snappy 3.0.3__cp38-cp38-macosx_11_0_arm64.whl → 3.2__cp38-cp38-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-38-darwin.so +0 -0
- snappy/SnapPy.cpython-38-darwin.so +0 -0
- snappy/SnapPyHP.cpython-38-darwin.so +0 -0
- snappy/__init__.py +373 -426
- snappy/app.py +240 -75
- snappy/app_menus.py +93 -78
- snappy/browser.py +87 -63
- snappy/cache.py +5 -8
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +11 -19
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +39 -54
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +40 -31
- snappy/db_utilities.py +13 -14
- snappy/decorated_isosig.py +377 -133
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +42 -9
- snappy/dev/extended_ptolemy/extended.py +32 -25
- snappy/dev/extended_ptolemy/giac_rur.py +23 -8
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +2 -1
- snappy/dev/vericlosed/gimbalLoopFinder.py +5 -5
- snappy/dev/vericlosed/hyperbolicStructure.py +3 -3
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +2 -2
- snappy/dev/vericlosed/truncatedComplex.py +3 -2
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +4 -3
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +1 -0
- snappy/doc/_sources/credits.rst.txt +6 -1
- snappy/doc/_sources/development.rst.txt +69 -50
- snappy/doc/_sources/index.rst.txt +101 -66
- snappy/doc/_sources/installing.rst.txt +148 -165
- snappy/doc/_sources/news.rst.txt +136 -32
- snappy/doc/_sources/ptolemy.rst.txt +1 -1
- snappy/doc/_sources/ptolemy_examples1.rst.txt +9 -8
- snappy/doc/_sources/ptolemy_examples2.rst.txt +3 -3
- snappy/doc/_sources/ptolemy_examples3.rst.txt +14 -14
- snappy/doc/_sources/ptolemy_prelim.rst.txt +1 -1
- snappy/doc/_sources/snap.rst.txt +2 -2
- snappy/doc/_sources/snappy.rst.txt +1 -1
- snappy/doc/_sources/triangulation.rst.txt +3 -2
- snappy/doc/_sources/verify.rst.txt +89 -29
- snappy/doc/_sources/verify_internals.rst.txt +5 -16
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +47 -27
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +107 -274
- snappy/doc/_static/documentation_options.js +6 -5
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -2
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +3 -101
- snappy/doc/_static/pygments.css +1 -0
- snappy/doc/_static/searchtools.js +489 -398
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +688 -263
- snappy/doc/bugs.html +107 -94
- snappy/doc/censuses.html +155 -127
- snappy/doc/credits.html +115 -104
- snappy/doc/development.html +184 -146
- snappy/doc/genindex.html +287 -204
- snappy/doc/index.html +189 -150
- snappy/doc/installing.html +259 -266
- snappy/doc/manifold.html +1626 -592
- snappy/doc/manifoldhp.html +119 -105
- snappy/doc/news.html +198 -104
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +117 -105
- snappy/doc/platonic_census.html +161 -114
- snappy/doc/plink.html +113 -105
- snappy/doc/ptolemy.html +131 -108
- snappy/doc/ptolemy_classes.html +242 -223
- snappy/doc/ptolemy_examples1.html +144 -130
- snappy/doc/ptolemy_examples2.html +141 -129
- snappy/doc/ptolemy_examples3.html +148 -132
- snappy/doc/ptolemy_examples4.html +131 -111
- snappy/doc/ptolemy_prelim.html +162 -138
- snappy/doc/py-modindex.html +104 -69
- snappy/doc/screenshots.html +117 -108
- snappy/doc/search.html +115 -84
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +109 -96
- snappy/doc/snappy.html +134 -97
- snappy/doc/spherogram.html +259 -187
- snappy/doc/todo.html +107 -94
- snappy/doc/triangulation.html +1380 -111
- snappy/doc/tutorial.html +107 -94
- snappy/doc/verify.html +194 -125
- snappy/doc/verify_internals.html +248 -686
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +23 -3
- snappy/export_stl.py +20 -14
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +36 -36
- snappy/horoviewer.py +50 -48
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/{infodialog.py → infowindow.py} +32 -33
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/__init__.py +1 -1
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +97 -21
- snappy/numeric_output_checker.py +37 -27
- snappy/pari.py +30 -69
- snappy/phone_home.py +25 -20
- snappy/polyviewer.py +39 -37
- snappy/ptolemy/__init__.py +4 -6
- snappy/ptolemy/component.py +14 -12
- snappy/ptolemy/coordinates.py +312 -295
- snappy/ptolemy/fieldExtensions.py +14 -12
- snappy/ptolemy/findLoops.py +43 -31
- snappy/ptolemy/geometricRep.py +24 -26
- snappy/ptolemy/homology.py +12 -7
- snappy/ptolemy/manifoldMethods.py +69 -70
- snappy/ptolemy/matrix.py +65 -26
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +18 -14
- snappy/ptolemy/polynomial.py +125 -119
- snappy/ptolemy/processComponents.py +36 -30
- snappy/ptolemy/processFileBase.py +79 -18
- snappy/ptolemy/processFileDispatch.py +13 -14
- snappy/ptolemy/processMagmaFile.py +44 -39
- snappy/ptolemy/processRurFile.py +18 -11
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +20 -17
- snappy/ptolemy/ptolemyObstructionClass.py +13 -17
- snappy/ptolemy/ptolemyVariety.py +190 -121
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +20 -19
- snappy/ptolemy/reginaWrapper.py +25 -29
- snappy/ptolemy/rur.py +6 -14
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +27 -22
- snappy/ptolemy/test.py +247 -188
- snappy/ptolemy/utilities.py +41 -43
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +10 -6
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +48 -38
- snappy/raytracing/finite_viewer.py +218 -210
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +152 -40
- snappy/raytracing/hyperboloid_navigation.py +102 -52
- snappy/raytracing/hyperboloid_utilities.py +114 -261
- snappy/raytracing/ideal_raytracing_data.py +256 -179
- snappy/raytracing/inside_viewer.py +522 -253
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +46 -34
- snappy/raytracing/raytracing_view.py +190 -109
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +60 -4
- snappy/raytracing/shaders/fragment.glsl +575 -148
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +32 -29
- snappy/raytracing/zoom_slider/test.py +2 -0
- snappy/sage_helper.py +69 -123
- snappy/{preferences.py → settings.py} +167 -145
- snappy/shell.py +4 -0
- snappy/snap/__init__.py +12 -8
- snappy/snap/character_varieties.py +24 -18
- snappy/snap/find_field.py +35 -34
- snappy/snap/fundamental_polyhedron.py +99 -85
- snappy/snap/generators.py +6 -8
- snappy/snap/interval_reps.py +18 -6
- snappy/snap/kernel_structures.py +8 -3
- snappy/snap/mcomplex_base.py +1 -2
- snappy/snap/nsagetools.py +107 -53
- snappy/snap/peripheral/__init__.py +1 -1
- snappy/snap/peripheral/dual_cellulation.py +15 -7
- snappy/snap/peripheral/link.py +20 -16
- snappy/snap/peripheral/peripheral.py +22 -14
- snappy/snap/peripheral/surface.py +47 -50
- snappy/snap/peripheral/test.py +8 -8
- snappy/snap/polished_reps.py +65 -40
- snappy/snap/shapes.py +41 -22
- snappy/snap/slice_obs_HKL.py +64 -25
- snappy/snap/t3mlite/arrow.py +88 -51
- snappy/snap/t3mlite/corner.py +5 -6
- snappy/snap/t3mlite/edge.py +32 -21
- snappy/snap/t3mlite/face.py +7 -9
- snappy/snap/t3mlite/files.py +31 -23
- snappy/snap/t3mlite/homology.py +14 -10
- snappy/snap/t3mlite/linalg.py +158 -56
- snappy/snap/t3mlite/mcomplex.py +739 -291
- snappy/snap/t3mlite/perm4.py +236 -84
- snappy/snap/t3mlite/setup.py +9 -10
- snappy/snap/t3mlite/simplex.py +65 -48
- snappy/snap/t3mlite/spun.py +42 -30
- snappy/snap/t3mlite/surface.py +45 -45
- snappy/snap/t3mlite/test.py +3 -0
- snappy/snap/t3mlite/test_vs_regina.py +17 -13
- snappy/snap/t3mlite/tetrahedron.py +25 -24
- snappy/snap/t3mlite/vertex.py +8 -13
- snappy/snap/test.py +45 -52
- snappy/snap/utilities.py +66 -65
- snappy/test.py +155 -158
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +313 -203
- snappy/twister/main.py +1 -8
- snappy/twister/twister_core.cpython-38-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +4 -8
- snappy/verify/{verifyCanonical.py → canonical.py} +114 -97
- snappy/verify/complex_volume/__init__.py +3 -2
- snappy/verify/complex_volume/adjust_torsion.py +13 -11
- snappy/verify/complex_volume/closed.py +29 -24
- snappy/verify/complex_volume/compute_ptolemys.py +8 -6
- snappy/verify/complex_volume/cusped.py +10 -9
- snappy/verify/complex_volume/extended_bloch.py +14 -12
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +15 -14
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +23 -56
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +19 -15
- snappy/verify/interval_newton_shapes_engine.py +51 -211
- snappy/verify/interval_tree.py +27 -25
- snappy/verify/krawczyk_shapes_engine.py +47 -50
- snappy/verify/maximal_cusp_area_matrix/__init__.py +17 -86
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +58 -48
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +53 -57
- snappy/verify/{realAlgebra.py → real_algebra.py} +26 -20
- snappy/verify/shapes.py +10 -7
- snappy/verify/short_slopes.py +41 -42
- snappy/verify/{squareExtensions.py → square_extensions.py} +96 -92
- snappy/verify/test.py +59 -57
- snappy/verify/upper_halfspace/extended_matrix.py +5 -5
- snappy/verify/upper_halfspace/finite_point.py +44 -31
- snappy/verify/upper_halfspace/ideal_point.py +69 -57
- snappy/verify/volume.py +15 -12
- snappy/version.py +2 -3
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/METADATA +14 -12
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/top_level.txt +10 -1
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/classic.css +0 -266
- snappy/doc/_static/jquery-3.5.1.js +0 -10872
- snappy/doc/_static/sidebar.js +0 -159
- snappy/doc/_static/underscore-1.13.1.js +0 -2042
- snappy/doc/_static/underscore.js +0 -6
- snappy/doc/verify_canon.html +0 -283
- snappy/ppm_to_png.py +0 -243
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/verify/cuspCrossSection.py +0 -1413
- snappy/verify/mathHelpers.py +0 -64
- snappy-3.0.3.dist-info/RECORD +0 -360
@@ -0,0 +1,484 @@
|
|
1
|
+
from .exceptions import CuspDevelopmentExactVerifyError
|
2
|
+
|
3
|
+
from ...math_basics import correct_min, correct_max, lower
|
4
|
+
|
5
|
+
from ...snap import t3mlite as t3m
|
6
|
+
from ...snap.t3mlite import simplex
|
7
|
+
from ...snap.mcomplex_base import *
|
8
|
+
|
9
|
+
from typing import Any, List, Optional
|
10
|
+
|
11
|
+
class HoroTriangleBase:
|
12
|
+
@staticmethod
|
13
|
+
def _make_second(sides, x):
|
14
|
+
"""
|
15
|
+
Cyclically rotate sides = (a,b,c) so that x is the second entry"
|
16
|
+
"""
|
17
|
+
i = (sides.index(x) + 2) % len(sides)
|
18
|
+
return sides[i:]+sides[:i]
|
19
|
+
|
20
|
+
@staticmethod
|
21
|
+
def _sides_and_cross_ratios(tet, vertex, side):
|
22
|
+
sides = simplex.FacesAroundVertexCounterclockwise[vertex]
|
23
|
+
left_side, center_side, right_side = (
|
24
|
+
HoroTriangleBase._make_second(sides, side))
|
25
|
+
z_left = tet.ShapeParameters[left_side & center_side ]
|
26
|
+
z_right = tet.ShapeParameters[center_side & right_side ]
|
27
|
+
return left_side, center_side, right_side, z_left, z_right
|
28
|
+
|
29
|
+
class CuspCrossSectionBase(McomplexEngine):
|
30
|
+
"""
|
31
|
+
Base class for RealCuspCrossSection and ComplexCuspCrossSection.
|
32
|
+
"""
|
33
|
+
|
34
|
+
def add_structures(self, one_cocycle=None):
|
35
|
+
self._add_edge_dict()
|
36
|
+
self._add_cusp_cross_sections(one_cocycle)
|
37
|
+
|
38
|
+
def _add_edge_dict(self):
|
39
|
+
"""
|
40
|
+
Adds a dictionary that maps a pair of vertices to all edges
|
41
|
+
of the triangulation connecting these vertices.
|
42
|
+
The key is a pair (v0, v1) of integers with v0 < v1 that are the
|
43
|
+
indices of the two vertices.
|
44
|
+
"""
|
45
|
+
|
46
|
+
self._edge_dict = {}
|
47
|
+
for edge in self.mcomplex.Edges:
|
48
|
+
vert0, vert1 = edge.Vertices
|
49
|
+
key = tuple(sorted([vert0.Index, vert1.Index]))
|
50
|
+
self._edge_dict.setdefault(key, []).append(edge)
|
51
|
+
|
52
|
+
def _add_cusp_cross_sections(self, one_cocycle):
|
53
|
+
for T in self.mcomplex.Tetrahedra:
|
54
|
+
T.horotriangles = {
|
55
|
+
simplex.V0 : None,
|
56
|
+
simplex.V1 : None,
|
57
|
+
simplex.V2 : None,
|
58
|
+
simplex.V3 : None
|
59
|
+
}
|
60
|
+
for cusp in self.mcomplex.Vertices:
|
61
|
+
self._add_one_cusp_cross_section(cusp, one_cocycle)
|
62
|
+
|
63
|
+
def _add_one_cusp_cross_section(self, cusp, one_cocycle):
|
64
|
+
"""
|
65
|
+
Build a cusp cross section as described in Section 3.6 of the paper
|
66
|
+
|
67
|
+
Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling
|
68
|
+
Nathan M. Dunfield, Neil R. Hoffman, Joan E. Licata
|
69
|
+
http://arxiv.org/abs/1407.7827
|
70
|
+
"""
|
71
|
+
corner0 = cusp.Corners[0]
|
72
|
+
tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
|
73
|
+
face0 = simplex.FacesAroundVertexCounterclockwise[vert0][0]
|
74
|
+
tet0.horotriangles[vert0] = self.HoroTriangle(tet0, vert0, face0)
|
75
|
+
active = [(tet0, vert0)]
|
76
|
+
while active:
|
77
|
+
tet0, vert0 = active.pop()
|
78
|
+
for face0 in simplex.FacesAroundVertexCounterclockwise[vert0]:
|
79
|
+
tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
|
80
|
+
tet0, face0, vert0)
|
81
|
+
if tet1.horotriangles[vert1] is None:
|
82
|
+
known_side = (self.HoroTriangle.direction_sign() *
|
83
|
+
tet0.horotriangles[vert0].lengths[face0])
|
84
|
+
if one_cocycle:
|
85
|
+
known_side *= one_cocycle[tet0.Index, face0, vert0]
|
86
|
+
|
87
|
+
tet1.horotriangles[vert1] = self.HoroTriangle(
|
88
|
+
tet1, vert1, face1, known_side)
|
89
|
+
active.append((tet1, vert1))
|
90
|
+
|
91
|
+
@staticmethod
|
92
|
+
def _glued_to(tetrahedron, face, vertex):
|
93
|
+
"""
|
94
|
+
Returns (other tet, other face, other vertex).
|
95
|
+
"""
|
96
|
+
gluing = tetrahedron.Gluing[face]
|
97
|
+
return tetrahedron.Neighbor[face], gluing.image(face), gluing.image(vertex)
|
98
|
+
|
99
|
+
@staticmethod
|
100
|
+
def _cusp_area(cusp):
|
101
|
+
area = 0
|
102
|
+
for corner in cusp.Corners:
|
103
|
+
subsimplex = corner.Subsimplex
|
104
|
+
area += corner.Tetrahedron.horotriangles[subsimplex].area
|
105
|
+
return area
|
106
|
+
|
107
|
+
def cusp_areas(self):
|
108
|
+
"""
|
109
|
+
List of all cusp areas.
|
110
|
+
"""
|
111
|
+
return [ CuspCrossSectionBase._cusp_area(cusp) for cusp in self.mcomplex.Vertices ]
|
112
|
+
|
113
|
+
@staticmethod
|
114
|
+
def _scale_cusp(cusp, scale):
|
115
|
+
for corner in cusp.Corners:
|
116
|
+
subsimplex = corner.Subsimplex
|
117
|
+
corner.Tetrahedron.horotriangles[subsimplex].rescale(scale)
|
118
|
+
|
119
|
+
def scale_cusps(self, scales):
|
120
|
+
"""
|
121
|
+
Scale each cusp by Euclidean dilation by values in given array.
|
122
|
+
"""
|
123
|
+
for cusp, scale in zip(self.mcomplex.Vertices, scales):
|
124
|
+
CuspCrossSectionBase._scale_cusp(cusp, scale)
|
125
|
+
|
126
|
+
def normalize_cusps(self, areas=None):
|
127
|
+
"""
|
128
|
+
Scale cusp so that they have the given target area.
|
129
|
+
Without argument, each cusp is scaled to have area 1.
|
130
|
+
If the argument is a number, scale each cusp to have that area.
|
131
|
+
If the argument is an array, scale each cusp by the respective
|
132
|
+
entry in the array.
|
133
|
+
"""
|
134
|
+
current_areas = self.cusp_areas()
|
135
|
+
if not areas:
|
136
|
+
areas = [ 1 for area in current_areas ]
|
137
|
+
elif not isinstance(areas, list):
|
138
|
+
areas = [ areas for area in current_areas ]
|
139
|
+
scales = [ (area / current_area).sqrt()
|
140
|
+
for area, current_area in zip(areas, current_areas) ]
|
141
|
+
self.scale_cusps(scales)
|
142
|
+
|
143
|
+
def check_cusp_development_exactly(self):
|
144
|
+
"""
|
145
|
+
Check that all side lengths of horo triangles are consistent.
|
146
|
+
If the logarithmic edge equations are fulfilled, this implices
|
147
|
+
that the all cusps are complete and thus the manifold is complete.
|
148
|
+
"""
|
149
|
+
|
150
|
+
for tet0 in self.mcomplex.Tetrahedra:
|
151
|
+
for vert0 in simplex.ZeroSubsimplices:
|
152
|
+
for face0 in simplex.FacesAroundVertexCounterclockwise[vert0]:
|
153
|
+
tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
|
154
|
+
tet0, face0, vert0)
|
155
|
+
side0 = tet0.horotriangles[vert0].lengths[face0]
|
156
|
+
side1 = tet1.horotriangles[vert1].lengths[face1]
|
157
|
+
if not side0 == side1 * self.HoroTriangle.direction_sign():
|
158
|
+
raise CuspDevelopmentExactVerifyError(side0, side1)
|
159
|
+
|
160
|
+
def _testing_check_against_snappea(self, epsilon):
|
161
|
+
# Short-hand
|
162
|
+
ZeroSubs = simplex.ZeroSubsimplices
|
163
|
+
|
164
|
+
# SnapPea kernel results
|
165
|
+
snappea_tilts, snappea_edges = self.manifold._cusp_cross_section_info()
|
166
|
+
|
167
|
+
# Check edge lengths
|
168
|
+
# Iterate through tet
|
169
|
+
for tet, snappea_tet_edges in zip(self.mcomplex.Tetrahedra, snappea_edges):
|
170
|
+
# Iterate through vertices of tet
|
171
|
+
for v, snappea_triangle_edges in zip(ZeroSubs, snappea_tet_edges):
|
172
|
+
# Iterate through faces touching that vertex
|
173
|
+
for f, snappea_triangle_edge in zip(ZeroSubs,
|
174
|
+
snappea_triangle_edges):
|
175
|
+
if v != f:
|
176
|
+
F = simplex.comp(f)
|
177
|
+
length = abs(tet.horotriangles[v].lengths[F])
|
178
|
+
if not abs(length - snappea_triangle_edge) < epsilon:
|
179
|
+
raise ConsistencyWithSnapPeaNumericalVerifyError(
|
180
|
+
snappea_triangle_edge, length)
|
181
|
+
|
182
|
+
@staticmethod
|
183
|
+
def _lower_bound_max_area_triangle_for_std_form(z):
|
184
|
+
"""
|
185
|
+
Imagine an ideal tetrahedron in the upper half space model with
|
186
|
+
vertices at 0, 1, z, and infinity. Pick the lowest (horizontal)
|
187
|
+
horosphere about infinity that intersects the tetrahedron in a
|
188
|
+
triangle, i.e, just touches the face opposite to infinity.
|
189
|
+
This method will return the hyperbolic area of that triangle.
|
190
|
+
|
191
|
+
The result is the same for z, 1/(1-z), and 1 - 1/z.
|
192
|
+
"""
|
193
|
+
|
194
|
+
# First, we check whether the center of the circumcenter of the
|
195
|
+
# triangle containing 0, 1, and z is contained within the triangle.
|
196
|
+
|
197
|
+
# If the center is outside of the triangle, the Euclidean height of the
|
198
|
+
# horosphere is that of the highest point of the three arcs between
|
199
|
+
# 0, 1, and z.
|
200
|
+
# The height is half of the length e of the longest edge of the
|
201
|
+
# triangle.
|
202
|
+
# Given that the Euclidean area of the triangle is given by
|
203
|
+
# A = Im(z) / 2, its hyperbolic area is
|
204
|
+
# A / (e/2)^2 = Im(z) / 2 / (e^2/4) = 2 * Im(z) / e^2
|
205
|
+
#
|
206
|
+
# This is similar to fef_gen.py except that it had a bug in version 1.3
|
207
|
+
# and implemented the last inequality the other way around!
|
208
|
+
#
|
209
|
+
# The center is outside if one of the angles is > pi/2, cover each case
|
210
|
+
#
|
211
|
+
|
212
|
+
# Angle at 0 is > pi/2
|
213
|
+
if z.real() < 0:
|
214
|
+
# So longest edge of the triangle must be opposite of 0
|
215
|
+
return 2 * z.imag() / (abs(z - 1) ** 2)
|
216
|
+
# Angle at 1 is > pi/2
|
217
|
+
if z.real() > 1:
|
218
|
+
# So longest edge of the triangle must be opposite of 1
|
219
|
+
return 2 * z.imag() / (abs(z) ** 2)
|
220
|
+
# Angle at z is > pi/2
|
221
|
+
if abs(2 * z - 1) < 1:
|
222
|
+
# So longest edge of the triangle must be opposite of z
|
223
|
+
return 2 * z.imag()
|
224
|
+
|
225
|
+
# An interval note: the circumcenter might still be in the triangle,
|
226
|
+
# we just were not able to prove it. The area we compute is a lower
|
227
|
+
# bound in any case. Thus, the function is not guaranteed to compute
|
228
|
+
# the maximal area, just a lower bound for it.
|
229
|
+
|
230
|
+
# Now cover the case that the center of the triangle is within the
|
231
|
+
# triangle.
|
232
|
+
|
233
|
+
# The Euclidean area of the above triangle is given by
|
234
|
+
# A = Im(z) / 2
|
235
|
+
# and its Euclidean side lengths are given by
|
236
|
+
# a = 1, b = abs(z), and c = abs(z - 1).
|
237
|
+
#
|
238
|
+
# The Euclidean circumradius r of the triangle is given by the usual
|
239
|
+
# formula
|
240
|
+
# r = a * b * c / (4 * A)
|
241
|
+
#
|
242
|
+
# This is also the Euclidean radius of the circle containing 0, 1, and
|
243
|
+
# z and of the halfsphere above that circle that contains the face
|
244
|
+
# opposite to infinity.
|
245
|
+
# Therefore, r is also the Euclidean height of the above horosphere and
|
246
|
+
# hence, the hyperbolic metric at that height is 1/r.
|
247
|
+
# So the hyperbolic area of the triangle becomes
|
248
|
+
#
|
249
|
+
# A / r^2 = A / (a * b * c / (4 * A))^2 = 16 * A^3 / (a * b * c)^2
|
250
|
+
# = 2 * Im(z)^3 / (abs(z) * abs(z-1)) ^ 2
|
251
|
+
|
252
|
+
return 2 * z.imag() ** 3 / (abs(z) * abs(z - 1)) ** 2
|
253
|
+
|
254
|
+
@staticmethod
|
255
|
+
def _max_area_triangle_to_avoid_incenter(z):
|
256
|
+
abs_z = abs(z)
|
257
|
+
abs_z_minus_one = abs(z - 1)
|
258
|
+
return z.imag() * (1 + abs_z + abs_z_minus_one) / (4 * abs_z * abs_z_minus_one)
|
259
|
+
|
260
|
+
@staticmethod
|
261
|
+
def _compute_area_scale(corner : t3m.Corner, area_function):
|
262
|
+
"""
|
263
|
+
For a tetrahedron and vertex of the tetrahedron, compute how much
|
264
|
+
the cusp neighborhood about the vertex can be scaled so that the cusp
|
265
|
+
triangle is given the by area_function.
|
266
|
+
"""
|
267
|
+
|
268
|
+
tet = corner.Tetrahedron
|
269
|
+
z = tet.ShapeParameters[simplex.E01]
|
270
|
+
return area_function(z) / tet.horotriangles[corner.Subsimplex].area
|
271
|
+
|
272
|
+
@staticmethod
|
273
|
+
def _compute_max_scale(v : t3m.Vertex, max_area_function):
|
274
|
+
area_scales = [
|
275
|
+
CuspCrossSectionBase._compute_area_scale(corner, max_area_function)
|
276
|
+
for corner in v.Corners ]
|
277
|
+
|
278
|
+
return correct_min(area_scales).sqrt()
|
279
|
+
|
280
|
+
def compute_scale_for_std_form(self, v : t3m.Vertex):
|
281
|
+
"""
|
282
|
+
Computes scale for cusp neighborhood about given vertex to ensure
|
283
|
+
that each tetrahedron adjacent to the vertex intersects the the
|
284
|
+
cusp neighborhood in standard form.
|
285
|
+
"""
|
286
|
+
return CuspCrossSectionBase._compute_max_scale(
|
287
|
+
v, CuspCrossSectionBase._lower_bound_max_area_triangle_for_std_form)
|
288
|
+
|
289
|
+
def compute_scale_to_avoid_incenter(self, v : t3m.Vertex):
|
290
|
+
"""
|
291
|
+
Computes scale for cusp neighborhood about given vertex to ensure
|
292
|
+
that the cusp neighborhood avoid the incenter of each tetrahedron.
|
293
|
+
"""
|
294
|
+
return CuspCrossSectionBase._compute_max_scale(
|
295
|
+
v, CuspCrossSectionBase._max_area_triangle_to_avoid_incenter)
|
296
|
+
|
297
|
+
def ensure_std_form(self, allow_scaling_up=False):
|
298
|
+
"""
|
299
|
+
Makes sure that the cusp neighborhoods intersect each tetrahedron
|
300
|
+
in standard form by scaling the cusp neighborhoods down if necessary.
|
301
|
+
"""
|
302
|
+
|
303
|
+
z = self.mcomplex.Tetrahedra[0].ShapeParameters[simplex.E01]
|
304
|
+
RF = z.real().parent()
|
305
|
+
one = RF(1)
|
306
|
+
|
307
|
+
for v in self.mcomplex.Vertices:
|
308
|
+
scale = self.compute_scale_for_std_form(v)
|
309
|
+
if not allow_scaling_up:
|
310
|
+
scale = correct_min([one, scale])
|
311
|
+
CuspCrossSectionBase._scale_cusp(v, scale)
|
312
|
+
|
313
|
+
@staticmethod
|
314
|
+
def _exp_distance_edge_embedding(tet, perm):
|
315
|
+
# Get a face of the tetrahedron adjacent to that edge
|
316
|
+
face3 = simplex.TwoSubsimplices[perm[3]]
|
317
|
+
# At each end of the edge, this tetrahedron gives us one
|
318
|
+
# triangle of a cusp cross-section and the intersection of the
|
319
|
+
# face with the cusp cross-section gives us one edge of the
|
320
|
+
# triangle.
|
321
|
+
# Multiply the two edge lengths. If these are complex edge
|
322
|
+
# lengths, the result is actually the square of a Ptolemy
|
323
|
+
# coordinate (see C. Zickert, The volume and Chern-Simons
|
324
|
+
# invariant of a representation).
|
325
|
+
v0 = simplex.ZeroSubsimplices[perm[0]]
|
326
|
+
length0 = tet.horotriangles[v0].get_real_lengths()[face3]
|
327
|
+
|
328
|
+
v1 = simplex.ZeroSubsimplices[perm[1]]
|
329
|
+
length1 = tet.horotriangles[v1].get_real_lengths()[face3]
|
330
|
+
|
331
|
+
return 1 / (length0 * length1)
|
332
|
+
|
333
|
+
@staticmethod
|
334
|
+
def _exp_distance_edge(edge : t3m.Edge):
|
335
|
+
"""
|
336
|
+
Given an edge, returns the maximal scaling factor of the two cusp
|
337
|
+
neighborhoods at the end of the edges so that the neighborhoods do
|
338
|
+
not intersect in the given edge.
|
339
|
+
"""
|
340
|
+
|
341
|
+
distances = []
|
342
|
+
# Walk around the edge.
|
343
|
+
for i, (tet, perm) in enumerate(edge.embeddings()):
|
344
|
+
d = CuspCrossSectionBase._exp_distance_edge_embedding(tet, perm)
|
345
|
+
|
346
|
+
if i == 0:
|
347
|
+
v0 = simplex.ZeroSubsimplices[perm[0]]
|
348
|
+
v1 = simplex.ZeroSubsimplices[perm[1]]
|
349
|
+
if tet.Class[v0].is_complete and tet.Class[v1].is_complete:
|
350
|
+
# If both cusps are complete, then the horotriangles
|
351
|
+
# of one of the cusp neighborhoods all intersect the edge
|
352
|
+
# in the manifold in the same point. Thus, the distance
|
353
|
+
# we compute is the same, no matter from what tetrahedron
|
354
|
+
# we measure it.
|
355
|
+
return d
|
356
|
+
|
357
|
+
distances.append(d)
|
358
|
+
|
359
|
+
return correct_min(distances)
|
360
|
+
|
361
|
+
@staticmethod
|
362
|
+
def _exp_distance_of_edges(edges: List[t3m.Edge]):
|
363
|
+
"""
|
364
|
+
Implements exp_distance_neighborhoods_measured_along_edges given
|
365
|
+
all edges connecting two cusps in question.
|
366
|
+
"""
|
367
|
+
return correct_min(
|
368
|
+
[ CuspCrossSectionBase._exp_distance_edge(edge)
|
369
|
+
for edge in edges])
|
370
|
+
|
371
|
+
def exp_distance_neighborhoods_measured_along_edges(
|
372
|
+
self, i : int, j : int) -> Optional[Any]:
|
373
|
+
"""
|
374
|
+
Computes the maximal scaling factor of the cusp neighborhoods
|
375
|
+
about cusp i and j such that the two neighborhoods stay disjoint
|
376
|
+
along the edges.
|
377
|
+
|
378
|
+
That is if we scale both cusp i and j, then they are disjoint along
|
379
|
+
edges if the product of the scale factor is less than the maximal
|
380
|
+
scaling factor.
|
381
|
+
|
382
|
+
Note that if i and j are the same, because the scaling factor applies
|
383
|
+
to the same cusp twice, we only can scale the one cusp by a factor
|
384
|
+
sqrt(maximal scaling factor) to stay disjoint along edges.
|
385
|
+
|
386
|
+
This function can return None if no edge between the two given
|
387
|
+
cusps exists.
|
388
|
+
|
389
|
+
Assume two cusp neighborhoods are disjoing along edges. They could
|
390
|
+
still intersect if they are not in standard form.
|
391
|
+
|
392
|
+
Note that this method also works for filled cusps. In this case,
|
393
|
+
the neighborhood is about a core curve in the manifold and consists
|
394
|
+
of the intersections with a tetrahedra by horoballs about its vertices.
|
395
|
+
o
|
396
|
+
When using filled cusps, it is advisable to call
|
397
|
+
scale_triangles_to_avoid_standard_tube first.
|
398
|
+
"""
|
399
|
+
if i > j:
|
400
|
+
i, j = j, i
|
401
|
+
if not (i, j) in self._edge_dict:
|
402
|
+
return None
|
403
|
+
return CuspCrossSectionBase._exp_distance_of_edges(
|
404
|
+
self._edge_dict[(i,j)])
|
405
|
+
|
406
|
+
def ensure_disjoint_on_edges(self):
|
407
|
+
"""
|
408
|
+
Scales the cusp neighborhoods down until they are disjoint when
|
409
|
+
intersected with the edges of the triangulations.
|
410
|
+
|
411
|
+
Given an edge of a triangulation, we can easily compute the signed
|
412
|
+
distance between the two cusp neighborhoods at the ends of the edge
|
413
|
+
measured along that edge. Thus, we can easily check that all the
|
414
|
+
distances measured along all the edges are positive and scale the
|
415
|
+
cusps down if necessary.
|
416
|
+
|
417
|
+
Unfortunately, this is not sufficient to ensure that two cusp
|
418
|
+
neighborhoods are disjoint since there might be a geodesic between
|
419
|
+
the two cusps such that the distance between the two cusps measured
|
420
|
+
along the geodesic is shorter than measured along any edge of the
|
421
|
+
triangulation.
|
422
|
+
|
423
|
+
Thus, it is necessary to call ensure_std_form as well:
|
424
|
+
it will make sure that the cusp neighborhoods are small enough so
|
425
|
+
that they intersect the tetrahedra in "standard" form.
|
426
|
+
Here, "standard" form means that the corresponding horoball about a
|
427
|
+
vertex of a tetrahedron intersects the three faces of the tetrahedron
|
428
|
+
adjacent to the vertex but not the one opposite to the vertex.
|
429
|
+
|
430
|
+
For any geometric triangulation, standard form and positive distance
|
431
|
+
measured along all edges of the triangulation is sufficient for
|
432
|
+
disjoint neighborhoods.
|
433
|
+
|
434
|
+
The SnapPea kernel uses the proto-canonical triangulation associated
|
435
|
+
to the cusp neighborhood to get around this when computing the
|
436
|
+
"reach" and the "stoppers" for the cusps.
|
437
|
+
|
438
|
+
**Remark:** This means that the cusp neighborhoods might be scaled down
|
439
|
+
more than necessary. Related open questions are: given maximal disjoint
|
440
|
+
cusp neighborhoods (maximal in the sense that no neighborhood can be
|
441
|
+
expanded without bumping into another or itself), is there always a
|
442
|
+
geometric triangulation intersecting the cusp neighborhoods in standard
|
443
|
+
form? Is there an easy algorithm to find this triangulation, e.g., by
|
444
|
+
applying a 2-3 move whenever we see a non-standard intersection?
|
445
|
+
"""
|
446
|
+
|
447
|
+
num_cusps = len(self.mcomplex.Vertices)
|
448
|
+
|
449
|
+
# First check for every cusp that its cusp neighborhood does not bump
|
450
|
+
# into itself - at least when measured along the edges of the
|
451
|
+
# triangulation
|
452
|
+
for i in range(num_cusps):
|
453
|
+
# Get all edges
|
454
|
+
if (i,i) in self._edge_dict:
|
455
|
+
dist = CuspCrossSectionBase._exp_distance_of_edges(
|
456
|
+
self._edge_dict[(i,i)])
|
457
|
+
# For verified computations, do not use the seemingly
|
458
|
+
# equivalent dist <= 1. We want to scale down every time
|
459
|
+
# we cannot ensure they are disjoint.
|
460
|
+
if not (dist > 1):
|
461
|
+
scale = dist.sqrt()
|
462
|
+
# Scale the one cusp
|
463
|
+
CuspCrossSectionBase._scale_cusp(self.mcomplex.Vertices[i],
|
464
|
+
scale)
|
465
|
+
|
466
|
+
# Now check for the pairs of two distinct cusps that the corresponding
|
467
|
+
# neighborhoods do not bump into each other - at least when measured
|
468
|
+
# along the edges of the triangulation
|
469
|
+
for i in range(num_cusps):
|
470
|
+
for j in range(i):
|
471
|
+
dist = self.exp_distance_neighborhoods_measured_along_edges(i, j)
|
472
|
+
# Above comment applies
|
473
|
+
if dist is not None:
|
474
|
+
if not (dist > 1):
|
475
|
+
# Scale the two cusps by the same amount
|
476
|
+
# We have choices here, for example, we could only
|
477
|
+
# scale one cusp by dist.
|
478
|
+
scale = dist.sqrt()
|
479
|
+
CuspCrossSectionBase._scale_cusp(self.mcomplex.Vertices[i],
|
480
|
+
scale)
|
481
|
+
CuspCrossSectionBase._scale_cusp(self.mcomplex.Vertices[j],
|
482
|
+
scale)
|
483
|
+
|
484
|
+
|
@@ -0,0 +1,42 @@
|
|
1
|
+
class IncompleteCuspError(ValueError):
|
2
|
+
"""
|
3
|
+
Exception raised when trying to construct a CuspCrossSection
|
4
|
+
from a Manifold with Dehn-fillings.
|
5
|
+
"""
|
6
|
+
def __init__(self, manifold):
|
7
|
+
self.manifold = manifold
|
8
|
+
|
9
|
+
def __str__(self):
|
10
|
+
return (('Cannot construct CuspCrossSection from manifold with '
|
11
|
+
'Dehn-fillings: %s') % self.manifold)
|
12
|
+
|
13
|
+
|
14
|
+
class ConsistencyWithSnapPeaNumericalVerifyError(RuntimeError):
|
15
|
+
"""
|
16
|
+
Exception raised when there is a significant numerical difference
|
17
|
+
between the values computed by the SnapPea kernel and by this module
|
18
|
+
for a given quantity.
|
19
|
+
"""
|
20
|
+
def __init__(self, value, snappea_value):
|
21
|
+
self.value = value
|
22
|
+
self.snappea_value = snappea_value
|
23
|
+
|
24
|
+
def __str__(self):
|
25
|
+
return ('Inconsistency between SnapPea kernel and verify: '
|
26
|
+
'%r == %r' % (self.snappea_value, self.value))
|
27
|
+
|
28
|
+
class CuspDevelopmentExactVerifyError(RuntimeError):
|
29
|
+
"""
|
30
|
+
Raised when finding a consistent assignment of side lengths to the
|
31
|
+
Euclidean Horotriangles to form a Euclidean Horotorus for a cusp failed
|
32
|
+
using exact arithmetic.
|
33
|
+
"""
|
34
|
+
|
35
|
+
def __init__(self, value1, value2):
|
36
|
+
self.value1 = value1
|
37
|
+
self.value2 = value2
|
38
|
+
|
39
|
+
def __str__(self):
|
40
|
+
return ('Inconsistency in the side lengths of the Euclidean '
|
41
|
+
'Horotriangles for a cusp: '
|
42
|
+
'%r = %r' % (self.value1, self.value2))
|