spark-nlp 2.6.3rc1__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (329) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. com/johnsnowlabs/nlp/__init__.py +4 -2
  4. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  5. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  6. {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  7. sparknlp/__init__.py +281 -27
  8. sparknlp/annotation.py +137 -6
  9. sparknlp/annotation_audio.py +61 -0
  10. sparknlp/annotation_image.py +82 -0
  11. sparknlp/annotator/__init__.py +93 -0
  12. sparknlp/annotator/audio/__init__.py +16 -0
  13. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  14. sparknlp/annotator/audio/wav2vec2_for_ctc.py +161 -0
  15. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  16. sparknlp/annotator/chunk2_doc.py +85 -0
  17. sparknlp/annotator/chunker.py +137 -0
  18. sparknlp/annotator/classifier_dl/__init__.py +61 -0
  19. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  20. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +172 -0
  21. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +201 -0
  22. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +179 -0
  23. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  24. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  25. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  26. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +168 -0
  27. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +202 -0
  28. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +177 -0
  29. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  30. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  31. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +205 -0
  32. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +173 -0
  33. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  34. sparknlp/annotator/classifier_dl/classifier_dl.py +320 -0
  35. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +168 -0
  36. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +198 -0
  37. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +175 -0
  38. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  39. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +168 -0
  40. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +201 -0
  41. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +175 -0
  42. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  43. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  44. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +168 -0
  45. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +201 -0
  46. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +176 -0
  47. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  48. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  49. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  50. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +395 -0
  51. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  52. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +168 -0
  53. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +201 -0
  54. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +189 -0
  55. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  56. sparknlp/annotator/classifier_dl/sentiment_dl.py +378 -0
  57. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +170 -0
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +168 -0
  60. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +201 -0
  61. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +173 -0
  62. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  63. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +201 -0
  64. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +176 -0
  65. sparknlp/annotator/cleaners/__init__.py +15 -0
  66. sparknlp/annotator/cleaners/cleaner.py +202 -0
  67. sparknlp/annotator/cleaners/extractor.py +191 -0
  68. sparknlp/annotator/coref/__init__.py +1 -0
  69. sparknlp/annotator/coref/spanbert_coref.py +221 -0
  70. sparknlp/annotator/cv/__init__.py +29 -0
  71. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  72. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  73. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  74. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  75. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  76. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  77. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  78. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  79. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  80. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  81. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  82. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  83. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  84. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  85. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  86. sparknlp/annotator/cv/vit_for_image_classification.py +217 -0
  87. sparknlp/annotator/dataframe_optimizer.py +216 -0
  88. sparknlp/annotator/date2_chunk.py +88 -0
  89. sparknlp/annotator/dependency/__init__.py +17 -0
  90. sparknlp/annotator/dependency/dependency_parser.py +294 -0
  91. sparknlp/annotator/dependency/typed_dependency_parser.py +318 -0
  92. sparknlp/annotator/document_character_text_splitter.py +228 -0
  93. sparknlp/annotator/document_normalizer.py +235 -0
  94. sparknlp/annotator/document_token_splitter.py +175 -0
  95. sparknlp/annotator/document_token_splitter_test.py +85 -0
  96. sparknlp/annotator/embeddings/__init__.py +45 -0
  97. sparknlp/annotator/embeddings/albert_embeddings.py +230 -0
  98. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  99. sparknlp/annotator/embeddings/bert_embeddings.py +208 -0
  100. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +224 -0
  101. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  102. sparknlp/annotator/embeddings/camembert_embeddings.py +210 -0
  103. sparknlp/annotator/embeddings/chunk_embeddings.py +149 -0
  104. sparknlp/annotator/embeddings/deberta_embeddings.py +208 -0
  105. sparknlp/annotator/embeddings/distil_bert_embeddings.py +221 -0
  106. sparknlp/annotator/embeddings/doc2vec.py +352 -0
  107. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  108. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  109. sparknlp/annotator/embeddings/elmo_embeddings.py +251 -0
  110. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  111. sparknlp/annotator/embeddings/longformer_embeddings.py +211 -0
  112. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  113. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  114. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  115. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  116. sparknlp/annotator/embeddings/roberta_embeddings.py +225 -0
  117. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +191 -0
  118. sparknlp/annotator/embeddings/sentence_embeddings.py +134 -0
  119. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  120. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  121. sparknlp/annotator/embeddings/universal_sentence_encoder.py +211 -0
  122. sparknlp/annotator/embeddings/word2vec.py +353 -0
  123. sparknlp/annotator/embeddings/word_embeddings.py +385 -0
  124. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +225 -0
  125. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +194 -0
  126. sparknlp/annotator/embeddings/xlnet_embeddings.py +227 -0
  127. sparknlp/annotator/er/__init__.py +16 -0
  128. sparknlp/annotator/er/entity_ruler.py +267 -0
  129. sparknlp/annotator/graph_extraction.py +368 -0
  130. sparknlp/annotator/keyword_extraction/__init__.py +16 -0
  131. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +270 -0
  132. sparknlp/annotator/ld_dl/__init__.py +16 -0
  133. sparknlp/annotator/ld_dl/language_detector_dl.py +199 -0
  134. sparknlp/annotator/lemmatizer.py +250 -0
  135. sparknlp/annotator/matcher/__init__.py +20 -0
  136. sparknlp/annotator/matcher/big_text_matcher.py +272 -0
  137. sparknlp/annotator/matcher/date_matcher.py +303 -0
  138. sparknlp/annotator/matcher/multi_date_matcher.py +109 -0
  139. sparknlp/annotator/matcher/regex_matcher.py +221 -0
  140. sparknlp/annotator/matcher/text_matcher.py +290 -0
  141. sparknlp/annotator/n_gram_generator.py +141 -0
  142. sparknlp/annotator/ner/__init__.py +21 -0
  143. sparknlp/annotator/ner/ner_approach.py +94 -0
  144. sparknlp/annotator/ner/ner_converter.py +148 -0
  145. sparknlp/annotator/ner/ner_crf.py +397 -0
  146. sparknlp/annotator/ner/ner_dl.py +591 -0
  147. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  148. sparknlp/annotator/ner/ner_overwriter.py +166 -0
  149. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  150. sparknlp/annotator/normalizer.py +230 -0
  151. sparknlp/annotator/openai/__init__.py +16 -0
  152. sparknlp/annotator/openai/openai_completion.py +349 -0
  153. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  154. sparknlp/annotator/param/__init__.py +17 -0
  155. sparknlp/annotator/param/classifier_encoder.py +98 -0
  156. sparknlp/annotator/param/evaluation_dl_params.py +130 -0
  157. sparknlp/annotator/pos/__init__.py +16 -0
  158. sparknlp/annotator/pos/perceptron.py +263 -0
  159. sparknlp/annotator/sentence/__init__.py +17 -0
  160. sparknlp/annotator/sentence/sentence_detector.py +290 -0
  161. sparknlp/annotator/sentence/sentence_detector_dl.py +467 -0
  162. sparknlp/annotator/sentiment/__init__.py +17 -0
  163. sparknlp/annotator/sentiment/sentiment_detector.py +208 -0
  164. sparknlp/annotator/sentiment/vivekn_sentiment.py +242 -0
  165. sparknlp/annotator/seq2seq/__init__.py +35 -0
  166. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  167. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  168. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  169. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  170. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  171. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  172. sparknlp/annotator/seq2seq/gpt2_transformer.py +363 -0
  173. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  174. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  175. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  176. sparknlp/annotator/seq2seq/marian_transformer.py +374 -0
  177. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  178. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  179. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  180. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  181. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  182. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  183. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  184. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  185. sparknlp/annotator/seq2seq/t5_transformer.py +425 -0
  186. sparknlp/annotator/similarity/__init__.py +0 -0
  187. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  188. sparknlp/annotator/spell_check/__init__.py +18 -0
  189. sparknlp/annotator/spell_check/context_spell_checker.py +911 -0
  190. sparknlp/annotator/spell_check/norvig_sweeting.py +358 -0
  191. sparknlp/annotator/spell_check/symmetric_delete.py +299 -0
  192. sparknlp/annotator/stemmer.py +79 -0
  193. sparknlp/annotator/stop_words_cleaner.py +190 -0
  194. sparknlp/annotator/tf_ner_dl_graph_builder.py +179 -0
  195. sparknlp/annotator/token/__init__.py +19 -0
  196. sparknlp/annotator/token/chunk_tokenizer.py +118 -0
  197. sparknlp/annotator/token/recursive_tokenizer.py +205 -0
  198. sparknlp/annotator/token/regex_tokenizer.py +208 -0
  199. sparknlp/annotator/token/tokenizer.py +561 -0
  200. sparknlp/annotator/token2_chunk.py +76 -0
  201. sparknlp/annotator/ws/__init__.py +16 -0
  202. sparknlp/annotator/ws/word_segmenter.py +429 -0
  203. sparknlp/base/__init__.py +30 -0
  204. sparknlp/base/audio_assembler.py +95 -0
  205. sparknlp/base/doc2_chunk.py +169 -0
  206. sparknlp/base/document_assembler.py +164 -0
  207. sparknlp/base/embeddings_finisher.py +201 -0
  208. sparknlp/base/finisher.py +217 -0
  209. sparknlp/base/gguf_ranking_finisher.py +234 -0
  210. sparknlp/base/graph_finisher.py +125 -0
  211. sparknlp/base/has_recursive_fit.py +24 -0
  212. sparknlp/base/has_recursive_transform.py +22 -0
  213. sparknlp/base/image_assembler.py +172 -0
  214. sparknlp/base/light_pipeline.py +429 -0
  215. sparknlp/base/multi_document_assembler.py +164 -0
  216. sparknlp/base/prompt_assembler.py +207 -0
  217. sparknlp/base/recursive_pipeline.py +107 -0
  218. sparknlp/base/table_assembler.py +145 -0
  219. sparknlp/base/token_assembler.py +124 -0
  220. sparknlp/common/__init__.py +26 -0
  221. sparknlp/common/annotator_approach.py +41 -0
  222. sparknlp/common/annotator_model.py +47 -0
  223. sparknlp/common/annotator_properties.py +114 -0
  224. sparknlp/common/annotator_type.py +38 -0
  225. sparknlp/common/completion_post_processing.py +37 -0
  226. sparknlp/common/coverage_result.py +22 -0
  227. sparknlp/common/match_strategy.py +33 -0
  228. sparknlp/common/properties.py +1298 -0
  229. sparknlp/common/read_as.py +33 -0
  230. sparknlp/common/recursive_annotator_approach.py +35 -0
  231. sparknlp/common/storage.py +149 -0
  232. sparknlp/common/utils.py +39 -0
  233. sparknlp/functions.py +315 -5
  234. sparknlp/internal/__init__.py +1199 -0
  235. sparknlp/internal/annotator_java_ml.py +32 -0
  236. sparknlp/internal/annotator_transformer.py +37 -0
  237. sparknlp/internal/extended_java_wrapper.py +63 -0
  238. sparknlp/internal/params_getters_setters.py +71 -0
  239. sparknlp/internal/recursive.py +70 -0
  240. sparknlp/logging/__init__.py +15 -0
  241. sparknlp/logging/comet.py +467 -0
  242. sparknlp/partition/__init__.py +16 -0
  243. sparknlp/partition/partition.py +244 -0
  244. sparknlp/partition/partition_properties.py +902 -0
  245. sparknlp/partition/partition_transformer.py +200 -0
  246. sparknlp/pretrained/__init__.py +17 -0
  247. sparknlp/pretrained/pretrained_pipeline.py +158 -0
  248. sparknlp/pretrained/resource_downloader.py +216 -0
  249. sparknlp/pretrained/utils.py +35 -0
  250. sparknlp/reader/__init__.py +15 -0
  251. sparknlp/reader/enums.py +19 -0
  252. sparknlp/reader/pdf_to_text.py +190 -0
  253. sparknlp/reader/reader2doc.py +124 -0
  254. sparknlp/reader/reader2image.py +136 -0
  255. sparknlp/reader/reader2table.py +44 -0
  256. sparknlp/reader/reader_assembler.py +159 -0
  257. sparknlp/reader/sparknlp_reader.py +461 -0
  258. sparknlp/training/__init__.py +20 -0
  259. sparknlp/training/_tf_graph_builders/__init__.py +0 -0
  260. sparknlp/training/_tf_graph_builders/graph_builders.py +299 -0
  261. sparknlp/training/_tf_graph_builders/ner_dl/__init__.py +0 -0
  262. sparknlp/training/_tf_graph_builders/ner_dl/create_graph.py +41 -0
  263. sparknlp/training/_tf_graph_builders/ner_dl/dataset_encoder.py +78 -0
  264. sparknlp/training/_tf_graph_builders/ner_dl/ner_model.py +521 -0
  265. sparknlp/training/_tf_graph_builders/ner_dl/ner_model_saver.py +62 -0
  266. sparknlp/training/_tf_graph_builders/ner_dl/sentence_grouper.py +28 -0
  267. sparknlp/training/_tf_graph_builders/tf2contrib/__init__.py +36 -0
  268. sparknlp/training/_tf_graph_builders/tf2contrib/core_rnn_cell.py +385 -0
  269. sparknlp/training/_tf_graph_builders/tf2contrib/fused_rnn_cell.py +183 -0
  270. sparknlp/training/_tf_graph_builders/tf2contrib/gru_ops.py +235 -0
  271. sparknlp/training/_tf_graph_builders/tf2contrib/lstm_ops.py +665 -0
  272. sparknlp/training/_tf_graph_builders/tf2contrib/rnn.py +245 -0
  273. sparknlp/training/_tf_graph_builders/tf2contrib/rnn_cell.py +4006 -0
  274. sparknlp/training/_tf_graph_builders_1x/__init__.py +0 -0
  275. sparknlp/training/_tf_graph_builders_1x/graph_builders.py +277 -0
  276. sparknlp/training/_tf_graph_builders_1x/ner_dl/__init__.py +0 -0
  277. sparknlp/training/_tf_graph_builders_1x/ner_dl/create_graph.py +34 -0
  278. sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py +78 -0
  279. sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py +532 -0
  280. sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py +62 -0
  281. sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py +28 -0
  282. sparknlp/training/conll.py +150 -0
  283. sparknlp/training/conllu.py +103 -0
  284. sparknlp/training/pos.py +103 -0
  285. sparknlp/training/pub_tator.py +76 -0
  286. sparknlp/training/spacy_to_annotation.py +57 -0
  287. sparknlp/training/tfgraphs.py +5 -0
  288. sparknlp/upload_to_hub.py +149 -0
  289. sparknlp/util.py +51 -5
  290. com/__init__.pyc +0 -0
  291. com/__pycache__/__init__.cpython-36.pyc +0 -0
  292. com/johnsnowlabs/__init__.pyc +0 -0
  293. com/johnsnowlabs/__pycache__/__init__.cpython-36.pyc +0 -0
  294. com/johnsnowlabs/nlp/__init__.pyc +0 -0
  295. com/johnsnowlabs/nlp/__pycache__/__init__.cpython-36.pyc +0 -0
  296. spark_nlp-2.6.3rc1.dist-info/METADATA +0 -36
  297. spark_nlp-2.6.3rc1.dist-info/RECORD +0 -48
  298. sparknlp/__init__.pyc +0 -0
  299. sparknlp/__pycache__/__init__.cpython-36.pyc +0 -0
  300. sparknlp/__pycache__/annotation.cpython-36.pyc +0 -0
  301. sparknlp/__pycache__/annotator.cpython-36.pyc +0 -0
  302. sparknlp/__pycache__/base.cpython-36.pyc +0 -0
  303. sparknlp/__pycache__/common.cpython-36.pyc +0 -0
  304. sparknlp/__pycache__/embeddings.cpython-36.pyc +0 -0
  305. sparknlp/__pycache__/functions.cpython-36.pyc +0 -0
  306. sparknlp/__pycache__/internal.cpython-36.pyc +0 -0
  307. sparknlp/__pycache__/pretrained.cpython-36.pyc +0 -0
  308. sparknlp/__pycache__/storage.cpython-36.pyc +0 -0
  309. sparknlp/__pycache__/training.cpython-36.pyc +0 -0
  310. sparknlp/__pycache__/util.cpython-36.pyc +0 -0
  311. sparknlp/annotation.pyc +0 -0
  312. sparknlp/annotator.py +0 -3006
  313. sparknlp/annotator.pyc +0 -0
  314. sparknlp/base.py +0 -347
  315. sparknlp/base.pyc +0 -0
  316. sparknlp/common.py +0 -193
  317. sparknlp/common.pyc +0 -0
  318. sparknlp/embeddings.py +0 -40
  319. sparknlp/embeddings.pyc +0 -0
  320. sparknlp/internal.py +0 -288
  321. sparknlp/internal.pyc +0 -0
  322. sparknlp/pretrained.py +0 -123
  323. sparknlp/pretrained.pyc +0 -0
  324. sparknlp/storage.py +0 -32
  325. sparknlp/storage.pyc +0 -0
  326. sparknlp/training.py +0 -62
  327. sparknlp/training.pyc +0 -0
  328. sparknlp/util.pyc +0 -0
  329. {spark_nlp-2.6.3rc1.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,210 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for CamemBertEmbeddings."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class CamemBertEmbeddings(AnnotatorModel,
20
+ HasEmbeddingsProperties,
21
+ HasCaseSensitiveProperties,
22
+ HasStorageRef,
23
+ HasBatchedAnnotate,
24
+ HasEngine,
25
+ HasMaxSentenceLengthLimit):
26
+ """The CamemBERT model was proposed in CamemBERT: a Tasty French Language Model by
27
+ Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent
28
+ Romary, Éric Villemonte de la Clergerie, Djamé Seddah, and Benoît Sagot.
29
+
30
+ It is based on Facebook's RoBERTa model released in 2019. It is a model trained
31
+ on 138GB of French text.
32
+
33
+ Pretrained models can be loaded with ``pretrained`` of the companion object:
34
+
35
+ >>> embeddings = CamemBertEmbeddings.pretrained() \\
36
+ ... .setInputCols(["token", "document"]) \\
37
+ ... .setOutputCol("camembert_embeddings")
38
+
39
+
40
+ The default model is ``"camembert_base"``, if no name is provided.
41
+
42
+ For available pretrained models please see the
43
+ `Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
44
+
45
+ For extended examples of usage, see the
46
+ `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_bert.ipynb>`__
47
+ and the
48
+ `CamemBertEmbeddingsTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/CamemBertEmbeddingsTestSpec.scala>`__.
49
+
50
+ To see which models are compatible and how to import them see
51
+ https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.
52
+
53
+ ====================== ======================
54
+ Input Annotation types Output Annotation type
55
+ ====================== ======================
56
+ ``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
57
+ ====================== ======================
58
+
59
+ Parameters
60
+ ----------
61
+
62
+ batchSize
63
+ Size of every batch , by default 8
64
+ dimension
65
+ Number of embedding dimensions, by default 768
66
+ caseSensitive
67
+ Whether to ignore case in tokens for embeddings matching, by default False
68
+ maxSentenceLength
69
+ Max sentence length to process, by default 128
70
+ configProtoBytes
71
+ ConfigProto from tensorflow, serialized into byte array.
72
+
73
+ References
74
+ ----------
75
+
76
+ `CamemBERT: a Tasty French Language Model <https://arxiv.org/abs/1911.03894>`__
77
+
78
+ https://huggingface.co/camembert
79
+
80
+ **Paper abstract**
81
+
82
+ *Pretrained language models are now ubiquitous in Natural Language Processing.
83
+ Despite their success, most available models have either been trained on English
84
+ data or on the concatenation of data in multiple languages. This makes practical
85
+ use of such models --in all languages except English-- very limited. In this
86
+ paper, we investigate the feasibility of training monolingual Transformer-based
87
+ language models for other languages, taking French as an example and evaluating
88
+ our language models on part-of-speech tagging, dependency parsing, named entity
89
+ recognition and natural language inference tasks. We show that the use of web
90
+ crawled data is preferable to the use of Wikipedia data. More surprisingly, we
91
+ show that a relatively small web crawled dataset (4GB) leads to results that are
92
+ as good as those obtained using larger datasets (130+GB). Our best performing
93
+ model CamemBERT reaches or improves the state of the art in all four downstream
94
+ tasks.*
95
+
96
+ Examples
97
+ --------
98
+ >>> import sparknlp
99
+ >>> from sparknlp.base import *
100
+ >>> from sparknlp.annotator import *
101
+ >>> from pyspark.ml import Pipeline
102
+ >>> documentAssembler = DocumentAssembler() \\
103
+ ... .setInputCol("text") \\
104
+ ... .setOutputCol("document")
105
+ >>> tokenizer = Tokenizer() \\
106
+ ... .setInputCols(["document"]) \\
107
+ ... .setOutputCol("token")
108
+ >>> embeddings = CamemBertEmbeddings.pretrained() \\
109
+ ... .setInputCols(["token", "document"]) \\
110
+ ... .setOutputCol("camembert_embeddings")
111
+ >>> embeddingsFinisher = EmbeddingsFinisher() \\
112
+ ... .setInputCols(["camembert_embeddings"]) \\
113
+ ... .setOutputCols("finished_embeddings") \\
114
+ ... .setOutputAsVector(True)
115
+ >>> pipeline = Pipeline().setStages([
116
+ ... documentAssembler,
117
+ ... tokenizer,
118
+ ... embeddings,
119
+ ... embeddingsFinisher
120
+ ... ])
121
+ >>> data = spark.createDataFrame([["C'est une phrase."]]).toDF("text")
122
+ >>> result = pipeline.fit(data).transform(data)
123
+ >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
124
+ +--------------------------------------------------------------------------------+
125
+ | result|
126
+ +--------------------------------------------------------------------------------+
127
+ |[0.08442357927560806,-0.12863239645957947,-0.03835778683423996,0.200479581952...|
128
+ |[0.048462312668561935,0.12637358903884888,-0.27429091930389404,-0.07516729831...|
129
+ |[0.02690504491329193,0.12104076147079468,0.012526623904705048,-0.031543646007...|
130
+ |[0.05877285450696945,-0.08773420006036758,-0.06381352990865707,0.122621834278...|
131
+ +--------------------------------------------------------------------------------+
132
+ """
133
+
134
+ name = "CamemBertEmbeddings"
135
+
136
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
137
+
138
+ outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
139
+
140
+ configProtoBytes = Param(
141
+ Params._dummy(),
142
+ "configProtoBytes",
143
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
144
+ TypeConverters.toListInt,
145
+ )
146
+
147
+ def setConfigProtoBytes(self, b):
148
+ """Sets configProto from tensorflow, serialized into byte array.
149
+
150
+ Parameters
151
+ ----------
152
+ b : List[int]
153
+ ConfigProto from tensorflow, serialized into byte array
154
+ """
155
+ return self._set(configProtoBytes=b)
156
+
157
+ @keyword_only
158
+ def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.CamemBertEmbeddings", java_model=None):
159
+ super(CamemBertEmbeddings, self).__init__(
160
+ classname=classname,
161
+ java_model=java_model
162
+ )
163
+ self._setDefault(
164
+ batchSize=8,
165
+ dimension=768,
166
+ maxSentenceLength=128,
167
+ caseSensitive=True
168
+ )
169
+
170
+ @staticmethod
171
+ def loadSavedModel(folder, spark_session):
172
+ """Loads a locally saved model.
173
+
174
+ Parameters
175
+ ----------
176
+ folder : str
177
+ Folder of the saved model
178
+ spark_session : pyspark.sql.SparkSession
179
+ The current SparkSession
180
+
181
+ Returns
182
+ -------
183
+ CamemBertEmbeddings
184
+ The restored model
185
+ """
186
+ from sparknlp.internal import _CamemBertLoader
187
+ jModel = _CamemBertLoader(folder, spark_session._jsparkSession)._java_obj
188
+ return CamemBertEmbeddings(java_model=jModel)
189
+
190
+ @staticmethod
191
+ def pretrained(name="camembert_base", lang="fr", remote_loc=None):
192
+ """Downloads and loads a pretrained model.
193
+
194
+ Parameters
195
+ ----------
196
+ name : str, optional
197
+ Name of the pretrained model, by default "camembert_base"
198
+ lang : str, optional
199
+ Language of the pretrained model, by default "fr"
200
+ remote_loc : str, optional
201
+ Optional remote address of the resource, by default None. Will use
202
+ Spark NLPs repositories otherwise.
203
+
204
+ Returns
205
+ -------
206
+ CamemBertEmbeddings
207
+ The restored model
208
+ """
209
+ from sparknlp.pretrained import ResourceDownloader
210
+ return ResourceDownloader.downloadModel(CamemBertEmbeddings, name, lang, remote_loc)
@@ -0,0 +1,149 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for ChunkEmbeddings"""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class ChunkEmbeddings(AnnotatorModel):
20
+ """This annotator utilizes WordEmbeddings, BertEmbeddings etc. to generate
21
+ chunk embeddings from either Chunker, NGramGenerator, or NerConverter
22
+ outputs.
23
+
24
+ For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/embeddings/ChunkEmbeddings.ipynb>`__.
25
+
26
+ ========================== ======================
27
+ Input Annotation types Output Annotation type
28
+ ========================== ======================
29
+ ``CHUNK, WORD_EMBEDDINGS`` ``WORD_EMBEDDINGS``
30
+ ========================== ======================
31
+
32
+ Parameters
33
+ ----------
34
+ poolingStrategy
35
+ Choose how you would like to aggregate Word Embeddings to Chunk
36
+ Embeddings, by default AVERAGE.
37
+ Possible Values: ``AVERAGE, SUM``
38
+ skipOOV
39
+ Whether to discard default vectors for OOV words from the
40
+ aggregation/pooling.
41
+
42
+ Examples
43
+ --------
44
+ >>> import sparknlp
45
+ >>> from sparknlp.base import *
46
+ >>> from sparknlp.annotator import *
47
+ >>> from pyspark.ml import Pipeline
48
+
49
+ Extract the Embeddings from the NGrams
50
+
51
+ >>> documentAssembler = DocumentAssembler() \\
52
+ ... .setInputCol("text") \\
53
+ ... .setOutputCol("document")
54
+ >>> sentence = SentenceDetector() \\
55
+ ... .setInputCols(["document"]) \\
56
+ ... .setOutputCol("sentence")
57
+ >>> tokenizer = Tokenizer() \\
58
+ ... .setInputCols(["sentence"]) \\
59
+ ... .setOutputCol("token")
60
+ >>> nGrams = NGramGenerator() \\
61
+ ... .setInputCols(["token"]) \\
62
+ ... .setOutputCol("chunk") \\
63
+ ... .setN(2)
64
+ >>> embeddings = WordEmbeddingsModel.pretrained() \\
65
+ ... .setInputCols(["sentence", "token"]) \\
66
+ ... .setOutputCol("embeddings") \\
67
+ ... .setCaseSensitive(False)
68
+
69
+ Convert the NGram chunks into Word Embeddings
70
+
71
+ >>> chunkEmbeddings = ChunkEmbeddings() \\
72
+ ... .setInputCols(["chunk", "embeddings"]) \\
73
+ ... .setOutputCol("chunk_embeddings") \\
74
+ ... .setPoolingStrategy("AVERAGE")
75
+ >>> pipeline = Pipeline() \\
76
+ ... .setStages([
77
+ ... documentAssembler,
78
+ ... sentence,
79
+ ... tokenizer,
80
+ ... nGrams,
81
+ ... embeddings,
82
+ ... chunkEmbeddings
83
+ ... ])
84
+ >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
85
+ >>> result = pipeline.fit(data).transform(data)
86
+ >>> result.selectExpr("explode(chunk_embeddings) as result") \\
87
+ ... .select("result.annotatorType", "result.result", "result.embeddings") \\
88
+ ... .show(5, 80)
89
+ +---------------+----------+--------------------------------------------------------------------------------+
90
+ | annotatorType| result| embeddings|
91
+ +---------------+----------+--------------------------------------------------------------------------------+
92
+ |word_embeddings| This is|[-0.55661, 0.42829502, 0.86661, -0.409785, 0.06316501, 0.120775, -0.0732005, ...|
93
+ |word_embeddings| is a|[-0.40674996, 0.22938299, 0.50597, -0.288195, 0.555655, 0.465145, 0.140118, 0...|
94
+ |word_embeddings|a sentence|[0.17417, 0.095253006, -0.0530925, -0.218465, 0.714395, 0.79860497, 0.0129999...|
95
+ |word_embeddings|sentence .|[0.139705, 0.177955, 0.1887775, -0.45545, 0.20030999, 0.461557, -0.07891501, ...|
96
+ +---------------+----------+--------------------------------------------------------------------------------+
97
+ """
98
+
99
+ name = "ChunkEmbeddings"
100
+
101
+ inputAnnotatorTypes = [AnnotatorType.CHUNK, AnnotatorType.WORD_EMBEDDINGS]
102
+
103
+ outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
104
+
105
+ @keyword_only
106
+ def __init__(self):
107
+ super(ChunkEmbeddings, self).__init__(classname="com.johnsnowlabs.nlp.embeddings.ChunkEmbeddings")
108
+ self._setDefault(
109
+ poolingStrategy="AVERAGE"
110
+ )
111
+
112
+ poolingStrategy = Param(Params._dummy(),
113
+ "poolingStrategy",
114
+ "Choose how you would like to aggregate Word Embeddings to Chunk Embeddings:" +
115
+ "AVERAGE or SUM",
116
+ typeConverter=TypeConverters.toString)
117
+ skipOOV = Param(Params._dummy(), "skipOOV",
118
+ "Whether to discard default vectors for OOV words from the aggregation / pooling ",
119
+ typeConverter=TypeConverters.toBoolean)
120
+
121
+ def setPoolingStrategy(self, strategy):
122
+ """Sets how to aggregate Word Embeddings to Chunk Embeddings, by default
123
+ AVERAGE.
124
+
125
+ Possible Values: ``AVERAGE, SUM``
126
+
127
+ Parameters
128
+ ----------
129
+ strategy : str
130
+ Aggregation Strategy
131
+ """
132
+ if strategy == "AVERAGE":
133
+ return self._set(poolingStrategy=strategy)
134
+ elif strategy == "SUM":
135
+ return self._set(poolingStrategy=strategy)
136
+ else:
137
+ return self._set(poolingStrategy="AVERAGE")
138
+
139
+ def setSkipOOV(self, value):
140
+ """Sets whether to discard default vectors for OOV words from the
141
+ aggregation/pooling.
142
+
143
+ Parameters
144
+ ----------
145
+ value : bool
146
+ whether to discard default vectors for OOV words from the
147
+ aggregation/pooling.
148
+ """
149
+ return self._set(skipOOV=value)
@@ -0,0 +1,208 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for DeBertaEmbeddings."""
15
+ from sparknlp.common import *
16
+
17
+
18
+ class DeBertaEmbeddings(AnnotatorModel,
19
+ HasEmbeddingsProperties,
20
+ HasCaseSensitiveProperties,
21
+ HasStorageRef,
22
+ HasBatchedAnnotate,
23
+ HasEngine,
24
+ HasMaxSentenceLengthLimit):
25
+ """The DeBERTa model was proposed in DeBERTa: Decoding-enhanced BERT with
26
+ Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu
27
+ Chen It is based on Google’s BERT model released in 2018 and Facebook’s
28
+ RoBERTa model released in 2019.
29
+
30
+ This model requires input tokenization with
31
+ SentencePiece model, which is provided by Spark NLP (See tokenizers
32
+ package).
33
+
34
+ It builds on RoBERTa with disentangled attention and enhanced mask decoder
35
+ training with half of the data used in RoBERTa.
36
+
37
+ Pretrained models can be loaded with pretrained of the companion object:
38
+
39
+ >>> embeddings = DeBertaEmbeddings.pretrained() \\
40
+ ... .setInputCols(["sentence", "token"]) \\
41
+ ... .setOutputCol("embeddings")
42
+
43
+ The default model is ``"deberta_v3_base"``, if no name is provided.
44
+
45
+ To see which models are compatible and how to import them see
46
+ `Import Transformers into Spark NLP 🚀
47
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
48
+
49
+ ====================== ======================
50
+ Input Annotation types Output Annotation type
51
+ ====================== ======================
52
+ ``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
53
+ ====================== ======================
54
+
55
+ Parameters
56
+ ----------
57
+ batchSize
58
+ Size of every batch, by default 8
59
+ dimension
60
+ Number of embedding dimensions, by default 768
61
+ caseSensitive
62
+ Whether to ignore case in tokens for embeddings matching, by default
63
+ False
64
+ configProtoBytes
65
+ ConfigProto from tensorflow, serialized into byte array.
66
+ maxSentenceLength
67
+ Max sentence length to process, by default 128
68
+
69
+ References
70
+ ----------
71
+ https://github.com/microsoft/DeBERTa
72
+
73
+ https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/
74
+
75
+ **Paper abstract:**
76
+
77
+ *Paper abstract: Recent progress in pre-trained neural language models has
78
+ significantly improved the performance of many natural language processing
79
+ (NLP) tasks. In this paper we propose a new model architecture DeBERTa (
80
+ Decoding-enhanced BERT with disentangled attention) that improves the BERT
81
+ and RoBERTa models using two novel techniques. The first is the disentangled
82
+ attention mechanism, where each word is represented using two vectors that
83
+ encode its content and position, respectively, and the attention weights
84
+ among words are computed using disentangled matrices on their contents and
85
+ relative positions. Second, an enhanced mask decoder is used to replace the
86
+ output softmax layer to predict the masked tokens for model pretraining. We
87
+ show that these two techniques significantly improve the efficiency of model
88
+ pretraining and performance of downstream tasks. Compared to RoBERTa-Large,
89
+ a DeBERTa model trained on half of the training data performs consistently
90
+ better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
91
+ (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by
92
+ +3.6% (83.2% vs. 86.8%). The DeBERTa code and pre-trained models will be
93
+ made publicly available at https://github.com/microsoft/DeBERTa.*
94
+
95
+ Examples
96
+ --------
97
+ >>> import sparknlp
98
+ >>> from sparknlp.base import *
99
+ >>> from sparknlp.annotator import *
100
+ >>> from pyspark.ml import Pipeline
101
+ >>> documentAssembler = DocumentAssembler() \\
102
+ ... .setInputCol("text") \\
103
+ ... .setOutputCol("document")
104
+ >>> tokenizer = Tokenizer() \\
105
+ ... .setInputCols(["document"]) \\
106
+ >>> embeddings = DeBertaEmbeddings.pretrained() \\
107
+ ... .setInputCols(["token", "document"]) \\
108
+ ... .setOutputCol("embeddings")
109
+ >>> embeddingsFinisher = EmbeddingsFinisher() \\
110
+ ... .setInputCols(["embeddings"]) \\
111
+ ... .setOutputCols("finished_embeddings") \\
112
+ ... .setOutputAsVector(True) \\
113
+ ... .setCleanAnnotations(False)
114
+ >>> pipeline = Pipeline().setStages([
115
+ ... documentAssembler,
116
+ ... tokenizer,
117
+ ... embeddings,
118
+ ... embeddingsFinisher
119
+ ... ])
120
+ >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
121
+ >>> result = pipeline.fit(data).transform(data)
122
+ >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
123
+ +--------------------------------------------------------------------------------+
124
+ | result|
125
+ +--------------------------------------------------------------------------------+
126
+ |[1.1342473030090332,-1.3855540752410889,0.9818322062492371,-0.784737348556518...|
127
+ |[0.847029983997345,-1.047153353691101,-0.1520637571811676,-0.6245765686035156...|
128
+ |[-0.009860038757324219,-0.13450059294700623,2.707749128341675,1.2916892766952...|
129
+ |[-0.04192575812339783,-0.5764210224151611,-0.3196685314178467,-0.527840495109...|
130
+ |[0.15583214163780212,-0.1614152491092682,-0.28423872590065,-0.135491415858268...|
131
+ +--------------------------------------------------------------------------------+
132
+ """
133
+
134
+ name = "DeBertaEmbeddings"
135
+
136
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
137
+
138
+ outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
139
+
140
+ configProtoBytes = Param(Params._dummy(),
141
+ "configProtoBytes",
142
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
143
+ TypeConverters.toListInt)
144
+
145
+ def setConfigProtoBytes(self, b):
146
+ """Sets configProto from tensorflow, serialized into byte array.
147
+
148
+ Parameters
149
+ ----------
150
+ b : List[int]
151
+ ConfigProto from tensorflow, serialized into byte array
152
+ """
153
+ return self._set(configProtoBytes=b)
154
+
155
+ @keyword_only
156
+ def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.DeBertaEmbeddings", java_model=None):
157
+ super(DeBertaEmbeddings, self).__init__(
158
+ classname=classname,
159
+ java_model=java_model
160
+ )
161
+ self._setDefault(
162
+ batchSize=8,
163
+ dimension=768,
164
+ maxSentenceLength=128,
165
+ caseSensitive=True
166
+ )
167
+
168
+ @staticmethod
169
+ def loadSavedModel(folder, spark_session):
170
+ """Loads a locally saved model.
171
+
172
+ Parameters
173
+ ----------
174
+ folder : str
175
+ Folder of the saved model
176
+ spark_session : pyspark.sql.SparkSession
177
+ The current SparkSession
178
+
179
+ Returns
180
+ -------
181
+ DeBertaEmbeddings
182
+ The restored model
183
+ """
184
+ from sparknlp.internal import _DeBERTaLoader
185
+ jModel = _DeBERTaLoader(folder, spark_session._jsparkSession)._java_obj
186
+ return DeBertaEmbeddings(java_model=jModel)
187
+
188
+ @staticmethod
189
+ def pretrained(name="deberta_v3_base", lang="en", remote_loc=None):
190
+ """Downloads and loads a pretrained model.
191
+
192
+ Parameters
193
+ ----------
194
+ name : str, optional
195
+ Name of the pretrained model, by default "deberta_v3_base"
196
+ lang : str, optional
197
+ Language of the pretrained model, by default "en"
198
+ remote_loc : str, optional
199
+ Optional remote address of the resource, by default None. Will use
200
+ Spark NLPs repositories otherwise.
201
+
202
+ Returns
203
+ -------
204
+ DeBertaEmbeddings
205
+ The restored model
206
+ """
207
+ from sparknlp.pretrained import ResourceDownloader
208
+ return ResourceDownloader.downloadModel(DeBertaEmbeddings, name, lang, remote_loc)