snappy 3.0.3__cp38-cp38-macosx_11_0_arm64.whl → 3.2__cp38-cp38-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-38-darwin.so +0 -0
- snappy/SnapPy.cpython-38-darwin.so +0 -0
- snappy/SnapPyHP.cpython-38-darwin.so +0 -0
- snappy/__init__.py +373 -426
- snappy/app.py +240 -75
- snappy/app_menus.py +93 -78
- snappy/browser.py +87 -63
- snappy/cache.py +5 -8
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +11 -19
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +39 -54
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +40 -31
- snappy/db_utilities.py +13 -14
- snappy/decorated_isosig.py +377 -133
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +42 -9
- snappy/dev/extended_ptolemy/extended.py +32 -25
- snappy/dev/extended_ptolemy/giac_rur.py +23 -8
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +2 -1
- snappy/dev/vericlosed/gimbalLoopFinder.py +5 -5
- snappy/dev/vericlosed/hyperbolicStructure.py +3 -3
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +2 -2
- snappy/dev/vericlosed/truncatedComplex.py +3 -2
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +4 -3
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +1 -0
- snappy/doc/_sources/credits.rst.txt +6 -1
- snappy/doc/_sources/development.rst.txt +69 -50
- snappy/doc/_sources/index.rst.txt +101 -66
- snappy/doc/_sources/installing.rst.txt +148 -165
- snappy/doc/_sources/news.rst.txt +136 -32
- snappy/doc/_sources/ptolemy.rst.txt +1 -1
- snappy/doc/_sources/ptolemy_examples1.rst.txt +9 -8
- snappy/doc/_sources/ptolemy_examples2.rst.txt +3 -3
- snappy/doc/_sources/ptolemy_examples3.rst.txt +14 -14
- snappy/doc/_sources/ptolemy_prelim.rst.txt +1 -1
- snappy/doc/_sources/snap.rst.txt +2 -2
- snappy/doc/_sources/snappy.rst.txt +1 -1
- snappy/doc/_sources/triangulation.rst.txt +3 -2
- snappy/doc/_sources/verify.rst.txt +89 -29
- snappy/doc/_sources/verify_internals.rst.txt +5 -16
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +47 -27
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +107 -274
- snappy/doc/_static/documentation_options.js +6 -5
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -2
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +3 -101
- snappy/doc/_static/pygments.css +1 -0
- snappy/doc/_static/searchtools.js +489 -398
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +688 -263
- snappy/doc/bugs.html +107 -94
- snappy/doc/censuses.html +155 -127
- snappy/doc/credits.html +115 -104
- snappy/doc/development.html +184 -146
- snappy/doc/genindex.html +287 -204
- snappy/doc/index.html +189 -150
- snappy/doc/installing.html +259 -266
- snappy/doc/manifold.html +1626 -592
- snappy/doc/manifoldhp.html +119 -105
- snappy/doc/news.html +198 -104
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +117 -105
- snappy/doc/platonic_census.html +161 -114
- snappy/doc/plink.html +113 -105
- snappy/doc/ptolemy.html +131 -108
- snappy/doc/ptolemy_classes.html +242 -223
- snappy/doc/ptolemy_examples1.html +144 -130
- snappy/doc/ptolemy_examples2.html +141 -129
- snappy/doc/ptolemy_examples3.html +148 -132
- snappy/doc/ptolemy_examples4.html +131 -111
- snappy/doc/ptolemy_prelim.html +162 -138
- snappy/doc/py-modindex.html +104 -69
- snappy/doc/screenshots.html +117 -108
- snappy/doc/search.html +115 -84
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +109 -96
- snappy/doc/snappy.html +134 -97
- snappy/doc/spherogram.html +259 -187
- snappy/doc/todo.html +107 -94
- snappy/doc/triangulation.html +1380 -111
- snappy/doc/tutorial.html +107 -94
- snappy/doc/verify.html +194 -125
- snappy/doc/verify_internals.html +248 -686
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +23 -3
- snappy/export_stl.py +20 -14
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +36 -36
- snappy/horoviewer.py +50 -48
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/{infodialog.py → infowindow.py} +32 -33
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/__init__.py +1 -1
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +97 -21
- snappy/numeric_output_checker.py +37 -27
- snappy/pari.py +30 -69
- snappy/phone_home.py +25 -20
- snappy/polyviewer.py +39 -37
- snappy/ptolemy/__init__.py +4 -6
- snappy/ptolemy/component.py +14 -12
- snappy/ptolemy/coordinates.py +312 -295
- snappy/ptolemy/fieldExtensions.py +14 -12
- snappy/ptolemy/findLoops.py +43 -31
- snappy/ptolemy/geometricRep.py +24 -26
- snappy/ptolemy/homology.py +12 -7
- snappy/ptolemy/manifoldMethods.py +69 -70
- snappy/ptolemy/matrix.py +65 -26
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +18 -14
- snappy/ptolemy/polynomial.py +125 -119
- snappy/ptolemy/processComponents.py +36 -30
- snappy/ptolemy/processFileBase.py +79 -18
- snappy/ptolemy/processFileDispatch.py +13 -14
- snappy/ptolemy/processMagmaFile.py +44 -39
- snappy/ptolemy/processRurFile.py +18 -11
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +20 -17
- snappy/ptolemy/ptolemyObstructionClass.py +13 -17
- snappy/ptolemy/ptolemyVariety.py +190 -121
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +20 -19
- snappy/ptolemy/reginaWrapper.py +25 -29
- snappy/ptolemy/rur.py +6 -14
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +27 -22
- snappy/ptolemy/test.py +247 -188
- snappy/ptolemy/utilities.py +41 -43
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +10 -6
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +48 -38
- snappy/raytracing/finite_viewer.py +218 -210
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +152 -40
- snappy/raytracing/hyperboloid_navigation.py +102 -52
- snappy/raytracing/hyperboloid_utilities.py +114 -261
- snappy/raytracing/ideal_raytracing_data.py +256 -179
- snappy/raytracing/inside_viewer.py +522 -253
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +46 -34
- snappy/raytracing/raytracing_view.py +190 -109
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +60 -4
- snappy/raytracing/shaders/fragment.glsl +575 -148
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +32 -29
- snappy/raytracing/zoom_slider/test.py +2 -0
- snappy/sage_helper.py +69 -123
- snappy/{preferences.py → settings.py} +167 -145
- snappy/shell.py +4 -0
- snappy/snap/__init__.py +12 -8
- snappy/snap/character_varieties.py +24 -18
- snappy/snap/find_field.py +35 -34
- snappy/snap/fundamental_polyhedron.py +99 -85
- snappy/snap/generators.py +6 -8
- snappy/snap/interval_reps.py +18 -6
- snappy/snap/kernel_structures.py +8 -3
- snappy/snap/mcomplex_base.py +1 -2
- snappy/snap/nsagetools.py +107 -53
- snappy/snap/peripheral/__init__.py +1 -1
- snappy/snap/peripheral/dual_cellulation.py +15 -7
- snappy/snap/peripheral/link.py +20 -16
- snappy/snap/peripheral/peripheral.py +22 -14
- snappy/snap/peripheral/surface.py +47 -50
- snappy/snap/peripheral/test.py +8 -8
- snappy/snap/polished_reps.py +65 -40
- snappy/snap/shapes.py +41 -22
- snappy/snap/slice_obs_HKL.py +64 -25
- snappy/snap/t3mlite/arrow.py +88 -51
- snappy/snap/t3mlite/corner.py +5 -6
- snappy/snap/t3mlite/edge.py +32 -21
- snappy/snap/t3mlite/face.py +7 -9
- snappy/snap/t3mlite/files.py +31 -23
- snappy/snap/t3mlite/homology.py +14 -10
- snappy/snap/t3mlite/linalg.py +158 -56
- snappy/snap/t3mlite/mcomplex.py +739 -291
- snappy/snap/t3mlite/perm4.py +236 -84
- snappy/snap/t3mlite/setup.py +9 -10
- snappy/snap/t3mlite/simplex.py +65 -48
- snappy/snap/t3mlite/spun.py +42 -30
- snappy/snap/t3mlite/surface.py +45 -45
- snappy/snap/t3mlite/test.py +3 -0
- snappy/snap/t3mlite/test_vs_regina.py +17 -13
- snappy/snap/t3mlite/tetrahedron.py +25 -24
- snappy/snap/t3mlite/vertex.py +8 -13
- snappy/snap/test.py +45 -52
- snappy/snap/utilities.py +66 -65
- snappy/test.py +155 -158
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +313 -203
- snappy/twister/main.py +1 -8
- snappy/twister/twister_core.cpython-38-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +4 -8
- snappy/verify/{verifyCanonical.py → canonical.py} +114 -97
- snappy/verify/complex_volume/__init__.py +3 -2
- snappy/verify/complex_volume/adjust_torsion.py +13 -11
- snappy/verify/complex_volume/closed.py +29 -24
- snappy/verify/complex_volume/compute_ptolemys.py +8 -6
- snappy/verify/complex_volume/cusped.py +10 -9
- snappy/verify/complex_volume/extended_bloch.py +14 -12
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +15 -14
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +23 -56
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +19 -15
- snappy/verify/interval_newton_shapes_engine.py +51 -211
- snappy/verify/interval_tree.py +27 -25
- snappy/verify/krawczyk_shapes_engine.py +47 -50
- snappy/verify/maximal_cusp_area_matrix/__init__.py +17 -86
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +58 -48
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +53 -57
- snappy/verify/{realAlgebra.py → real_algebra.py} +26 -20
- snappy/verify/shapes.py +10 -7
- snappy/verify/short_slopes.py +41 -42
- snappy/verify/{squareExtensions.py → square_extensions.py} +96 -92
- snappy/verify/test.py +59 -57
- snappy/verify/upper_halfspace/extended_matrix.py +5 -5
- snappy/verify/upper_halfspace/finite_point.py +44 -31
- snappy/verify/upper_halfspace/ideal_point.py +69 -57
- snappy/verify/volume.py +15 -12
- snappy/version.py +2 -3
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/METADATA +14 -12
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/top_level.txt +10 -1
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/classic.css +0 -266
- snappy/doc/_static/jquery-3.5.1.js +0 -10872
- snappy/doc/_static/sidebar.js +0 -159
- snappy/doc/_static/underscore-1.13.1.js +0 -2042
- snappy/doc/_static/underscore.js +0 -6
- snappy/doc/verify_canon.html +0 -283
- snappy/ppm_to_png.py +0 -243
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/verify/cuspCrossSection.py +0 -1413
- snappy/verify/mathHelpers.py +0 -64
- snappy-3.0.3.dist-info/RECORD +0 -360
snappy/ptolemy/coordinates.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1
|
-
from __future__ import print_function
|
2
|
-
|
3
1
|
from .component import ZeroDimensionalComponent
|
4
2
|
from .rur import RUR
|
5
3
|
from . import matrix
|
@@ -9,6 +7,7 @@ from ..sage_helper import _within_sage
|
|
9
7
|
from ..pari import Gen, pari
|
10
8
|
import re
|
11
9
|
|
10
|
+
|
12
11
|
class PtolemyCannotBeCheckedError(Exception):
|
13
12
|
def __init__(self):
|
14
13
|
msg = (
|
@@ -17,6 +16,7 @@ class PtolemyCannotBeCheckedError(Exception):
|
|
17
16
|
"class is not supported.")
|
18
17
|
Exception.__init__(self, msg)
|
19
18
|
|
19
|
+
|
20
20
|
class LogToCloseToBranchCutError(Exception):
|
21
21
|
"""
|
22
22
|
An exception raised when taking log(-x) for some real number x
|
@@ -25,6 +25,7 @@ class LogToCloseToBranchCutError(Exception):
|
|
25
25
|
"""
|
26
26
|
pass
|
27
27
|
|
28
|
+
|
28
29
|
class RelationViolationError(Exception):
|
29
30
|
"""
|
30
31
|
An exception raised when some supposed relation doesn't hold exactly
|
@@ -35,7 +36,7 @@ class RelationViolationError(Exception):
|
|
35
36
|
self.value = value
|
36
37
|
self.epsilon = epsilon
|
37
38
|
self.comment = comment
|
38
|
-
|
39
|
+
|
39
40
|
def __str__(self):
|
40
41
|
r = self.comment + " is violated, "
|
41
42
|
r += "difference is %s" % self.value
|
@@ -43,6 +44,7 @@ class RelationViolationError(Exception):
|
|
43
44
|
return r + " (exact values)"
|
44
45
|
return r + " (epsilon = %s)" % self.epsilon
|
45
46
|
|
47
|
+
|
46
48
|
class NotPU21Representation:
|
47
49
|
"""
|
48
50
|
Returned by is_pu_2_1_representation if cross ratios do not fulfill
|
@@ -53,26 +55,32 @@ class NotPU21Representation:
|
|
53
55
|
|
54
56
|
def __init__(self, reason):
|
55
57
|
self.reason = reason
|
58
|
+
|
56
59
|
def __repr__(self):
|
57
60
|
return "NotPU21Representation(reason = %r)" % self.reason
|
58
61
|
|
59
62
|
def __bool__(self):
|
60
63
|
return False
|
61
|
-
|
64
|
+
|
62
65
|
__nonzero__ = __bool__ # backwards compatibility python 2x
|
63
66
|
|
67
|
+
|
64
68
|
class NumericalMethodError(Exception):
|
65
69
|
def __init__(self, method):
|
66
70
|
self.method = method
|
71
|
+
|
67
72
|
def __str__(self):
|
68
73
|
return "Method %s only supported for numerical values" % self.method
|
69
74
|
|
75
|
+
|
70
76
|
class ExactMethodError(Exception):
|
71
77
|
def __init__(self, method):
|
72
78
|
self.method = method
|
79
|
+
|
73
80
|
def __str__(self):
|
74
81
|
return "Method %s only supported for exact values" % self.method
|
75
82
|
|
83
|
+
|
76
84
|
def _check_relation(value, epsilon, comment):
|
77
85
|
if epsilon is None:
|
78
86
|
if not value == 0:
|
@@ -80,7 +88,8 @@ def _check_relation(value, epsilon, comment):
|
|
80
88
|
else:
|
81
89
|
if not abs(value) < epsilon:
|
82
90
|
raise RelationViolationError(value, epsilon, comment)
|
83
|
-
|
91
|
+
|
92
|
+
|
84
93
|
class PtolemyCoordinates(dict):
|
85
94
|
"""
|
86
95
|
Represents a solution of a Ptolemy variety as python dictionary.
|
@@ -126,7 +135,7 @@ class PtolemyCoordinates(dict):
|
|
126
135
|
|
127
136
|
>>> old_precision = pari.set_real_precision(100) # with high precision
|
128
137
|
>>> numerical_solutions = solution.numerical()
|
129
|
-
|
138
|
+
|
130
139
|
Check that it is a solution, numerically:
|
131
140
|
|
132
141
|
>>> numerical_solutions[0].check_against_manifold(M, 1e-80)
|
@@ -152,7 +161,7 @@ class PtolemyCoordinates(dict):
|
|
152
161
|
True
|
153
162
|
|
154
163
|
Compute flattenings:
|
155
|
-
|
164
|
+
|
156
165
|
>>> flattenings = solution.flattenings_numerical()
|
157
166
|
|
158
167
|
Compute complex volumes:
|
@@ -168,14 +177,14 @@ class PtolemyCoordinates(dict):
|
|
168
177
|
>>> normalized = chernSimons * 6 / (pari('Pi')**2)
|
169
178
|
|
170
179
|
Check that Chern Simons is zero up to 6 torsion:
|
171
|
-
|
180
|
+
|
172
181
|
>>> normalized - normalized.round() < 1e-9
|
173
182
|
True
|
174
183
|
"""
|
175
|
-
|
176
|
-
def __init__(self, d, is_numerical
|
177
|
-
manifold_thunk
|
178
|
-
non_trivial_generalized_obstruction_class
|
184
|
+
|
185
|
+
def __init__(self, d, is_numerical=True, py_eval_section=None,
|
186
|
+
manifold_thunk=lambda : None,
|
187
|
+
non_trivial_generalized_obstruction_class=False):
|
179
188
|
|
180
189
|
self._manifold_thunk = manifold_thunk
|
181
190
|
|
@@ -186,7 +195,7 @@ class PtolemyCoordinates(dict):
|
|
186
195
|
non_trivial_generalized_obstruction_class)
|
187
196
|
processed_dict = d
|
188
197
|
|
189
|
-
if
|
198
|
+
if py_eval_section is not None:
|
190
199
|
# process the extra information that is given by
|
191
200
|
# ptolemyVariety's py_eval_section
|
192
201
|
|
@@ -198,13 +207,13 @@ class PtolemyCoordinates(dict):
|
|
198
207
|
# Caches the matrices that label the short and long edges
|
199
208
|
# of the truncated simplices building the manifold
|
200
209
|
self._edge_cache = {}
|
201
|
-
|
210
|
+
|
202
211
|
# Caches the images of a fundamental group generator
|
203
212
|
self._matrix_cache = []
|
204
213
|
self._inverse_matrix_cache = []
|
205
214
|
|
206
|
-
super(
|
207
|
-
|
215
|
+
super().__init__(processed_dict)
|
216
|
+
|
208
217
|
def __repr__(self):
|
209
218
|
dict_repr = dict.__repr__(self)
|
210
219
|
return "PtolemyCoordinates(%s, is_numerical = %r, ...)" % (
|
@@ -246,17 +255,17 @@ class PtolemyCoordinates(dict):
|
|
246
255
|
def has_obstruction(self):
|
247
256
|
"""
|
248
257
|
Whether the Ptolemy variety has legacy obstruction class that
|
249
|
-
modifies the Ptolemy relation to
|
258
|
+
modifies the Ptolemy relation to
|
250
259
|
"""
|
251
260
|
N, has_obstruction = _N_and_has_obstruction_for_ptolemys(self)
|
252
|
-
return has_obstruction
|
261
|
+
return has_obstruction
|
253
262
|
|
254
263
|
def number_field(self):
|
255
264
|
"""
|
256
265
|
For an exact solution, return the number_field spanned by the
|
257
266
|
Ptolemy coordinates. If number_field is Q, return None.
|
258
267
|
"""
|
259
|
-
|
268
|
+
|
260
269
|
if self._is_numerical:
|
261
270
|
raise ExactMethodError("number_field")
|
262
271
|
|
@@ -273,7 +282,7 @@ class PtolemyCoordinates(dict):
|
|
273
282
|
>>> solution = solutions[2]
|
274
283
|
|
275
284
|
Turn into a numerical solution:
|
276
|
-
|
285
|
+
|
277
286
|
>>> old_precision = pari.set_real_precision(100) # with high precision
|
278
287
|
>>> numerical_solutions = solution.numerical()
|
279
288
|
>>> pari.set_real_precision(old_precision) # reset pari engine
|
@@ -284,38 +293,36 @@ class PtolemyCoordinates(dict):
|
|
284
293
|
>>> numerical_solution = numerical_solutions[0]
|
285
294
|
>>> value = numerical_solution['c_1110_0']
|
286
295
|
"""
|
287
|
-
|
296
|
+
|
288
297
|
if self._is_numerical:
|
289
298
|
return self
|
290
299
|
return ZeroDimensionalComponent(
|
291
300
|
[ PtolemyCoordinates(
|
292
|
-
d, is_numerical
|
293
|
-
manifold_thunk
|
294
|
-
non_trivial_generalized_obstruction_class
|
301
|
+
d, is_numerical=True,
|
302
|
+
manifold_thunk=self._manifold_thunk,
|
303
|
+
non_trivial_generalized_obstruction_class=(
|
295
304
|
self._non_trivial_generalized_obstruction_class))
|
296
305
|
for d in _to_numerical(self) ])
|
297
306
|
|
298
307
|
def to_PUR(self):
|
299
|
-
|
300
308
|
"""
|
301
309
|
If any Ptolemy coordinates are given as Rational Univariate
|
302
310
|
Representation, convert them to Polynomial Univariate Representation and
|
303
311
|
return the result.
|
304
|
-
|
312
|
+
|
305
313
|
See to_PUR of RUR.
|
306
314
|
|
307
315
|
This conversion might lead to very large coefficients.
|
308
316
|
"""
|
309
|
-
|
317
|
+
|
310
318
|
return PtolemyCoordinates(
|
311
319
|
_apply_to_RURs(self, RUR.to_PUR),
|
312
|
-
is_numerical
|
313
|
-
manifold_thunk
|
314
|
-
non_trivial_generalized_obstruction_class
|
320
|
+
is_numerical=self._is_numerical,
|
321
|
+
manifold_thunk=self._manifold_thunk,
|
322
|
+
non_trivial_generalized_obstruction_class=(
|
315
323
|
self._non_trivial_generalized_obstruction_class))
|
316
324
|
|
317
325
|
def multiply_terms_in_RUR(self):
|
318
|
-
|
319
326
|
"""
|
320
327
|
If a Ptolemy coordinate is given as Rational Univariate Representation
|
321
328
|
with numerator and denominator being a product, multiply the terms and
|
@@ -329,13 +336,12 @@ class PtolemyCoordinates(dict):
|
|
329
336
|
|
330
337
|
return PtolemyCoordinates(
|
331
338
|
_apply_to_RURs(self, RUR.multiply_terms),
|
332
|
-
is_numerical
|
333
|
-
manifold_thunk
|
334
|
-
non_trivial_generalized_obstruction_class
|
339
|
+
is_numerical=self._is_numerical,
|
340
|
+
manifold_thunk=self._manifold_thunk,
|
341
|
+
non_trivial_generalized_obstruction_class=(
|
335
342
|
self._non_trivial_generalized_obstruction_class))
|
336
343
|
|
337
344
|
def multiply_and_simplify_terms_in_RUR(self):
|
338
|
-
|
339
345
|
"""
|
340
346
|
If a Ptolemy coordinate is given as Rational Univariate Representation
|
341
347
|
with numerator and denominator being a product, multiply the terms,
|
@@ -347,31 +353,31 @@ class PtolemyCoordinates(dict):
|
|
347
353
|
factorised.
|
348
354
|
|
349
355
|
"""
|
350
|
-
|
356
|
+
|
351
357
|
return PtolemyCoordinates(
|
352
358
|
_apply_to_RURs(self, RUR.multiply_and_simplify_terms),
|
353
|
-
is_numerical
|
354
|
-
manifold_thunk
|
355
|
-
non_trivial_generalized_obstruction_class
|
356
|
-
self._non_trivial_generalized_obstruction_class))
|
359
|
+
is_numerical=self._is_numerical,
|
360
|
+
manifold_thunk=self._manifold_thunk,
|
361
|
+
non_trivial_generalized_obstruction_class=(
|
362
|
+
self._non_trivial_generalized_obstruction_class))
|
357
363
|
|
358
364
|
def cross_ratios(self):
|
359
365
|
"""
|
360
366
|
Compute cross ratios from Ptolemy coordinates. The cross ratios are
|
361
367
|
according to the SnapPy convention, so we have::
|
362
|
-
|
368
|
+
|
363
369
|
z = 1 - 1/zp, zp = 1 - 1/zpp, zpp = 1 - 1/z
|
364
|
-
|
370
|
+
|
365
371
|
where::
|
366
|
-
|
372
|
+
|
367
373
|
z is at the edge 01 and equal to s0 * s1 * (c_1010 * c_0101) / (c_1001 * c_0110)
|
368
374
|
zp is at the edge 02 and equal to - s0 * s2 * (c_1001 * c_0110) / (c_1100 * c_0011)
|
369
375
|
zpp is at the edge 03 and equal to s0 * s3 * (c_1100 * c_0011) / (c_0101 * c_1010).
|
370
376
|
|
371
|
-
Note that this is different from the convention used in
|
377
|
+
Note that this is different from the convention used in
|
372
378
|
Garoufalidis, Goerner, Zickert:
|
373
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
374
|
-
|
379
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
380
|
+
https://arxiv.org/abs/1207.6711
|
375
381
|
|
376
382
|
Take an exact solution:
|
377
383
|
|
@@ -382,14 +388,14 @@ class PtolemyCoordinates(dict):
|
|
382
388
|
Turn into cross Ratios:
|
383
389
|
|
384
390
|
>>> crossRatios = solution.cross_ratios()
|
385
|
-
|
391
|
+
|
386
392
|
Get a cross ratio:
|
387
|
-
|
393
|
+
|
388
394
|
>>> crossRatios['zp_0010_0']
|
389
395
|
Mod(-x, x^2 + x + 1)
|
390
396
|
|
391
397
|
Check the relationship between cross ratios:
|
392
|
-
|
398
|
+
|
393
399
|
>>> crossRatios['z_0010_0'] == 1 - 1 / crossRatios['zp_0010_0']
|
394
400
|
True
|
395
401
|
|
@@ -402,15 +408,15 @@ class PtolemyCoordinates(dict):
|
|
402
408
|
Get information about what one can do with cross ratios
|
403
409
|
"""
|
404
410
|
return CrossRatios(_ptolemy_to_cross_ratio(self)[0],
|
405
|
-
is_numerical
|
406
|
-
manifold_thunk
|
411
|
+
is_numerical=self._is_numerical,
|
412
|
+
manifold_thunk=self._manifold_thunk)
|
407
413
|
|
408
414
|
def cross_ratios_numerical(self):
|
409
415
|
"""
|
410
416
|
Turn exact solutions into numerical and then compute cross ratios.
|
411
417
|
See numerical() and cross_ratios().
|
412
418
|
"""
|
413
|
-
|
419
|
+
|
414
420
|
if self._is_numerical:
|
415
421
|
return self.cross_ratios()
|
416
422
|
else:
|
@@ -419,7 +425,7 @@ class PtolemyCoordinates(dict):
|
|
419
425
|
|
420
426
|
def flattenings_numerical(self):
|
421
427
|
"""
|
422
|
-
Turn into numerical solutions and compute flattenings, see
|
428
|
+
Turn into numerical solutions and compute flattenings, see
|
423
429
|
help(snappy.ptolemy.coordinates.Flattenings)
|
424
430
|
Also see numerical()
|
425
431
|
|
@@ -429,7 +435,7 @@ class PtolemyCoordinates(dict):
|
|
429
435
|
>>> solutions = solutions_from_magma(_magma_output_for_4_1__sl3)
|
430
436
|
>>> solution = solutions[2]
|
431
437
|
|
432
|
-
Compute a numerical
|
438
|
+
Compute a numerical solution
|
433
439
|
|
434
440
|
>>> flattenings = solution.flattenings_numerical()
|
435
441
|
|
@@ -445,17 +451,17 @@ class PtolemyCoordinates(dict):
|
|
445
451
|
for i in range(1000):
|
446
452
|
try:
|
447
453
|
# get the dictionary containing flattenings
|
448
|
-
# and the evenN that describes in what
|
454
|
+
# and the evenN that describes in what
|
449
455
|
# flavor of the Extended Bloch group the result lives in
|
450
456
|
d, evenN = _ptolemy_to_cross_ratio(
|
451
457
|
self,
|
452
458
|
branch_factor,
|
453
459
|
self._non_trivial_generalized_obstruction_class,
|
454
|
-
as_flattenings
|
460
|
+
as_flattenings=True)
|
455
461
|
|
456
462
|
return Flattenings(d,
|
457
|
-
manifold_thunk
|
458
|
-
evenN
|
463
|
+
manifold_thunk=self._manifold_thunk,
|
464
|
+
evenN=evenN)
|
459
465
|
except LogToCloseToBranchCutError:
|
460
466
|
# Values to close to the branch cut, just multiply
|
461
467
|
# by a small offset
|
@@ -466,7 +472,7 @@ class PtolemyCoordinates(dict):
|
|
466
472
|
return ZeroDimensionalComponent(
|
467
473
|
[num.flattenings_numerical() for num in self.numerical()])
|
468
474
|
|
469
|
-
def volume_numerical(self, drop_negative_vols
|
475
|
+
def volume_numerical(self, drop_negative_vols=False):
|
470
476
|
"""
|
471
477
|
Turn into (Galois conjugate) numerical solutions and compute volumes.
|
472
478
|
If already numerical, only return the one volume.
|
@@ -485,8 +491,8 @@ class PtolemyCoordinates(dict):
|
|
485
491
|
return vols
|
486
492
|
|
487
493
|
def complex_volume_numerical(self,
|
488
|
-
drop_negative_vols
|
489
|
-
with_modulo
|
494
|
+
drop_negative_vols=False,
|
495
|
+
with_modulo=False):
|
490
496
|
"""
|
491
497
|
Turn into (Galois conjugate) numerical solutions and compute complex
|
492
498
|
volumes. If already numerical, return the volume.
|
@@ -496,14 +502,14 @@ class PtolemyCoordinates(dict):
|
|
496
502
|
See numerical(). If drop_negative_vols = True is given as optional
|
497
503
|
argument, only return complex volumes with non-negative real part.
|
498
504
|
"""
|
499
|
-
|
505
|
+
|
500
506
|
if self._is_numerical:
|
501
507
|
return self.flattenings_numerical().complex_volume(
|
502
|
-
with_modulo
|
508
|
+
with_modulo=with_modulo)
|
503
509
|
else:
|
504
510
|
cvols = ZeroDimensionalComponent(
|
505
511
|
[ num.flattenings_numerical().complex_volume(
|
506
|
-
with_modulo
|
512
|
+
with_modulo=with_modulo)
|
507
513
|
for num in self.numerical()])
|
508
514
|
if drop_negative_vols:
|
509
515
|
return [cvol for cvol in cvols if cvol.real() > -1e-12]
|
@@ -556,10 +562,10 @@ class PtolemyCoordinates(dict):
|
|
556
562
|
|
557
563
|
See Definition 10.1:
|
558
564
|
Garoufalidis, Goerner, Zickert:
|
559
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
560
|
-
|
565
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
566
|
+
https://arxiv.org/abs/1207.6711
|
561
567
|
"""
|
562
|
-
|
568
|
+
|
563
569
|
# Integral points that are indices of Ptolemy coordinates
|
564
570
|
pt_v0_v0 = [ a + 2 * _kronecker_delta(v0, i)
|
565
571
|
for i, a in enumerate(pt) ]
|
@@ -580,14 +586,14 @@ class PtolemyCoordinates(dict):
|
|
580
586
|
# See Definition 9.23 of
|
581
587
|
# Garoufalidis, Thurston, Zickert
|
582
588
|
# The Complex Volume of SL(n,C)-Representations of 3-Manifolds
|
583
|
-
#
|
584
|
-
face =
|
589
|
+
# httpss://arxiv.org/abs/1111.2828
|
590
|
+
face = next(iter(set(range(4)) - {v0, v1, v2}))
|
585
591
|
obstruction = self._get_obstruction_variable(face, tet)
|
586
592
|
|
587
593
|
# The epsilon permutation sign from Definition 10.1 of
|
588
594
|
# Garoufalidis, Goerner, Zickert:
|
589
|
-
# Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
590
|
-
#
|
595
|
+
# Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
596
|
+
# https://arxiv.org/abs/1207.6711
|
591
597
|
s = PtolemyCoordinates._three_perm_sign(v0, v1, v2)
|
592
598
|
|
593
599
|
# The equation from the same Definition
|
@@ -595,7 +601,6 @@ class PtolemyCoordinates(dict):
|
|
595
601
|
(c_pt_v0_v0 * c_pt_v1_v2) /
|
596
602
|
(c_pt_v0_v1 * c_pt_v0_v2))
|
597
603
|
|
598
|
-
|
599
604
|
def ratio_coordinate(self, tet, v0, v1, pt):
|
600
605
|
"""
|
601
606
|
Returns the ratio coordinate for tetrahedron with index tet
|
@@ -604,8 +609,8 @@ class PtolemyCoordinates(dict):
|
|
604
609
|
|
605
610
|
See Definition 10.2:
|
606
611
|
Garoufalidis, Goerner, Zickert:
|
607
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
608
|
-
|
612
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
613
|
+
https://arxiv.org/abs/1207.6711
|
609
614
|
|
610
615
|
Note that this definition turned out to have the wrong sign. Multiply
|
611
616
|
the result by -1 if v1 < v0 and N is even.
|
@@ -632,7 +637,7 @@ class PtolemyCoordinates(dict):
|
|
632
637
|
|
633
638
|
# Get N
|
634
639
|
N = self.N()
|
635
|
-
|
640
|
+
|
636
641
|
return [[_kronecker_delta(i, j) for i in range(N)] for j in range(N)]
|
637
642
|
|
638
643
|
def long_edge(self, tet, v0, v1, v2):
|
@@ -644,8 +649,8 @@ class PtolemyCoordinates(dict):
|
|
644
649
|
This matrix was labeled alpha^{v0v1v2} (v2 does not matter for non
|
645
650
|
double-truncated simplex) in Figure 18 of
|
646
651
|
Garoufalidis, Goerner, Zickert:
|
647
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
648
|
-
|
652
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
653
|
+
https://arxiv.org/abs/1207.6711
|
649
654
|
|
650
655
|
It is computed using equation 10.4. Note that the ratio coordinate
|
651
656
|
is different from the definition in the paper (see ratio_coordinate).
|
@@ -657,7 +662,7 @@ class PtolemyCoordinates(dict):
|
|
657
662
|
key = 'long_%d_%d%d' % (tet, v0, v1)
|
658
663
|
|
659
664
|
# Fill cache if necessary
|
660
|
-
if not
|
665
|
+
if key not in self._edge_cache:
|
661
666
|
|
662
667
|
# Get N
|
663
668
|
N = self.N()
|
@@ -688,8 +693,8 @@ class PtolemyCoordinates(dict):
|
|
688
693
|
|
689
694
|
This matrix was labeled beta^{v0v1v2} in Figure 18 of
|
690
695
|
Garoufalidis, Goerner, Zickert:
|
691
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
692
|
-
|
696
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
697
|
+
https://arxiv.org/abs/1207.6711
|
693
698
|
|
694
699
|
It is computed using equation 10.4.
|
695
700
|
|
@@ -700,21 +705,21 @@ class PtolemyCoordinates(dict):
|
|
700
705
|
key = 'middle_%d_%d%d%d' % (tet, v0, v1, v2)
|
701
706
|
|
702
707
|
# Fill cache if necessary
|
703
|
-
if not
|
708
|
+
if key not in self._edge_cache:
|
704
709
|
|
705
710
|
# Get N
|
706
711
|
N = self.N()
|
707
712
|
|
708
713
|
# Start with identity
|
709
714
|
m = self._get_identity_matrix()
|
710
|
-
|
715
|
+
|
711
716
|
# Compute the product in equation 10.4
|
712
717
|
for a0, a1, a2 in utilities.triples_with_fixed_sum_iterator(N - 2):
|
713
|
-
|
718
|
+
|
714
719
|
# Get integral point for diamond coordinate
|
715
720
|
pt = [ a1 * _kronecker_delta(v0, i) +
|
716
721
|
a2 * _kronecker_delta(v1, i) +
|
717
|
-
a0 * _kronecker_delta(v2, i)
|
722
|
+
a0 * _kronecker_delta(v2, i) for i in range(4) ]
|
718
723
|
|
719
724
|
# Compute diamond coordinate
|
720
725
|
diamond = self.diamond_coordinate(tet, v0, v1, v2, pt)
|
@@ -734,18 +739,18 @@ class PtolemyCoordinates(dict):
|
|
734
739
|
can be though of as doubly truncated simplices where all short edges
|
735
740
|
are collapsed, hence labeled by the identity.
|
736
741
|
|
737
|
-
See equation 10.4 in
|
742
|
+
See equation 10.4 in
|
738
743
|
Garoufalidis, Goerner, Zickert:
|
739
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
740
|
-
|
744
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
745
|
+
https://arxiv.org/abs/1207.6711
|
741
746
|
"""
|
742
747
|
|
743
748
|
# Key for the cache
|
744
749
|
key = 'short'
|
745
750
|
|
746
751
|
# Fill cache if necessary
|
747
|
-
if not
|
748
|
-
|
752
|
+
if key not in self._edge_cache:
|
753
|
+
|
749
754
|
# Get N
|
750
755
|
N = self.N()
|
751
756
|
|
@@ -762,7 +767,7 @@ class PtolemyCoordinates(dict):
|
|
762
767
|
# fundamental group generators and their inverses
|
763
768
|
|
764
769
|
if self._matrix_cache and self._inverse_matrix_cache:
|
765
|
-
return
|
770
|
+
return
|
766
771
|
|
767
772
|
# Compute all the matrices for the generators and there inverses
|
768
773
|
# The short edges of the doubly truncated simplices are all identities
|
@@ -770,9 +775,9 @@ class PtolemyCoordinates(dict):
|
|
770
775
|
# no penalty.
|
771
776
|
self._matrix_cache, self._inverse_matrix_cache = (
|
772
777
|
findLoops.images_of_original_generators(self,
|
773
|
-
penalties
|
778
|
+
penalties=(0, 1, 1)))
|
774
779
|
|
775
|
-
def evaluate_word(self, word, G
|
780
|
+
def evaluate_word(self, word, G=None):
|
776
781
|
"""
|
777
782
|
Given a word in the generators of the fundamental group,
|
778
783
|
compute the corresponding matrix. By default, these are the
|
@@ -797,7 +802,7 @@ class PtolemyCoordinates(dict):
|
|
797
802
|
G)
|
798
803
|
|
799
804
|
def _testing_assert_identity(self, m,
|
800
|
-
allow_sign_if_obstruction_class
|
805
|
+
allow_sign_if_obstruction_class=False):
|
801
806
|
|
802
807
|
N = self.N()
|
803
808
|
|
@@ -836,17 +841,17 @@ class PtolemyCoordinates(dict):
|
|
836
841
|
m2 = self.long_edge(tet,v[1],v[0],v[2])
|
837
842
|
self._testing_assert_identity(
|
838
843
|
matrix.matrix_mult(m1, m2))
|
839
|
-
|
844
|
+
|
840
845
|
# Check triangle for each vertex
|
841
846
|
for v in [(0,1,2,3), (1,2,3,0), (2,3,0,1), (3,0,1,2)]:
|
842
847
|
m1 = self.middle_edge(tet, v[0], v[1], v[2])
|
843
848
|
m2 = self.middle_edge(tet, v[0], v[2], v[3])
|
844
849
|
m3 = self.middle_edge(tet, v[0], v[3], v[1])
|
845
|
-
|
850
|
+
|
846
851
|
self._testing_assert_identity(
|
847
852
|
matrix.matrix_mult(
|
848
853
|
m1, matrix.matrix_mult(m2, m3)))
|
849
|
-
|
854
|
+
|
850
855
|
# Check hexagon for each face
|
851
856
|
for v in [(0,1,2), (0,1,3), (0,2,3), (1,2,3)]:
|
852
857
|
m1 = self.middle_edge(tet,v[0],v[1],v[2])
|
@@ -866,8 +871,7 @@ class PtolemyCoordinates(dict):
|
|
866
871
|
m4,
|
867
872
|
matrix.matrix_mult(m5,m6))))), True)
|
868
873
|
|
869
|
-
|
870
|
-
def check_against_manifold(self, M = None, epsilon = None):
|
874
|
+
def check_against_manifold(self, M=None, epsilon=None):
|
871
875
|
"""
|
872
876
|
Checks that the given solution really is a solution to the Ptolemy
|
873
877
|
variety of a manifold. See help(ptolemy.PtolemyCoordinates) for
|
@@ -930,12 +934,11 @@ class PtolemyCoordinates(dict):
|
|
930
934
|
key = "c_%d%d%d%d" % tuple(total_index) + "_%d" % tet
|
931
935
|
return self[key]
|
932
936
|
|
933
|
-
|
934
937
|
s0 = self._get_obstruction_variable(0, tet)
|
935
938
|
s1 = self._get_obstruction_variable(1, tet)
|
936
939
|
s2 = self._get_obstruction_variable(2, tet)
|
937
940
|
s3 = self._get_obstruction_variable(3, tet)
|
938
|
-
|
941
|
+
|
939
942
|
rel = ( s0 * s1 * get_ptolemy_coordinate((1,1,0,0))
|
940
943
|
* get_ptolemy_coordinate((0,0,1,1))
|
941
944
|
- s0 * s2 * get_ptolemy_coordinate((1,0,1,0))
|
@@ -947,7 +950,7 @@ class PtolemyCoordinates(dict):
|
|
947
950
|
epsilon,
|
948
951
|
"Ptolemy relation")
|
949
952
|
|
950
|
-
def is_geometric(self, epsilon
|
953
|
+
def is_geometric(self, epsilon=1e-6):
|
951
954
|
"""
|
952
955
|
Returns true if all shapes corresponding to this solution have positive
|
953
956
|
imaginary part.
|
@@ -974,19 +977,19 @@ class Flattenings(dict):
|
|
974
977
|
|
975
978
|
We assign to each pair of parallel edges of each simplex a triple (w, z, p)
|
976
979
|
such that::
|
977
|
-
|
980
|
+
|
978
981
|
w = log(z) + p * (2 * pi * i / N) where N is fixed and even.
|
979
|
-
|
982
|
+
|
980
983
|
For N = 2, the three triples belonging to a simplex form a combinatorial
|
981
984
|
flattening (w0, w1, w2) as defined in Definition 3.1 in
|
982
985
|
Walter D. Neumann, Extended Bloch group and the Cheeger-Chern-Simons class
|
983
|
-
|
986
|
+
https://arxiv.org/abs/math.GT/0307092
|
984
987
|
|
985
988
|
For N > 2, the three triples form a generalized combinatorial flattening
|
986
989
|
(w0, w1, w2) that gives an element in the generalized Extended Bloch group
|
987
990
|
which is the Extended Bloch group corresponding to the Riemann surface
|
988
991
|
given by::
|
989
|
-
|
992
|
+
|
990
993
|
u1 * e^w0 + u2 * e^w1 = 1
|
991
994
|
|
992
995
|
where u1^N = u2^N = 1.
|
@@ -999,14 +1002,14 @@ class Flattenings(dict):
|
|
999
1002
|
This work has not been published yet.
|
1000
1003
|
|
1001
1004
|
If f is a flattening, then in the notation of Neumann, the value of::
|
1002
|
-
|
1005
|
+
|
1003
1006
|
f['z_xxxx_y'] is (w0, z, p)
|
1004
1007
|
f['zp_xxxx_y'] is (w1, z', q)
|
1005
1008
|
f['zpp_xxxx_y'] is (w2, z'', r).
|
1006
1009
|
"""
|
1007
|
-
|
1008
|
-
def __init__(self, d, manifold_thunk
|
1009
|
-
super(
|
1010
|
+
|
1011
|
+
def __init__(self, d, manifold_thunk=lambda : None, evenN=2):
|
1012
|
+
super().__init__(d)
|
1010
1013
|
self._is_numerical = True
|
1011
1014
|
self._manifold_thunk = manifold_thunk
|
1012
1015
|
self.dimension = 0
|
@@ -1050,7 +1053,6 @@ class Flattenings(dict):
|
|
1050
1053
|
|
1051
1054
|
@classmethod
|
1052
1055
|
def from_tetrahedra_shapes_of_manifold(cls, M):
|
1053
|
-
|
1054
1056
|
"""
|
1055
1057
|
Takes as argument a manifold and produces (weak) flattenings using
|
1056
1058
|
the tetrahedra_shapes of the manifold M.
|
@@ -1067,7 +1069,7 @@ class Flattenings(dict):
|
|
1067
1069
|
num_tets = M.num_tetrahedra()
|
1068
1070
|
|
1069
1071
|
z_cross_ratios = M.tetrahedra_shapes(
|
1070
|
-
part='rect', dec_prec
|
1072
|
+
part='rect', dec_prec=pari.get_real_precision())
|
1071
1073
|
|
1072
1074
|
all_cross_ratios = sum(
|
1073
1075
|
[ [z, 1 / (1-z), 1 - 1/z] for z in z_cross_ratios], [])
|
@@ -1075,9 +1077,9 @@ class Flattenings(dict):
|
|
1075
1077
|
log_all_cross_ratios = [ z.log() for z in all_cross_ratios ]
|
1076
1078
|
|
1077
1079
|
def flattening_condition(r):
|
1078
|
-
return (
|
1079
|
-
|
1080
|
-
|
1080
|
+
return (3 * r * [0]
|
1081
|
+
+ 3 * [1]
|
1082
|
+
+ 3 * (num_tets - r - 1) * [0])
|
1081
1083
|
|
1082
1084
|
flattening_conditions = [
|
1083
1085
|
flattening_condition(r) for r in range(num_tets)]
|
@@ -1095,11 +1097,11 @@ class Flattenings(dict):
|
|
1095
1097
|
extra_cols = len(all_equations[0]) - len(all_equations)
|
1096
1098
|
|
1097
1099
|
d = [d_mat[r][r + extra_cols] for r in range(len(d_mat))]
|
1098
|
-
|
1100
|
+
|
1099
1101
|
# errors to the gluing equations and flattening condition
|
1100
1102
|
# when using the logarithms without adding p * pi * i as complex
|
1101
1103
|
# numbers
|
1102
|
-
errors = matrix.matrix_mult_vector(all_equations,
|
1104
|
+
errors = matrix.matrix_mult_vector(all_equations,
|
1103
1105
|
log_all_cross_ratios)
|
1104
1106
|
|
1105
1107
|
# divide by pi * i and turn into integers
|
@@ -1121,7 +1123,7 @@ class Flattenings(dict):
|
|
1121
1123
|
|
1122
1124
|
flattenings = matrix.matrix_mult_vector(v, flattenings_in_other_basis)
|
1123
1125
|
|
1124
|
-
assert (matrix.matrix_mult_vector(all_equations, flattenings) ==
|
1126
|
+
assert (matrix.matrix_mult_vector(all_equations, flattenings) ==
|
1125
1127
|
[-x for x in int_errors])
|
1126
1128
|
|
1127
1129
|
keys = sum([ ['z_0000_%d' % i,
|
@@ -1129,12 +1131,12 @@ class Flattenings(dict):
|
|
1129
1131
|
'zpp_0000_%d' % i] for i in range(num_tets)],[])
|
1130
1132
|
|
1131
1133
|
Mcopy = M.copy()
|
1132
|
-
|
1134
|
+
|
1133
1135
|
return Flattenings(
|
1134
|
-
|
1136
|
+
{k: (log + PiI * p, z, p)
|
1135
1137
|
for k, log, z, p in zip(keys, log_all_cross_ratios,
|
1136
|
-
all_cross_ratios, flattenings)
|
1137
|
-
manifold_thunk
|
1138
|
+
all_cross_ratios, flattenings)},
|
1139
|
+
manifold_thunk=lambda : Mcopy)
|
1138
1140
|
|
1139
1141
|
def get_order(self):
|
1140
1142
|
"""
|
@@ -1146,24 +1148,23 @@ class Flattenings(dict):
|
|
1146
1148
|
return self._evenN
|
1147
1149
|
|
1148
1150
|
def get_zpq_triple(self, key_z):
|
1149
|
-
|
1150
1151
|
"""
|
1151
1152
|
Gives a flattening as triple [z;p,q] representing an element
|
1152
1153
|
in the generalized Extended Bloch group similar to the way the
|
1153
|
-
triple [z;p,q] is used in Lemma 3.2 in
|
1154
|
+
triple [z;p,q] is used in Lemma 3.2 in
|
1154
1155
|
Walter D. Neumann, Extended Bloch group and the Cheeger-Chern-Simons class
|
1155
|
-
|
1156
|
+
https://arxiv.org/abs/math.GT/0307092
|
1156
1157
|
"""
|
1157
1158
|
if not key_z[:2] == 'z_':
|
1158
1159
|
raise Exception("Need to be called with cross ratio variable z_....")
|
1159
1160
|
key_zp = 'zp_' + key_z[2:]
|
1160
|
-
|
1161
|
-
w,
|
1161
|
+
|
1162
|
+
w, z, p = self[key_z]
|
1162
1163
|
wp, zp, q_canonical_branch_cut = self[key_zp]
|
1163
1164
|
|
1164
1165
|
# Note that the q in l(z;p,q) and in Definition 3.1 are different if
|
1165
1166
|
# z is on the real axis and > 1!!!
|
1166
|
-
# Thus we need to compute the q again here according to the formula
|
1167
|
+
# Thus we need to compute the q again here according to the formula
|
1167
1168
|
# for l(z;p,q)
|
1168
1169
|
|
1169
1170
|
pari_z = _convert_to_pari_float(z)
|
@@ -1174,7 +1175,7 @@ class Flattenings(dict):
|
|
1174
1175
|
|
1175
1176
|
return (z, p, q_dilog_branch_cut)
|
1176
1177
|
|
1177
|
-
def complex_volume(self, with_modulo
|
1178
|
+
def complex_volume(self, with_modulo=False):
|
1178
1179
|
"""
|
1179
1180
|
Compute complex volume. The complex volume is defined only up to
|
1180
1181
|
some multiple of m where m = i * pi**2/6 for PSL(2,C) and SL(N,C)
|
@@ -1197,8 +1198,8 @@ class Flattenings(dict):
|
|
1197
1198
|
if key[:2] == 'z_' ])
|
1198
1199
|
|
1199
1200
|
cvol = sum_L_functions / pari('I')
|
1200
|
-
vol
|
1201
|
-
cs
|
1201
|
+
vol = cvol.real()
|
1202
|
+
cs = cvol.imag() % m
|
1202
1203
|
|
1203
1204
|
if cs > m/2 + pari('1e-12'):
|
1204
1205
|
cs = cs - m
|
@@ -1206,17 +1207,17 @@ class Flattenings(dict):
|
|
1206
1207
|
cvol = vol + cs * pari('I')
|
1207
1208
|
|
1208
1209
|
if with_modulo:
|
1209
|
-
if
|
1210
|
+
if self._evenN not in [2, 6]:
|
1210
1211
|
raise Exception("Unknown torsion")
|
1211
1212
|
|
1212
1213
|
return cvol, m * pari('I')
|
1213
1214
|
return cvol
|
1214
1215
|
|
1215
|
-
def check_against_manifold(self, M
|
1216
|
+
def check_against_manifold(self, M=None, epsilon=1e-10):
|
1216
1217
|
"""
|
1217
1218
|
Checks that the flattening really is a solution to the logarithmic
|
1218
|
-
PGL(N,C) gluing equations of a manifold. Usage similar to
|
1219
|
-
check_against_manifold of Ptolemy Coordinates, see
|
1219
|
+
PGL(N,C) gluing equations of a manifold. Usage similar to
|
1220
|
+
check_against_manifold of Ptolemy Coordinates, see
|
1220
1221
|
help(ptolemy.Coordinates) for similar examples.
|
1221
1222
|
|
1222
1223
|
=== Arguments ===
|
@@ -1237,28 +1238,28 @@ class Flattenings(dict):
|
|
1237
1238
|
_check_relation(
|
1238
1239
|
w - (z.log() + f * p),
|
1239
1240
|
epsilon,
|
1240
|
-
"Flattening relation w
|
1241
|
+
"Flattening relation w == log(z) + PiI * p")
|
1241
1242
|
|
1242
1243
|
for k in list(self.keys()):
|
1243
1244
|
if k[:2] == 'z_':
|
1244
|
-
w,
|
1245
|
-
wp,
|
1245
|
+
w, z, p = self[k]
|
1246
|
+
wp, zp, q = self['zp_'+k[2:]]
|
1246
1247
|
wpp, zpp, r = self['zpp_'+k[2:]]
|
1247
1248
|
_check_relation(
|
1248
1249
|
w + wp + wpp,
|
1249
1250
|
epsilon,
|
1250
|
-
"Flattening relation w0 + w1 + w2
|
1251
|
+
"Flattening relation w0 + w1 + w2 == 0")
|
1251
1252
|
|
1252
1253
|
some_z = list(self.keys())[0]
|
1253
1254
|
variable_name, index, tet_index = some_z.split('_')
|
1254
|
-
if not
|
1255
|
+
if variable_name not in ['z', 'zp', 'zpp']:
|
1255
1256
|
raise Exception("Variable not z, zp, or, zpp")
|
1256
|
-
if
|
1257
|
+
if len(index) != 4:
|
1257
1258
|
raise Exception("Not 4 indices")
|
1258
1259
|
N = sum([int(x) for x in index]) + 2
|
1259
1260
|
|
1260
1261
|
matrix_with_explanations = M.gluing_equations_pgl(
|
1261
|
-
N, equation_type
|
1262
|
+
N, equation_type='all')
|
1262
1263
|
|
1263
1264
|
matrix = matrix_with_explanations.matrix
|
1264
1265
|
rows = matrix_with_explanations.explain_rows
|
@@ -1275,35 +1276,36 @@ class Flattenings(dict):
|
|
1275
1276
|
epsilon,
|
1276
1277
|
"Gluing equation %s" % rows[row])
|
1277
1278
|
|
1278
|
-
|
1279
|
+
|
1280
|
+
class CrossRatios(dict):
|
1279
1281
|
"""
|
1280
1282
|
Represents assigned shape parameters/cross ratios as
|
1281
1283
|
dictionary. The cross ratios are according to SnapPy convention, so we
|
1282
1284
|
have::
|
1283
|
-
|
1285
|
+
|
1284
1286
|
z = 1 - 1/zp, zp = 1 - 1/zpp, zpp = 1 - 1/z
|
1285
|
-
|
1287
|
+
|
1286
1288
|
where::
|
1287
|
-
|
1289
|
+
|
1288
1290
|
z is at the edge 01 and equal to s0 * s1 * (c_1010 * c_0101) / (c_1001 * c_0110)
|
1289
1291
|
zp is at the edge 02 and equal to s0 * s2 * (c_1001 * c_0110) / (c_1100 * c_0011)
|
1290
1292
|
zpp is at the edge 03 and equal to s0 * s3 * (c_1100 * c_0011) / (c_0101 * c_1010).
|
1291
1293
|
|
1292
|
-
Note that this is different from the convention used in
|
1294
|
+
Note that this is different from the convention used in
|
1293
1295
|
Garoufalidis, Goerner, Zickert:
|
1294
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1295
|
-
|
1296
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1297
|
+
https://arxiv.org/abs/1207.6711
|
1296
1298
|
"""
|
1297
|
-
|
1298
|
-
def __init__(self, d, is_numerical
|
1299
|
-
super(
|
1299
|
+
|
1300
|
+
def __init__(self, d, is_numerical=True, manifold_thunk=None):
|
1301
|
+
super().__init__(d)
|
1300
1302
|
self._is_numerical = is_numerical
|
1301
1303
|
self._manifold_thunk = manifold_thunk
|
1302
1304
|
|
1303
1305
|
# Caches the matrices that label the short and long edges
|
1304
1306
|
# of the truncated simplices building the manifold
|
1305
1307
|
self._edge_cache = {}
|
1306
|
-
|
1308
|
+
|
1307
1309
|
# Caches the images of a fundamental group generator
|
1308
1310
|
self._matrix_cache = []
|
1309
1311
|
self._inverse_matrix_cache = []
|
@@ -1311,25 +1313,25 @@ class CrossRatios(dict):
|
|
1311
1313
|
self.dimension = 0
|
1312
1314
|
|
1313
1315
|
@staticmethod
|
1314
|
-
def from_snappy_manifold(M, dec_prec
|
1315
|
-
intervals
|
1316
|
+
def from_snappy_manifold(M, dec_prec=None, bits_prec=None,
|
1317
|
+
intervals=False):
|
1316
1318
|
"""
|
1317
1319
|
Constructs an assignment of shape parameters/cross ratios using
|
1318
1320
|
the tetrahehdra_shapes method of a given SnapPy manifold. The optional
|
1319
1321
|
parameters are the same as that of tetrahedra_shapes.
|
1320
1322
|
"""
|
1321
1323
|
|
1322
|
-
shapes = M.tetrahedra_shapes('rect', dec_prec
|
1323
|
-
bits_prec
|
1324
|
-
intervals
|
1324
|
+
shapes = M.tetrahedra_shapes('rect', dec_prec=dec_prec,
|
1325
|
+
bits_prec=bits_prec,
|
1326
|
+
intervals=intervals)
|
1325
1327
|
d = {}
|
1326
1328
|
for i, shape in enumerate(shapes):
|
1327
1329
|
d['z_0000_%d' % i] = shape
|
1328
1330
|
d['zp_0000_%d' % i] = 1 / (1 - shape)
|
1329
1331
|
d['zpp_0000_%d' % i] = 1 - 1 / shape
|
1330
|
-
|
1331
|
-
return CrossRatios(d, is_numerical
|
1332
|
-
manifold_thunk
|
1332
|
+
|
1333
|
+
return CrossRatios(d, is_numerical=True,
|
1334
|
+
manifold_thunk=lambda M=M: M)
|
1333
1335
|
|
1334
1336
|
def __repr__(self):
|
1335
1337
|
dict_repr = dict.__repr__(self)
|
@@ -1374,33 +1376,31 @@ class CrossRatios(dict):
|
|
1374
1376
|
Turn exact solutions into numerical solutions using pari. Similar to
|
1375
1377
|
numerical() of PtolemyCoordinates. See help(ptolemy.PtolemyCoordinates)
|
1376
1378
|
for example.
|
1377
|
-
"""
|
1379
|
+
"""
|
1378
1380
|
if self._is_numerical:
|
1379
1381
|
return self
|
1380
1382
|
return ZeroDimensionalComponent([
|
1381
|
-
CrossRatios(d, is_numerical
|
1382
|
-
manifold_thunk
|
1383
|
+
CrossRatios(d, is_numerical=True,
|
1384
|
+
manifold_thunk=self._manifold_thunk)
|
1383
1385
|
for d in _to_numerical(self) ])
|
1384
1386
|
|
1385
1387
|
def to_PUR(self):
|
1386
|
-
|
1387
1388
|
"""
|
1388
1389
|
If any Ptolemy coordinates are given as Rational Univariate
|
1389
1390
|
Representation, convert them to Polynomial Univariate Representation and
|
1390
1391
|
return the result.
|
1391
1392
|
|
1392
1393
|
See to_PUR of RUR.
|
1393
|
-
|
1394
|
+
|
1394
1395
|
This conversion might lead to very large coefficients.
|
1395
1396
|
"""
|
1396
1397
|
|
1397
1398
|
return CrossRatios(
|
1398
1399
|
_apply_to_RURs(self, RUR.to_PUR),
|
1399
|
-
is_numerical
|
1400
|
-
manifold_thunk
|
1400
|
+
is_numerical=self._is_numerical,
|
1401
|
+
manifold_thunk=self._manifold_thunk)
|
1401
1402
|
|
1402
1403
|
def multiply_terms_in_RUR(self):
|
1403
|
-
|
1404
1404
|
"""
|
1405
1405
|
If a cross ratio is given as Rational Univariate Representation
|
1406
1406
|
with numerator and denominator being a product, multiply the terms and
|
@@ -1411,14 +1411,13 @@ class CrossRatios(dict):
|
|
1411
1411
|
This loses information about how the numerator and denominator are
|
1412
1412
|
factorised.
|
1413
1413
|
"""
|
1414
|
-
|
1414
|
+
|
1415
1415
|
return CrossRatios(
|
1416
1416
|
_apply_to_RURs(self, RUR.multiply_terms),
|
1417
|
-
is_numerical
|
1418
|
-
manifold_thunk
|
1417
|
+
is_numerical=self._is_numerical,
|
1418
|
+
manifold_thunk=self._manifold_thunk)
|
1419
1419
|
|
1420
1420
|
def multiply_and_simplify_terms_in_RUR(self):
|
1421
|
-
|
1422
1421
|
"""
|
1423
1422
|
If a cross ratio is given as Rational Univariate Representation
|
1424
1423
|
with numerator and denominator being a product, multiply the terms,
|
@@ -1430,13 +1429,13 @@ class CrossRatios(dict):
|
|
1430
1429
|
factorised.
|
1431
1430
|
|
1432
1431
|
"""
|
1433
|
-
|
1432
|
+
|
1434
1433
|
return CrossRatios(
|
1435
1434
|
_apply_to_RURs(self, RUR.multiply_and_simplify_terms),
|
1436
|
-
is_numerical
|
1437
|
-
manifold_thunk
|
1435
|
+
is_numerical=self._is_numerical,
|
1436
|
+
manifold_thunk=self._manifold_thunk)
|
1438
1437
|
|
1439
|
-
def volume_numerical(self, drop_negative_vols
|
1438
|
+
def volume_numerical(self, drop_negative_vols=False):
|
1440
1439
|
"""
|
1441
1440
|
Turn into (Galois conjugate) numerical solutions and compute volumes.
|
1442
1441
|
If already numerical, only compute the one volume.
|
@@ -1475,8 +1474,8 @@ class CrossRatios(dict):
|
|
1475
1474
|
and the conventions in Definition 4.2 of
|
1476
1475
|
|
1477
1476
|
Garoufalidis, Goerner, Zickert:
|
1478
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1479
|
-
|
1477
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1478
|
+
https://arxiv.org/abs/1207.6711
|
1480
1479
|
"""
|
1481
1480
|
|
1482
1481
|
postfix = '_%d%d%d%d' % tuple(pt) + '_%d' % tet
|
@@ -1486,7 +1485,7 @@ class CrossRatios(dict):
|
|
1486
1485
|
|
1487
1486
|
if tuple(edge) in [(1,0,1,0), (0,1,0,1)]:
|
1488
1487
|
return self['zp' + postfix]
|
1489
|
-
|
1488
|
+
|
1490
1489
|
if tuple(edge) in [(1,0,0,1), (0,1,1,0)]:
|
1491
1490
|
return self['zpp' + postfix]
|
1492
1491
|
|
@@ -1499,8 +1498,8 @@ class CrossRatios(dict):
|
|
1499
1498
|
|
1500
1499
|
See Definition 10.9:
|
1501
1500
|
Garoufalidis, Goerner, Zickert:
|
1502
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1503
|
-
|
1501
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1502
|
+
https://arxiv.org/abs/1207.6711
|
1504
1503
|
"""
|
1505
1504
|
|
1506
1505
|
result = 1
|
@@ -1508,7 +1507,7 @@ class CrossRatios(dict):
|
|
1508
1507
|
for v0 in range(4):
|
1509
1508
|
for v1 in range(v0 + 1, 4):
|
1510
1509
|
e = [ _kronecker_delta(v0, i) +
|
1511
|
-
_kronecker_delta(v1, i)
|
1510
|
+
_kronecker_delta(v1, i) for i in range(4) ]
|
1512
1511
|
p = [ x1 - x2 for x1, x2 in zip(pt, e) ]
|
1513
1512
|
if all(x >= 0 for x in p):
|
1514
1513
|
result *= self._shape_at_tet_point_and_edge(tet, p, e)
|
@@ -1519,7 +1518,7 @@ class CrossRatios(dict):
|
|
1519
1518
|
|
1520
1519
|
# Get N
|
1521
1520
|
N = self.N()
|
1522
|
-
|
1521
|
+
|
1523
1522
|
return [[_kronecker_delta(i, j) for i in range(N)] for j in range(N)]
|
1524
1523
|
|
1525
1524
|
def long_edge(self, tet, v0, v1, v2):
|
@@ -1530,30 +1529,30 @@ class CrossRatios(dict):
|
|
1530
1529
|
|
1531
1530
|
This matrix was labeled alpha^{v0v1v2} in Figure 18 of
|
1532
1531
|
Garoufalidis, Goerner, Zickert:
|
1533
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1534
|
-
|
1532
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1533
|
+
https://arxiv.org/abs/1207.6711
|
1535
1534
|
|
1536
1535
|
It is computed using equation 10.22.
|
1537
|
-
|
1536
|
+
|
1538
1537
|
The resulting matrix is given as a python list of lists.
|
1539
1538
|
"""
|
1540
|
-
|
1539
|
+
|
1541
1540
|
# Key for cache
|
1542
1541
|
key = 'long_edge'
|
1543
1542
|
|
1544
1543
|
# Fill cache if necessary
|
1545
|
-
if not
|
1546
|
-
|
1544
|
+
if key not in self._edge_cache:
|
1545
|
+
|
1547
1546
|
# Get N
|
1548
1547
|
N = self.N()
|
1549
|
-
|
1548
|
+
|
1550
1549
|
# It is just the counter diagonal matrix
|
1551
1550
|
m = [ [ _kronecker_delta(i+j, N-1) for i in range(N) ]
|
1552
1551
|
for j in range(N)]
|
1553
1552
|
|
1554
1553
|
# Set in cache
|
1555
1554
|
self._edge_cache[key] = m
|
1556
|
-
|
1555
|
+
|
1557
1556
|
return self._edge_cache[key]
|
1558
1557
|
|
1559
1558
|
def middle_edge(self, tet, v0, v1, v2):
|
@@ -1564,11 +1563,11 @@ class CrossRatios(dict):
|
|
1564
1563
|
|
1565
1564
|
This matrix was labeled beta^{v0v1v2} in Figure 18 of
|
1566
1565
|
Garoufalidis, Goerner, Zickert:
|
1567
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1568
|
-
|
1566
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1567
|
+
https://arxiv.org/abs/1207.6711
|
1569
1568
|
|
1570
1569
|
It is computed using equation 10.22.
|
1571
|
-
|
1570
|
+
|
1572
1571
|
The resulting matrix is given as a python list of lists.
|
1573
1572
|
"""
|
1574
1573
|
|
@@ -1576,7 +1575,7 @@ class CrossRatios(dict):
|
|
1576
1575
|
key = 'middle_%d_%d%d%d' % (tet, v0, v1, v2)
|
1577
1576
|
|
1578
1577
|
# Fill cache if necessary
|
1579
|
-
if not
|
1578
|
+
if key not in self._edge_cache:
|
1580
1579
|
|
1581
1580
|
# Get N
|
1582
1581
|
N = self.N()
|
@@ -1592,7 +1591,7 @@ class CrossRatios(dict):
|
|
1592
1591
|
prod1 = self._get_identity_matrix()
|
1593
1592
|
for i in range(1, N - k + 1):
|
1594
1593
|
prod1 = matrix.matrix_mult(prod1, _X(N, i, 1))
|
1595
|
-
|
1594
|
+
|
1596
1595
|
# Compute second product
|
1597
1596
|
prod2 = self._get_identity_matrix()
|
1598
1597
|
for i in range(1, N - k):
|
@@ -1618,10 +1617,10 @@ class CrossRatios(dict):
|
|
1618
1617
|
for j in range(N) ]
|
1619
1618
|
|
1620
1619
|
m = matrix.matrix_mult(m, dpm)
|
1621
|
-
|
1620
|
+
|
1622
1621
|
# Set in cache
|
1623
1622
|
self._edge_cache[key] = m
|
1624
|
-
|
1623
|
+
|
1625
1624
|
return self._edge_cache[key]
|
1626
1625
|
|
1627
1626
|
def short_edge(self, tet, v0, v1, v2):
|
@@ -1632,11 +1631,11 @@ class CrossRatios(dict):
|
|
1632
1631
|
|
1633
1632
|
This matrix was labeled gamma^{v0v1v2} in Figure 18 of
|
1634
1633
|
Garoufalidis, Goerner, Zickert:
|
1635
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1636
|
-
|
1634
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1635
|
+
https://arxiv.org/abs/1207.6711
|
1637
1636
|
|
1638
1637
|
It is computed using equation 10.22.
|
1639
|
-
|
1638
|
+
|
1640
1639
|
The resulting matrix is given as a python list of lists.
|
1641
1640
|
"""
|
1642
1641
|
|
@@ -1644,10 +1643,10 @@ class CrossRatios(dict):
|
|
1644
1643
|
key = 'short_%d_%d%d%d' % (tet, v0, v1, v2)
|
1645
1644
|
|
1646
1645
|
# Fill cache if necessary
|
1647
|
-
if not
|
1646
|
+
if key not in self._edge_cache:
|
1648
1647
|
|
1649
1648
|
edge = [ _kronecker_delta(v0, i) +
|
1650
|
-
_kronecker_delta(v1, i)
|
1649
|
+
_kronecker_delta(v1, i) for i in range(4) ]
|
1651
1650
|
|
1652
1651
|
# The epsilon permutation sign
|
1653
1652
|
sgn = CrossRatios._cyclic_three_perm_sign(v0, v1, v2)
|
@@ -1662,12 +1661,12 @@ class CrossRatios(dict):
|
|
1662
1661
|
for a0 in range(N-1):
|
1663
1662
|
a1 = N - 2 - a0
|
1664
1663
|
pt = [ a0 * _kronecker_delta(v0, i) +
|
1665
|
-
a1 * _kronecker_delta(v1, i)
|
1664
|
+
a1 * _kronecker_delta(v1, i) for i in range(4) ]
|
1666
1665
|
|
1667
1666
|
cross_ratio = self._shape_at_tet_point_and_edge(tet, pt, edge)
|
1668
1667
|
|
1669
1668
|
# Multiply result with the H matrix
|
1670
|
-
|
1669
|
+
|
1671
1670
|
# Note that the sgn is different from the paper
|
1672
1671
|
# because we are using SnapPy conventions for
|
1673
1672
|
# cross ratios here
|
@@ -1684,7 +1683,7 @@ class CrossRatios(dict):
|
|
1684
1683
|
# fundamental group generators and their inverses
|
1685
1684
|
|
1686
1685
|
if self._matrix_cache and self._inverse_matrix_cache:
|
1687
|
-
return
|
1686
|
+
return
|
1688
1687
|
|
1689
1688
|
# Compute all the matrices for the generators and there inverses
|
1690
1689
|
# The long edges of the doubly truncated simplex are all unit
|
@@ -1692,9 +1691,9 @@ class CrossRatios(dict):
|
|
1692
1691
|
# size of any polynomial coefficients. We thus don't give them penalty.
|
1693
1692
|
self._matrix_cache, self._inverse_matrix_cache = (
|
1694
1693
|
findLoops.images_of_original_generators(self,
|
1695
|
-
penalties
|
1694
|
+
penalties=(0, 1, 1)))
|
1696
1695
|
|
1697
|
-
def evaluate_word(self, word, G
|
1696
|
+
def evaluate_word(self, word, G=None):
|
1698
1697
|
"""
|
1699
1698
|
Given a word in the generators of the fundamental group,
|
1700
1699
|
compute the corresponding matrix. By default, these are the
|
@@ -1718,7 +1717,7 @@ class CrossRatios(dict):
|
|
1718
1717
|
word,
|
1719
1718
|
G)
|
1720
1719
|
|
1721
|
-
def check_against_manifold(self, M
|
1720
|
+
def check_against_manifold(self, M=None, epsilon=None):
|
1722
1721
|
"""
|
1723
1722
|
Checks that the given solution really is a solution to the PGL(N,C) gluing
|
1724
1723
|
equations of a manifold. Usage similar to check_against_manifold of
|
@@ -1738,14 +1737,14 @@ class CrossRatios(dict):
|
|
1738
1737
|
|
1739
1738
|
some_z = list(self.keys())[0]
|
1740
1739
|
variable_name, index, tet_index = some_z.split('_')
|
1741
|
-
if not
|
1740
|
+
if variable_name not in ['z', 'zp', 'zpp']:
|
1742
1741
|
raise Exception("Variable not z, zp, or, zpp")
|
1743
|
-
if
|
1742
|
+
if len(index) != 4:
|
1744
1743
|
raise Exception("Not 4 indices")
|
1745
1744
|
N = sum([int(x) for x in index]) + 2
|
1746
|
-
|
1745
|
+
|
1747
1746
|
matrix_with_explanations = M.gluing_equations_pgl(
|
1748
|
-
N, equation_type
|
1747
|
+
N, equation_type='all')
|
1749
1748
|
|
1750
1749
|
matrix = matrix_with_explanations.matrix
|
1751
1750
|
rows = matrix_with_explanations.explain_rows
|
@@ -1770,7 +1769,7 @@ class CrossRatios(dict):
|
|
1770
1769
|
SL(N,C) / {+1,-1} if N is even and is described in the Introduction of
|
1771
1770
|
Garoufalidis, Thurston, Zickert
|
1772
1771
|
The Complex Volume of SL(n,C)-Representations of 3-Manifolds
|
1773
|
-
|
1772
|
+
https://arxiv.org/abs/1111.2828
|
1774
1773
|
|
1775
1774
|
There is a canonical group homomorphism SL(2,C)->SL(N,C) coming from
|
1776
1775
|
the the natural SL(2,C)-action on the vector space Sym^{N-1}(C^2).
|
@@ -1782,7 +1781,7 @@ class CrossRatios(dict):
|
|
1782
1781
|
|
1783
1782
|
num_tetrahedra = self.num_tetrahedra()
|
1784
1783
|
|
1785
|
-
if
|
1784
|
+
if self.N() != 2:
|
1786
1785
|
raise Exception(
|
1787
1786
|
"Cross ratios need to come from a PSL(2,C) representation")
|
1788
1787
|
|
@@ -1796,20 +1795,18 @@ class CrossRatios(dict):
|
|
1796
1795
|
for v in ['z', 'zp', 'zpp']
|
1797
1796
|
for t in range(num_tetrahedra)
|
1798
1797
|
for index in utilities.quadruples_with_fixed_sum_iterator(N-2)])
|
1799
|
-
|
1798
|
+
|
1800
1799
|
return CrossRatios(d,
|
1801
|
-
is_numerical
|
1802
|
-
manifold_thunk
|
1803
|
-
|
1800
|
+
is_numerical=self._is_numerical,
|
1801
|
+
manifold_thunk=self._manifold_thunk)
|
1804
1802
|
|
1805
1803
|
def is_real(self, epsilon):
|
1806
|
-
|
1807
1804
|
"""
|
1808
1805
|
Returns True if all cross ratios are real (have absolute imaginary
|
1809
1806
|
part < epsilon where epsilon is given as argument).
|
1810
1807
|
This means that the corresponding representation is in PSL(N,R).
|
1811
1808
|
"""
|
1812
|
-
|
1809
|
+
|
1813
1810
|
if not self._is_numerical:
|
1814
1811
|
raise NumericalMethodError("is_real")
|
1815
1812
|
|
@@ -1818,8 +1815,7 @@ class CrossRatios(dict):
|
|
1818
1815
|
return False
|
1819
1816
|
return True
|
1820
1817
|
|
1821
|
-
def is_induced_from_psl2(self, epsilon
|
1822
|
-
|
1818
|
+
def is_induced_from_psl2(self, epsilon=None):
|
1823
1819
|
"""
|
1824
1820
|
For each simplex and each edges, checks that all cross ratios of that
|
1825
1821
|
simplex that are parallel to that each are the same (maximal absolute
|
@@ -1832,28 +1828,28 @@ class CrossRatios(dict):
|
|
1832
1828
|
d = { }
|
1833
1829
|
|
1834
1830
|
for key, value in self.items():
|
1835
|
-
|
1836
|
-
|
1837
|
-
|
1838
|
-
|
1839
|
-
|
1831
|
+
variable_name, index, tet_index = key.split('_')
|
1832
|
+
if variable_name not in ['z', 'zp', 'zpp']:
|
1833
|
+
raise Exception("Variable not z, zp, or, zpp")
|
1834
|
+
if len(index) != 4:
|
1835
|
+
raise Exception("Not 4 indices")
|
1840
1836
|
|
1841
|
-
|
1842
|
-
|
1837
|
+
# The key in the auxiliary dictionary
|
1838
|
+
short_key = variable_name + '_' + tet_index
|
1843
1839
|
|
1844
|
-
|
1845
|
-
|
1840
|
+
# Get the old value in the auxiliary dictionary
|
1841
|
+
old_value = d.setdefault(short_key, value)
|
1846
1842
|
|
1847
|
-
|
1848
|
-
|
1849
|
-
|
1850
|
-
|
1851
|
-
|
1852
|
-
|
1843
|
+
if epsilon is None:
|
1844
|
+
if value != old_value:
|
1845
|
+
return False
|
1846
|
+
else:
|
1847
|
+
if (value - old_value).abs() > epsilon:
|
1848
|
+
return False
|
1853
1849
|
|
1854
1850
|
return True
|
1855
1851
|
|
1856
|
-
def is_pu_2_1_representation(self, epsilon, epsilon2
|
1852
|
+
def is_pu_2_1_representation(self, epsilon, epsilon2=None):
|
1857
1853
|
r"""
|
1858
1854
|
Returns True if the representation is also a
|
1859
1855
|
PU(2,1)-representation. This uses Proposition 3.5 and the
|
@@ -1916,49 +1912,56 @@ class CrossRatios(dict):
|
|
1916
1912
|
|
1917
1913
|
return True
|
1918
1914
|
|
1919
|
-
if
|
1915
|
+
if self.N() != 3:
|
1920
1916
|
raise Exception("PU(2,1)-representations only allowed for N = 3")
|
1921
1917
|
|
1922
1918
|
if not self._is_numerical:
|
1923
1919
|
raise NumericalMethodError("is_pu_2_1_representation")
|
1924
1920
|
|
1925
1921
|
for t in range(self.num_tetrahedra()):
|
1926
|
-
|
1922
|
+
|
1927
1923
|
m0 = mainCondition("z_1000_%d" % t, "z_0100_%d" % t,
|
1928
1924
|
"z_0010_%d" % t, "z_0001_%d" % t)
|
1929
|
-
if not m0:
|
1925
|
+
if not m0:
|
1926
|
+
return m0
|
1930
1927
|
|
1931
1928
|
m1 = mainCondition("zp_1000_%d" % t, "zp_0010_%d" % t,
|
1932
1929
|
"zp_0100_%d" % t, "zp_0001_%d" % t)
|
1933
|
-
if not m1:
|
1930
|
+
if not m1:
|
1931
|
+
return m1
|
1934
1932
|
|
1935
1933
|
m2 = mainCondition("zpp_1000_%d" % t, "zpp_0001_%d" % t,
|
1936
1934
|
"zpp_0100_%d" % t, "zpp_0010_%d" % t)
|
1937
|
-
if not m2:
|
1935
|
+
if not m2:
|
1936
|
+
return m2
|
1938
1937
|
|
1939
1938
|
t0 = tripleRatioCondition( "z_0100_%d" % t,
|
1940
1939
|
"zp_0010_%d" % t,
|
1941
1940
|
"zpp_0001_%d" % t)
|
1942
|
-
if not t0:
|
1941
|
+
if not t0:
|
1942
|
+
return t0
|
1943
1943
|
|
1944
1944
|
t1 = tripleRatioCondition( "z_1000_%d" % t,
|
1945
1945
|
"zp_0001_%d" % t,
|
1946
1946
|
"zpp_0010_%d" % t)
|
1947
|
-
if not t1:
|
1947
|
+
if not t1:
|
1948
|
+
return t1
|
1948
1949
|
|
1949
1950
|
t2 = tripleRatioCondition( "z_0001_%d" % t,
|
1950
1951
|
"zp_1000_%d" % t,
|
1951
1952
|
"zpp_0100_%d" % t)
|
1952
|
-
if not t2:
|
1953
|
+
if not t2:
|
1954
|
+
return t2
|
1953
1955
|
|
1954
1956
|
t3 = tripleRatioCondition( "z_0010_%d" % t,
|
1955
1957
|
"zp_0100_%d" % t,
|
1956
1958
|
"zpp_1000_%d" % t)
|
1957
|
-
if not t3:
|
1959
|
+
if not t3:
|
1960
|
+
return t3
|
1958
1961
|
|
1959
1962
|
return True
|
1960
|
-
|
1961
|
-
def is_geometric(self, epsilon
|
1963
|
+
|
1964
|
+
def is_geometric(self, epsilon=1e-6):
|
1962
1965
|
"""
|
1963
1966
|
Returns true if all shapes corresponding to this solution have positive
|
1964
1967
|
imaginary part.
|
@@ -1981,10 +1984,11 @@ class CrossRatios(dict):
|
|
1981
1984
|
return True
|
1982
1985
|
return False
|
1983
1986
|
|
1987
|
+
|
1984
1988
|
def _ptolemy_to_cross_ratio(solution_dict,
|
1985
|
-
branch_factor
|
1986
|
-
non_trivial_generalized_obstruction_class
|
1987
|
-
as_flattenings
|
1989
|
+
branch_factor=1,
|
1990
|
+
non_trivial_generalized_obstruction_class=False,
|
1991
|
+
as_flattenings=False):
|
1988
1992
|
|
1989
1993
|
N, has_obstruction = _N_and_has_obstruction_for_ptolemys(solution_dict)
|
1990
1994
|
num_tets = _num_tetrahedra(solution_dict)
|
@@ -2017,17 +2021,17 @@ def _ptolemy_to_cross_ratio(solution_dict,
|
|
2017
2021
|
c1100 = get_ptolemy_coordinate((1,1,0,0))
|
2018
2022
|
c0011 = get_ptolemy_coordinate((0,0,1,1))
|
2019
2023
|
|
2020
|
-
z
|
2021
|
-
zp
|
2022
|
-
zpp =
|
2024
|
+
z = (c1010 * c0101) / (c1001 * c0110)
|
2025
|
+
zp = - (c1001 * c0110) / (c1100 * c0011)
|
2026
|
+
zpp = (c1100 * c0011) / (c1010 * c0101)
|
2023
2027
|
|
2024
2028
|
if has_obstruction:
|
2025
2029
|
s0 = get_obstruction_variable(0)
|
2026
2030
|
s1 = get_obstruction_variable(1)
|
2027
2031
|
s2 = get_obstruction_variable(2)
|
2028
2032
|
s3 = get_obstruction_variable(3)
|
2029
|
-
z
|
2030
|
-
zp
|
2033
|
+
z = s0 * s1 * z
|
2034
|
+
zp = s0 * s2 * zp
|
2031
2035
|
zpp = s0 * s3 * zpp
|
2032
2036
|
|
2033
2037
|
variable_end = '_%d%d%d%d' % tuple(index) + '_%d' % tet
|
@@ -2043,50 +2047,53 @@ def _ptolemy_to_cross_ratio(solution_dict,
|
|
2043
2047
|
branch_factor, evenN)
|
2044
2048
|
wpp = _compute_flattening(c1100, c0011, c1010, c0101,
|
2045
2049
|
branch_factor, evenN)
|
2046
|
-
|
2050
|
+
|
2047
2051
|
return [
|
2048
|
-
('z'
|
2049
|
-
('zp'
|
2052
|
+
('z' + variable_end, make_triple(w ,z )),
|
2053
|
+
('zp' + variable_end, make_triple(wp ,zp )),
|
2050
2054
|
('zpp' + variable_end, make_triple(wpp,zpp)) ]
|
2051
2055
|
|
2052
2056
|
else:
|
2053
2057
|
return [
|
2054
|
-
('z'
|
2055
|
-
('zp'
|
2058
|
+
('z' + variable_end, z),
|
2059
|
+
('zp' + variable_end, zp),
|
2056
2060
|
('zpp' + variable_end, zpp) ]
|
2057
|
-
|
2061
|
+
|
2058
2062
|
return dict(
|
2059
|
-
sum([compute_cross_ratios_and_flattenings(tet,index)
|
2060
|
-
for tet in range(num_tets)
|
2063
|
+
sum([compute_cross_ratios_and_flattenings(tet,index)
|
2064
|
+
for tet in range(num_tets)
|
2061
2065
|
for index in utilities.quadruples_with_fixed_sum_iterator(N - 2)],
|
2062
2066
|
[])), evenN
|
2063
2067
|
|
2068
|
+
|
2064
2069
|
def _num_tetrahedra(solution_dict):
|
2065
2070
|
return max( [ int(key.split('_')[-1])
|
2066
2071
|
for key in solution_dict.keys() ] ) + 1
|
2067
2072
|
|
2073
|
+
|
2068
2074
|
def _N_for_shapes(solution_dict):
|
2069
|
-
|
2075
|
+
|
2070
2076
|
def get_N(key):
|
2071
2077
|
m = re.match(r'zp{0,2}_(\d{4})_\d+$', key)
|
2072
2078
|
if not m:
|
2073
2079
|
raise Exception("Not a valid shape key: '%s'" % key)
|
2074
2080
|
return sum([int(char) for char in m.group(1)]) + 2
|
2075
|
-
|
2081
|
+
|
2076
2082
|
l = [ get_N(key) for key in solution_dict.keys() ]
|
2077
2083
|
if not len(set(l)) == 1:
|
2078
2084
|
raise Exception("Shape keys for different N")
|
2079
|
-
|
2085
|
+
|
2080
2086
|
return l[0]
|
2081
2087
|
|
2088
|
+
|
2082
2089
|
def _N_and_has_obstruction_for_ptolemys(solution_dict):
|
2083
|
-
|
2090
|
+
|
2084
2091
|
def get_N(key):
|
2085
2092
|
m = re.match(r'c_(\d{4})_\d+$', key)
|
2086
2093
|
if not m:
|
2087
2094
|
raise Exception("Not a valid Ptolemy key: '%s'" % key)
|
2088
2095
|
return sum([int(char) for char in m.group(1)])
|
2089
|
-
|
2096
|
+
|
2090
2097
|
has_obstruction = False
|
2091
2098
|
|
2092
2099
|
l = set()
|
@@ -2102,9 +2109,10 @@ def _N_and_has_obstruction_for_ptolemys(solution_dict):
|
|
2102
2109
|
for N in l:
|
2103
2110
|
return N, has_obstruction
|
2104
2111
|
|
2112
|
+
|
2105
2113
|
def _get_number_field(d):
|
2106
2114
|
for value in d.values():
|
2107
|
-
|
2115
|
+
|
2108
2116
|
if isinstance(value, RUR):
|
2109
2117
|
nf = value.number_field()
|
2110
2118
|
if nf:
|
@@ -2115,6 +2123,7 @@ def _get_number_field(d):
|
|
2115
2123
|
|
2116
2124
|
return None
|
2117
2125
|
|
2126
|
+
|
2118
2127
|
def _evaluate_at_root(p, root):
|
2119
2128
|
|
2120
2129
|
if type(p) == Gen and p.type() == 't_POLMOD':
|
@@ -2124,7 +2133,8 @@ def _evaluate_at_root(p, root):
|
|
2124
2133
|
return p.evaluate_at_root(root)
|
2125
2134
|
|
2126
2135
|
return p
|
2127
|
-
|
2136
|
+
|
2137
|
+
|
2128
2138
|
def _to_numerical(d):
|
2129
2139
|
|
2130
2140
|
number_field = _get_number_field(d)
|
@@ -2139,16 +2149,16 @@ def _to_numerical(d):
|
|
2139
2149
|
def evaluate_all_for_root(root):
|
2140
2150
|
|
2141
2151
|
def evaluate_key_for_root(key, value):
|
2142
|
-
|
2152
|
+
|
2143
2153
|
v = _evaluate_at_root(value, root)
|
2144
|
-
|
2154
|
+
|
2145
2155
|
if key[:2] == 'z_':
|
2146
|
-
z
|
2147
|
-
zp
|
2156
|
+
z = v
|
2157
|
+
zp = 1 / (1 - z)
|
2148
2158
|
zpp = 1 - 1 / z
|
2149
2159
|
|
2150
|
-
return [(key,
|
2151
|
-
('zp_'
|
2160
|
+
return [(key, z),
|
2161
|
+
('zp_' + key[2:], zp),
|
2152
2162
|
('zpp_' + key[2:], zpp)]
|
2153
2163
|
elif key[:3] == 'zp_' or key[:4] == 'zpp_':
|
2154
2164
|
return []
|
@@ -2161,24 +2171,26 @@ def _to_numerical(d):
|
|
2161
2171
|
|
2162
2172
|
return [ evaluate_all_for_root(root) for root in roots ]
|
2163
2173
|
|
2174
|
+
|
2164
2175
|
def _apply_to_RURs(d, RUR_method):
|
2165
|
-
|
2176
|
+
|
2166
2177
|
def _apply_to_RUR(v):
|
2167
2178
|
if isinstance(v, RUR):
|
2168
2179
|
return RUR_method(v)
|
2169
2180
|
return v
|
2170
|
-
|
2171
|
-
return
|
2181
|
+
|
2182
|
+
return {k: _apply_to_RUR(v) for k, v in d.items()}
|
2172
2183
|
|
2173
2184
|
|
2174
2185
|
def _convert_to_pari_float(z):
|
2175
2186
|
|
2176
2187
|
if type(z) == Gen and z.type() in ['t_INT', 't_FRAC']:
|
2177
2188
|
return z * pari('1.0')
|
2178
|
-
|
2189
|
+
|
2179
2190
|
return pari(z)
|
2180
|
-
|
2181
|
-
|
2191
|
+
|
2192
|
+
|
2193
|
+
def _compute_flattening(a, b, c, d, branch_factor, N=2):
|
2182
2194
|
|
2183
2195
|
PiMinusEpsilon = pari(3.141592)
|
2184
2196
|
|
@@ -2202,10 +2214,12 @@ def _compute_flattening(a, b, c, d, branch_factor, N = 2):
|
|
2202
2214
|
|
2203
2215
|
# bug in pari
|
2204
2216
|
|
2217
|
+
|
2205
2218
|
def _dilog(z):
|
2206
2219
|
return pari("dilog(%s)" % z)
|
2207
2220
|
|
2208
|
-
|
2221
|
+
|
2222
|
+
def _L_function(zpq_triple, evenN=2):
|
2209
2223
|
|
2210
2224
|
z, p, q = zpq_triple
|
2211
2225
|
|
@@ -2220,12 +2234,14 @@ def _L_function(zpq_triple, evenN = 2):
|
|
2220
2234
|
+ (z.log() + p * f) * ((1-z).log() + q * f) / 2
|
2221
2235
|
- Pi2 / 6)
|
2222
2236
|
|
2237
|
+
|
2223
2238
|
def _volume(z):
|
2224
|
-
|
2239
|
+
|
2225
2240
|
z = _convert_to_pari_float(z)
|
2226
|
-
|
2241
|
+
|
2227
2242
|
return (1-z).arg() * z.abs().log() + _dilog(z).imag()
|
2228
2243
|
|
2244
|
+
|
2229
2245
|
def _kronecker_delta(i, j):
|
2230
2246
|
"""
|
2231
2247
|
Kronecker Delta, returns 1 if and only if i and j are equal, other 0.
|
@@ -2236,35 +2252,36 @@ def _kronecker_delta(i, j):
|
|
2236
2252
|
else:
|
2237
2253
|
return 0
|
2238
2254
|
|
2239
|
-
def _X(N, k, v):
|
2240
2255
|
|
2256
|
+
def _X(N, k, v):
|
2241
2257
|
"""
|
2242
2258
|
Returns the NxN matrix with off-diagonal entry v at position k, that
|
2243
2259
|
is the entry at row k and column k+1 is v.
|
2244
2260
|
|
2245
2261
|
See (10.2) of
|
2246
2262
|
Garoufalidis, Goerner, Zickert:
|
2247
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
2248
|
-
|
2263
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
2264
|
+
https://arxiv.org/abs/1207.6711
|
2249
2265
|
"""
|
2250
2266
|
|
2251
2267
|
m = [[_kronecker_delta(i,j) for i in range(N)] for j in range(N)]
|
2252
2268
|
m[k-1][k] = v
|
2253
2269
|
return m
|
2254
2270
|
|
2271
|
+
|
2255
2272
|
def _H(N, k, x):
|
2256
2273
|
"""
|
2257
2274
|
Returns the NxN diagonal matrix where the first k diagonal entries are x
|
2258
2275
|
and all other entries are 1.
|
2259
|
-
|
2276
|
+
|
2260
2277
|
See (10.1) of
|
2261
2278
|
Garoufalidis, Goerner, Zickert:
|
2262
|
-
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
2263
|
-
|
2279
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
2280
|
+
https://arxiv.org/abs/1207.6711
|
2264
2281
|
"""
|
2265
2282
|
|
2266
2283
|
def _entry(i, j):
|
2267
|
-
if
|
2284
|
+
if i != j:
|
2268
2285
|
return 0
|
2269
2286
|
if i < k:
|
2270
2287
|
return x
|