert Models with sequence classification/regression head on
|
|
26
|
+
top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
|
|
27
|
+
|
|
28
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
29
|
+
object:
|
|
30
|
+
|
|
31
|
+
>>> sequenceClassifier = AlbertForSequenceClassification.pretrained() \\
|
|
32
|
+
... .setInputCols(["token", "document"]) \\
|
|
33
|
+
... .setOutputCol("label")
|
|
34
|
+
|
|
35
|
+
The default model is ``"albert_base_sequence_classifier_imdb"``, if no name is
|
|
36
|
+
provided.
|
|
37
|
+
|
|
38
|
+
For available pretrained models please see the `Models Hub
|
|
39
|
+
<https://sparknlp.org/models?task=Text+Classification>`__.
|
|
40
|
+
|
|
41
|
+
To see which models are compatible and how to import them see
|
|
42
|
+
`Import Transformers into Spark NLP 🚀
|
|
43
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
44
|
+
|
|
45
|
+
====================== ======================
|
|
46
|
+
Input Annotation types Output Annotation type
|
|
47
|
+
====================== ======================
|
|
48
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
49
|
+
====================== ======================
|
|
50
|
+
|
|
51
|
+
Parameters
|
|
52
|
+
----------
|
|
53
|
+
batchSize
|
|
54
|
+
Batch size. Large values allows faster processing but requires more
|
|
55
|
+
memory, by default 8
|
|
56
|
+
caseSensitive
|
|
57
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
58
|
+
False
|
|
59
|
+
configProtoBytes
|
|
60
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
61
|
+
maxSentenceLength
|
|
62
|
+
Max sentence length to process, by default 128
|
|
63
|
+
coalesceSentences
|
|
64
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output
|
|
65
|
+
1 class per document by averaging probabilities in all sentences, by
|
|
66
|
+
default False.
|
|
67
|
+
activation
|
|
68
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
69
|
+
`"softmax"`.
|
|
70
|
+
|
|
71
|
+
Examples
|
|
72
|
+
--------
|
|
73
|
+
>>> import sparknlp
|
|
74
|
+
>>> from sparknlp.base import *
|
|
75
|
+
>>> from sparknlp.annotator import *
|
|
76
|
+
>>> from pyspark.ml import Pipeline
|
|
77
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
78
|
+
... .setInputCol("text") \\
|
|
79
|
+
... .setOutputCol("document")
|
|
80
|
+
>>> tokenizer = Tokenizer() \\
|
|
81
|
+
... .setInputCols(["document"]) \\
|
|
82
|
+
... .setOutputCol("token")
|
|
83
|
+
>>> sequenceClassifier = AlbertForSequenceClassification.pretrained() \\
|
|
84
|
+
... .setInputCols(["token", "document"]) \\
|
|
85
|
+
... .setOutputCol("label") \\
|
|
86
|
+
... .setCaseSensitive(True)
|
|
87
|
+
>>> pipeline = Pipeline().setStages([
|
|
88
|
+
... documentAssembler,
|
|
89
|
+
... tokenizer,
|
|
90
|
+
... sequenceClassifier
|
|
91
|
+
... ])
|
|
92
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]).toDF("text")
|
|
93
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
94
|
+
>>> result.select("label.result").show(truncate=False)
|
|
95
|
+
+------+
|
|
96
|
+
|result|
|
|
97
|
+
+------+
|
|
98
|
+
|[pos] |
|
|
99
|
+
|[neg] |
|
|
100
|
+
+------+
|
|
101
|
+
"""
|
|
102
|
+
name = "AlbertForSequenceClassification"
|
|
103
|
+
|
|
104
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
105
|
+
|
|
106
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
107
|
+
|
|
108
|
+
configProtoBytes = Param(Params._dummy(),
|
|
109
|
+
"configProtoBytes",
|
|
110
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
111
|
+
TypeConverters.toListInt)
|
|
112
|
+
|
|
113
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
114
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
115
|
+
TypeConverters.toBoolean)
|
|
116
|
+
|
|
117
|
+
def getClasses(self):
|
|
118
|
+
"""
|
|
119
|
+
Returns labels used to train this model
|
|
120
|
+
"""
|
|
121
|
+
return self._call_java("getClasses")
|
|
122
|
+
|
|
123
|
+
def setConfigProtoBytes(self, b):
|
|
124
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
125
|
+
|
|
126
|
+
Parameters
|
|
127
|
+
----------
|
|
128
|
+
b : List[int]
|
|
129
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
130
|
+
"""
|
|
131
|
+
return self._set(configProtoBytes=b)
|
|
132
|
+
|
|
133
|
+
def setCoalesceSentences(self, value):
|
|
134
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.
|
|
135
|
+
Due to max sequence length limit in almost all transformer models such as BERT (512 tokens), this parameter helps feeding all the sentences
|
|
136
|
+
into the model and averaging all the probabilities for the entire document instead of probabilities per sentence. (Default: true)
|
|
137
|
+
|
|
138
|
+
Parameters
|
|
139
|
+
----------
|
|
140
|
+
value : bool
|
|
141
|
+
If the output of all sentences will be averaged to one output
|
|
142
|
+
"""
|
|
143
|
+
return self._set(coalesceSentences=value)
|
|
144
|
+
|
|
145
|
+
@keyword_only
|
|
146
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.AlbertForSequenceClassification",
|
|
147
|
+
java_model=None):
|
|
148
|
+
super(AlbertForSequenceClassification, self).__init__(
|
|
149
|
+
classname=classname,
|
|
150
|
+
java_model=java_model
|
|
151
|
+
)
|
|
152
|
+
self._setDefault(
|
|
153
|
+
batchSize=8,
|
|
154
|
+
maxSentenceLength=128,
|
|
155
|
+
caseSensitive=False,
|
|
156
|
+
coalesceSentences=False,
|
|
157
|
+
activation="softmax"
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
@staticmethod
|
|
161
|
+
def loadSavedModel(folder, spark_session):
|
|
162
|
+
"""Loads a locally saved model.
|
|
163
|
+
|
|
164
|
+
Parameters
|
|
165
|
+
----------
|
|
166
|
+
folder : str
|
|
167
|
+
Folder of the saved model
|
|
168
|
+
spark_session : pyspark.sql.SparkSession
|
|
169
|
+
The current SparkSession
|
|
170
|
+
|
|
171
|
+
Returns
|
|
172
|
+
-------
|
|
173
|
+
AlbertForSequenceClassification
|
|
174
|
+
The restored model
|
|
175
|
+
"""
|
|
176
|
+
from sparknlp.internal import _AlbertSequenceClassifierLoader
|
|
177
|
+
jModel = _AlbertSequenceClassifierLoader(folder, spark_session._jsparkSession)._java_obj
|
|
178
|
+
return AlbertForSequenceClassification(java_model=jModel)
|
|
179
|
+
|
|
180
|
+
@staticmethod
|
|
181
|
+
def pretrained(name="albert_base_sequence_classifier_imdb", lang="en", remote_loc=None):
|
|
182
|
+
"""Downloads and loads a pretrained model.
|
|
183
|
+
|
|
184
|
+
Parameters
|
|
185
|
+
----------
|
|
186
|
+
name : str, optional
|
|
187
|
+
Name of the pretrained model, by default
|
|
188
|
+
"albert_base_sequence_classifier_imdb"
|
|
189
|
+
lang : str, optional
|
|
190
|
+
Language of the pretrained model, by default "en"
|
|
191
|
+
remote_loc : str, optional
|
|
192
|
+
Optional remote address of the resource, by default None. Will use
|
|
193
|
+
Spark NLPs repositories otherwise.
|
|
194
|
+
|
|
195
|
+
Returns
|
|
196
|
+
-------
|
|
197
|
+
AlbertForSequenceClassification
|
|
198
|
+
The restored model
|
|
199
|
+
"""
|
|
200
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
201
|
+
return ResourceDownloader.downloadModel(AlbertForSequenceClassification, name, lang, remote_loc)
|