snappy 3.0.3__cp38-cp38-macosx_11_0_arm64.whl → 3.2__cp38-cp38-macosx_11_0_arm64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (401) hide show
  1. snappy/CyOpenGL.cpython-38-darwin.so +0 -0
  2. snappy/SnapPy.cpython-38-darwin.so +0 -0
  3. snappy/SnapPyHP.cpython-38-darwin.so +0 -0
  4. snappy/__init__.py +373 -426
  5. snappy/app.py +240 -75
  6. snappy/app_menus.py +93 -78
  7. snappy/browser.py +87 -63
  8. snappy/cache.py +5 -8
  9. snappy/canonical.py +249 -0
  10. snappy/{verify/cusp_shapes.py → cusps/__init__.py} +11 -19
  11. snappy/cusps/cusp_area_matrix.py +101 -0
  12. snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +39 -54
  13. snappy/cusps/maximal_cusp_area_matrix.py +136 -0
  14. snappy/cusps/test.py +21 -0
  15. snappy/cusps/trig_cusp_area_matrix.py +63 -0
  16. snappy/database.py +40 -31
  17. snappy/db_utilities.py +13 -14
  18. snappy/decorated_isosig.py +377 -133
  19. snappy/dev/extended_ptolemy/complexVolumesClosed.py +42 -9
  20. snappy/dev/extended_ptolemy/extended.py +32 -25
  21. snappy/dev/extended_ptolemy/giac_rur.py +23 -8
  22. snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
  23. snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +2 -1
  24. snappy/dev/vericlosed/gimbalLoopFinder.py +5 -5
  25. snappy/dev/vericlosed/hyperbolicStructure.py +3 -3
  26. snappy/dev/vericlosed/oneVertexTruncatedComplex.py +2 -2
  27. snappy/dev/vericlosed/truncatedComplex.py +3 -2
  28. snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +4 -3
  29. snappy/doc/_images/geodesics.jpg +0 -0
  30. snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
  31. snappy/doc/_images/m125_paper_plane.jpg +0 -0
  32. snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
  33. snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
  34. snappy/doc/_sources/additional_classes.rst.txt +1 -0
  35. snappy/doc/_sources/credits.rst.txt +6 -1
  36. snappy/doc/_sources/development.rst.txt +69 -50
  37. snappy/doc/_sources/index.rst.txt +101 -66
  38. snappy/doc/_sources/installing.rst.txt +148 -165
  39. snappy/doc/_sources/news.rst.txt +136 -32
  40. snappy/doc/_sources/ptolemy.rst.txt +1 -1
  41. snappy/doc/_sources/ptolemy_examples1.rst.txt +9 -8
  42. snappy/doc/_sources/ptolemy_examples2.rst.txt +3 -3
  43. snappy/doc/_sources/ptolemy_examples3.rst.txt +14 -14
  44. snappy/doc/_sources/ptolemy_prelim.rst.txt +1 -1
  45. snappy/doc/_sources/snap.rst.txt +2 -2
  46. snappy/doc/_sources/snappy.rst.txt +1 -1
  47. snappy/doc/_sources/triangulation.rst.txt +3 -2
  48. snappy/doc/_sources/verify.rst.txt +89 -29
  49. snappy/doc/_sources/verify_internals.rst.txt +5 -16
  50. snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
  51. snappy/doc/_static/SnapPy.ico +0 -0
  52. snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
  53. snappy/doc/_static/basic.css +47 -27
  54. snappy/doc/_static/css/badge_only.css +1 -0
  55. snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
  56. snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
  57. snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
  58. snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
  59. snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
  60. snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
  61. snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
  62. snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
  63. snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
  64. snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
  65. snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
  66. snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
  67. snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
  68. snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
  69. snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
  70. snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
  71. snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
  72. snappy/doc/_static/css/theme.css +4 -0
  73. snappy/doc/_static/doctools.js +107 -274
  74. snappy/doc/_static/documentation_options.js +6 -5
  75. snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
  76. snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
  77. snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
  78. snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
  79. snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
  80. snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
  81. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
  82. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
  83. snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
  84. snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
  85. snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
  86. snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
  87. snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
  88. snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
  89. snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
  90. snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
  91. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
  92. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
  93. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
  94. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
  95. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
  96. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
  97. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
  98. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
  99. snappy/doc/_static/jquery.js +2 -2
  100. snappy/doc/_static/js/badge_only.js +1 -0
  101. snappy/doc/_static/js/theme.js +1 -0
  102. snappy/doc/_static/js/versions.js +228 -0
  103. snappy/doc/_static/language_data.js +3 -101
  104. snappy/doc/_static/pygments.css +1 -0
  105. snappy/doc/_static/searchtools.js +489 -398
  106. snappy/doc/_static/snappy_furo.css +33 -0
  107. snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
  108. snappy/doc/_static/sphinx_highlight.js +154 -0
  109. snappy/doc/additional_classes.html +688 -263
  110. snappy/doc/bugs.html +107 -94
  111. snappy/doc/censuses.html +155 -127
  112. snappy/doc/credits.html +115 -104
  113. snappy/doc/development.html +184 -146
  114. snappy/doc/genindex.html +287 -204
  115. snappy/doc/index.html +189 -150
  116. snappy/doc/installing.html +259 -266
  117. snappy/doc/manifold.html +1626 -592
  118. snappy/doc/manifoldhp.html +119 -105
  119. snappy/doc/news.html +198 -104
  120. snappy/doc/objects.inv +0 -0
  121. snappy/doc/other.html +117 -105
  122. snappy/doc/platonic_census.html +161 -114
  123. snappy/doc/plink.html +113 -105
  124. snappy/doc/ptolemy.html +131 -108
  125. snappy/doc/ptolemy_classes.html +242 -223
  126. snappy/doc/ptolemy_examples1.html +144 -130
  127. snappy/doc/ptolemy_examples2.html +141 -129
  128. snappy/doc/ptolemy_examples3.html +148 -132
  129. snappy/doc/ptolemy_examples4.html +131 -111
  130. snappy/doc/ptolemy_prelim.html +162 -138
  131. snappy/doc/py-modindex.html +104 -69
  132. snappy/doc/screenshots.html +117 -108
  133. snappy/doc/search.html +115 -84
  134. snappy/doc/searchindex.js +1 -1
  135. snappy/doc/snap.html +109 -96
  136. snappy/doc/snappy.html +134 -97
  137. snappy/doc/spherogram.html +259 -187
  138. snappy/doc/todo.html +107 -94
  139. snappy/doc/triangulation.html +1380 -111
  140. snappy/doc/tutorial.html +107 -94
  141. snappy/doc/verify.html +194 -125
  142. snappy/doc/verify_internals.html +248 -686
  143. snappy/drilling/__init__.py +456 -0
  144. snappy/drilling/barycentric.py +103 -0
  145. snappy/drilling/constants.py +5 -0
  146. snappy/drilling/crush.py +270 -0
  147. snappy/drilling/cusps.py +125 -0
  148. snappy/drilling/debug.py +242 -0
  149. snappy/drilling/epsilons.py +6 -0
  150. snappy/drilling/exceptions.py +55 -0
  151. snappy/drilling/moves.py +620 -0
  152. snappy/drilling/peripheral_curves.py +210 -0
  153. snappy/drilling/perturb.py +188 -0
  154. snappy/drilling/shorten.py +36 -0
  155. snappy/drilling/subdivide.py +274 -0
  156. snappy/drilling/test.py +23 -0
  157. snappy/drilling/test_cases.py +126 -0
  158. snappy/drilling/tracing.py +351 -0
  159. snappy/exceptions.py +23 -3
  160. snappy/export_stl.py +20 -14
  161. snappy/exterior_to_link/__init__.py +2 -0
  162. snappy/exterior_to_link/barycentric_geometry.py +463 -0
  163. snappy/exterior_to_link/exceptions.py +6 -0
  164. snappy/exterior_to_link/geodesic_map.json +14408 -0
  165. snappy/exterior_to_link/hyp_utils.py +112 -0
  166. snappy/exterior_to_link/link_projection.py +323 -0
  167. snappy/exterior_to_link/main.py +197 -0
  168. snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
  169. snappy/exterior_to_link/mcomplex_with_link.py +687 -0
  170. snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
  171. snappy/exterior_to_link/pl_utils.py +491 -0
  172. snappy/exterior_to_link/put_in_S3.py +156 -0
  173. snappy/exterior_to_link/rational_linear_algebra.py +123 -0
  174. snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
  175. snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
  176. snappy/exterior_to_link/stored_moves.py +475 -0
  177. snappy/exterior_to_link/test.py +31 -0
  178. snappy/geometric_structure/__init__.py +212 -0
  179. snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
  180. snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
  181. snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
  182. snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
  183. snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
  184. snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
  185. snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
  186. snappy/geometric_structure/geodesic/__init__.py +0 -0
  187. snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
  188. snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
  189. snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
  190. snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
  191. snappy/geometric_structure/geodesic/constants.py +6 -0
  192. snappy/geometric_structure/geodesic/exceptions.py +22 -0
  193. snappy/geometric_structure/geodesic/fixed_points.py +93 -0
  194. snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
  195. snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
  196. snappy/geometric_structure/geodesic/line.py +30 -0
  197. snappy/geometric_structure/geodesic/multiplicity.py +127 -0
  198. snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
  199. snappy/geometric_structure/test.py +22 -0
  200. snappy/gui.py +36 -36
  201. snappy/horoviewer.py +50 -48
  202. snappy/hyperboloid/__init__.py +212 -0
  203. snappy/hyperboloid/distances.py +245 -0
  204. snappy/hyperboloid/horoball.py +19 -0
  205. snappy/hyperboloid/line.py +35 -0
  206. snappy/hyperboloid/point.py +9 -0
  207. snappy/hyperboloid/triangle.py +29 -0
  208. snappy/{infodialog.py → infowindow.py} +32 -33
  209. snappy/isometry_signature.py +382 -0
  210. snappy/len_spec/__init__.py +596 -0
  211. snappy/len_spec/geodesic_info.py +110 -0
  212. snappy/len_spec/geodesic_key_info_dict.py +117 -0
  213. snappy/len_spec/geodesic_piece.py +143 -0
  214. snappy/len_spec/geometric_structure.py +182 -0
  215. snappy/len_spec/geometry.py +80 -0
  216. snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
  217. snappy/len_spec/spine.py +206 -0
  218. snappy/len_spec/test.py +24 -0
  219. snappy/len_spec/test_cases.py +69 -0
  220. snappy/len_spec/tile.py +275 -0
  221. snappy/len_spec/word.py +86 -0
  222. snappy/manifolds/__init__.py +1 -1
  223. snappy/math_basics.py +176 -0
  224. snappy/matrix.py +525 -0
  225. snappy/number.py +97 -21
  226. snappy/numeric_output_checker.py +37 -27
  227. snappy/pari.py +30 -69
  228. snappy/phone_home.py +25 -20
  229. snappy/polyviewer.py +39 -37
  230. snappy/ptolemy/__init__.py +4 -6
  231. snappy/ptolemy/component.py +14 -12
  232. snappy/ptolemy/coordinates.py +312 -295
  233. snappy/ptolemy/fieldExtensions.py +14 -12
  234. snappy/ptolemy/findLoops.py +43 -31
  235. snappy/ptolemy/geometricRep.py +24 -26
  236. snappy/ptolemy/homology.py +12 -7
  237. snappy/ptolemy/manifoldMethods.py +69 -70
  238. snappy/ptolemy/matrix.py +65 -26
  239. snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +18 -14
  240. snappy/ptolemy/polynomial.py +125 -119
  241. snappy/ptolemy/processComponents.py +36 -30
  242. snappy/ptolemy/processFileBase.py +79 -18
  243. snappy/ptolemy/processFileDispatch.py +13 -14
  244. snappy/ptolemy/processMagmaFile.py +44 -39
  245. snappy/ptolemy/processRurFile.py +18 -11
  246. snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +20 -17
  247. snappy/ptolemy/ptolemyObstructionClass.py +13 -17
  248. snappy/ptolemy/ptolemyVariety.py +190 -121
  249. snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +20 -19
  250. snappy/ptolemy/reginaWrapper.py +25 -29
  251. snappy/ptolemy/rur.py +6 -14
  252. snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +27 -22
  253. snappy/ptolemy/test.py +247 -188
  254. snappy/ptolemy/utilities.py +41 -43
  255. snappy/raytracing/__init__.py +64 -0
  256. snappy/raytracing/additional_horospheres.py +64 -0
  257. snappy/raytracing/additional_len_spec_choices.py +63 -0
  258. snappy/raytracing/cohomology_fractal.py +10 -6
  259. snappy/raytracing/eyeball.py +123 -0
  260. snappy/raytracing/finite_raytracing_data.py +48 -38
  261. snappy/raytracing/finite_viewer.py +218 -210
  262. snappy/raytracing/geodesic_tube_info.py +174 -0
  263. snappy/raytracing/geodesics.py +246 -0
  264. snappy/raytracing/geodesics_window.py +258 -0
  265. snappy/raytracing/gui_utilities.py +152 -40
  266. snappy/raytracing/hyperboloid_navigation.py +102 -52
  267. snappy/raytracing/hyperboloid_utilities.py +114 -261
  268. snappy/raytracing/ideal_raytracing_data.py +256 -179
  269. snappy/raytracing/inside_viewer.py +522 -253
  270. snappy/raytracing/pack.py +22 -0
  271. snappy/raytracing/raytracing_data.py +46 -34
  272. snappy/raytracing/raytracing_view.py +190 -109
  273. snappy/raytracing/shaders/Eye.png +0 -0
  274. snappy/raytracing/shaders/NonGeometric.png +0 -0
  275. snappy/raytracing/shaders/__init__.py +60 -4
  276. snappy/raytracing/shaders/fragment.glsl +575 -148
  277. snappy/raytracing/test.py +29 -0
  278. snappy/raytracing/tooltip.py +146 -0
  279. snappy/raytracing/upper_halfspace_utilities.py +98 -0
  280. snappy/raytracing/view_scale_controller.py +98 -0
  281. snappy/raytracing/zoom_slider/__init__.py +32 -29
  282. snappy/raytracing/zoom_slider/test.py +2 -0
  283. snappy/sage_helper.py +69 -123
  284. snappy/{preferences.py → settings.py} +167 -145
  285. snappy/shell.py +4 -0
  286. snappy/snap/__init__.py +12 -8
  287. snappy/snap/character_varieties.py +24 -18
  288. snappy/snap/find_field.py +35 -34
  289. snappy/snap/fundamental_polyhedron.py +99 -85
  290. snappy/snap/generators.py +6 -8
  291. snappy/snap/interval_reps.py +18 -6
  292. snappy/snap/kernel_structures.py +8 -3
  293. snappy/snap/mcomplex_base.py +1 -2
  294. snappy/snap/nsagetools.py +107 -53
  295. snappy/snap/peripheral/__init__.py +1 -1
  296. snappy/snap/peripheral/dual_cellulation.py +15 -7
  297. snappy/snap/peripheral/link.py +20 -16
  298. snappy/snap/peripheral/peripheral.py +22 -14
  299. snappy/snap/peripheral/surface.py +47 -50
  300. snappy/snap/peripheral/test.py +8 -8
  301. snappy/snap/polished_reps.py +65 -40
  302. snappy/snap/shapes.py +41 -22
  303. snappy/snap/slice_obs_HKL.py +64 -25
  304. snappy/snap/t3mlite/arrow.py +88 -51
  305. snappy/snap/t3mlite/corner.py +5 -6
  306. snappy/snap/t3mlite/edge.py +32 -21
  307. snappy/snap/t3mlite/face.py +7 -9
  308. snappy/snap/t3mlite/files.py +31 -23
  309. snappy/snap/t3mlite/homology.py +14 -10
  310. snappy/snap/t3mlite/linalg.py +158 -56
  311. snappy/snap/t3mlite/mcomplex.py +739 -291
  312. snappy/snap/t3mlite/perm4.py +236 -84
  313. snappy/snap/t3mlite/setup.py +9 -10
  314. snappy/snap/t3mlite/simplex.py +65 -48
  315. snappy/snap/t3mlite/spun.py +42 -30
  316. snappy/snap/t3mlite/surface.py +45 -45
  317. snappy/snap/t3mlite/test.py +3 -0
  318. snappy/snap/t3mlite/test_vs_regina.py +17 -13
  319. snappy/snap/t3mlite/tetrahedron.py +25 -24
  320. snappy/snap/t3mlite/vertex.py +8 -13
  321. snappy/snap/test.py +45 -52
  322. snappy/snap/utilities.py +66 -65
  323. snappy/test.py +155 -158
  324. snappy/test_cases.py +263 -0
  325. snappy/testing.py +131 -0
  326. snappy/tiling/__init__.py +2 -0
  327. snappy/tiling/canonical_key_dict.py +59 -0
  328. snappy/tiling/dict_based_set.py +79 -0
  329. snappy/tiling/floor.py +49 -0
  330. snappy/tiling/hyperboloid_dict.py +54 -0
  331. snappy/tiling/iter_utils.py +78 -0
  332. snappy/tiling/lifted_tetrahedron.py +22 -0
  333. snappy/tiling/lifted_tetrahedron_set.py +54 -0
  334. snappy/tiling/real_hash_dict.py +164 -0
  335. snappy/tiling/test.py +23 -0
  336. snappy/tiling/tile.py +215 -0
  337. snappy/tiling/triangle.py +33 -0
  338. snappy/tkterminal.py +313 -203
  339. snappy/twister/main.py +1 -8
  340. snappy/twister/twister_core.cpython-38-darwin.so +0 -0
  341. snappy/upper_halfspace/__init__.py +146 -0
  342. snappy/upper_halfspace/ideal_point.py +26 -0
  343. snappy/verify/__init__.py +4 -8
  344. snappy/verify/{verifyCanonical.py → canonical.py} +114 -97
  345. snappy/verify/complex_volume/__init__.py +3 -2
  346. snappy/verify/complex_volume/adjust_torsion.py +13 -11
  347. snappy/verify/complex_volume/closed.py +29 -24
  348. snappy/verify/complex_volume/compute_ptolemys.py +8 -6
  349. snappy/verify/complex_volume/cusped.py +10 -9
  350. snappy/verify/complex_volume/extended_bloch.py +14 -12
  351. snappy/verify/{cuspTranslations.py → cusp_translations.py} +15 -14
  352. snappy/verify/edge_equations.py +80 -0
  353. snappy/verify/exceptions.py +23 -56
  354. snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +19 -15
  355. snappy/verify/interval_newton_shapes_engine.py +51 -211
  356. snappy/verify/interval_tree.py +27 -25
  357. snappy/verify/krawczyk_shapes_engine.py +47 -50
  358. snappy/verify/maximal_cusp_area_matrix/__init__.py +17 -86
  359. snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +58 -48
  360. snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +53 -57
  361. snappy/verify/{realAlgebra.py → real_algebra.py} +26 -20
  362. snappy/verify/shapes.py +10 -7
  363. snappy/verify/short_slopes.py +41 -42
  364. snappy/verify/{squareExtensions.py → square_extensions.py} +96 -92
  365. snappy/verify/test.py +59 -57
  366. snappy/verify/upper_halfspace/extended_matrix.py +5 -5
  367. snappy/verify/upper_halfspace/finite_point.py +44 -31
  368. snappy/verify/upper_halfspace/ideal_point.py +69 -57
  369. snappy/verify/volume.py +15 -12
  370. snappy/version.py +2 -3
  371. {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/METADATA +14 -12
  372. snappy-3.2.dist-info/RECORD +503 -0
  373. {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
  374. {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -1
  375. {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/top_level.txt +10 -1
  376. snappy/doc/_sources/verify_canon.rst.txt +0 -90
  377. snappy/doc/_static/classic.css +0 -266
  378. snappy/doc/_static/jquery-3.5.1.js +0 -10872
  379. snappy/doc/_static/sidebar.js +0 -159
  380. snappy/doc/_static/underscore-1.13.1.js +0 -2042
  381. snappy/doc/_static/underscore.js +0 -6
  382. snappy/doc/verify_canon.html +0 -283
  383. snappy/ppm_to_png.py +0 -243
  384. snappy/togl/__init__.py +0 -3
  385. snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
  386. snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
  387. snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  388. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  389. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
  390. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  391. snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
  392. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
  393. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
  394. snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  395. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  396. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
  397. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
  398. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  399. snappy/verify/cuspCrossSection.py +0 -1413
  400. snappy/verify/mathHelpers.py +0 -64
  401. snappy-3.0.3.dist-info/RECORD +0 -360
snappy/doc/searchindex.js CHANGED
@@ -1 +1 @@
1
- Search.setIndex({docnames:["additional_classes","bugs","censuses","credits","development","index","installing","manifold","manifoldhp","news","other","platonic_census","plink","ptolemy","ptolemy_classes","ptolemy_examples1","ptolemy_examples2","ptolemy_examples3","ptolemy_examples4","ptolemy_prelim","screenshots","snap","snappy","spherogram","todo","triangulation","tutorial","verify","verify_canon","verify_internals"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["additional_classes.rst","bugs.rst","censuses.rst","credits.rst","development.rst","index.rst","installing.rst","manifold.rst","manifoldhp.rst","news.rst","other.rst","platonic_census.rst","plink.rst","ptolemy.rst","ptolemy_classes.rst","ptolemy_examples1.rst","ptolemy_examples2.rst","ptolemy_examples3.rst","ptolemy_examples4.rst","ptolemy_prelim.rst","screenshots.rst","snap.rst","snappy.rst","spherogram.rst","todo.rst","triangulation.rst","tutorial.rst","verify.rst","verify_canon.rst","verify_internals.rst"],objects:{"":[[0,0,0,"-","snappy"],[23,0,0,"-","spherogram"]],"snappy.AbelianGroup":[[0,2,1,"","betti_number"],[0,3,1,"","coefficients"],[0,2,1,"","elementary_divisors"],[0,2,1,"","order"],[0,2,1,"","rank"]],"snappy.AlternatingKnotExteriors":[[2,2,1,"","next"]],"snappy.CuspNeighborhood":[[0,2,1,"","Ford_domain"],[0,2,1,"","all_translations"],[0,2,1,"","check_index"],[0,2,1,"","get_displacement"],[0,2,1,"","get_tie"],[0,2,1,"","horoballs"],[0,2,1,"","manifold"],[0,2,1,"","max_reach"],[0,2,1,"","num_cusps"],[0,2,1,"","original_index"],[0,2,1,"","reach"],[0,2,1,"","set_displacement"],[0,2,1,"","set_tie"],[0,2,1,"","stopper"],[0,2,1,"","stopping_displacement"],[0,2,1,"","topology"],[0,2,1,"","translations"],[0,2,1,"","triangulation"],[0,2,1,"","use_field_conversion"],[0,2,1,"","view"],[0,2,1,"","volume"]],"snappy.DirichletDomain":[[0,2,1,"","edge_list"],[0,2,1,"","export_stl"],[0,2,1,"","face_list"],[0,2,1,"","in_radius"],[0,2,1,"","length_spectrum_dicts"],[0,2,1,"","manifold"],[0,2,1,"","num_edges"],[0,2,1,"","num_faces"],[0,2,1,"","num_finite_vertices"],[0,2,1,"","num_ideal_vertices"],[0,2,1,"","num_vertices"],[0,2,1,"","out_radius"],[0,2,1,"","pairing_matrices"],[0,2,1,"","save"],[0,2,1,"","spine_radius"],[0,2,1,"","triangulation"],[0,2,1,"","use_field_conversion"],[0,2,1,"","vertex_list"],[0,2,1,"","view"],[0,2,1,"","volume"]],"snappy.HolonomyGroup":[[0,2,1,"","O31"],[0,2,1,"","SL2C"],[0,2,1,"","character_variety_vars_and_polys"],[0,2,1,"","complex_length"],[0,2,1,"","gap_string"],[0,2,1,"","generators"],[0,2,1,"","generators_in_originals"],[0,2,1,"","longitude"],[0,2,1,"","magma_string"],[0,2,1,"","meridian"],[0,2,1,"","num_generators"],[0,2,1,"","num_original_generators"],[0,2,1,"","num_relators"],[0,2,1,"","original_generators"],[0,2,1,"","peripheral_curves"],[0,2,1,"","relators"],[0,2,1,"","sage"],[0,2,1,"","use_field_conversion"]],"snappy.Manifold":[[7,2,1,"","DT_code"],[7,2,1,"","alexander_polynomial"],[7,2,1,"","browse"],[7,2,1,"","canonical_retriangulation"],[7,2,1,"","canonize"],[7,2,1,"","chern_simons"],[7,2,1,"","complex_volume"],[7,2,1,"","copy"],[7,2,1,"","cover"],[7,2,1,"","cover_info"],[7,2,1,"","covers"],[7,2,1,"","cusp_area_matrix"],[7,2,1,"","cusp_areas"],[7,2,1,"","cusp_info"],[7,2,1,"","cusp_neighborhood"],[7,2,1,"","cusp_translations"],[7,2,1,"","dehn_fill"],[7,2,1,"","dirichlet_domain"],[7,2,1,"","drill"],[7,2,1,"","dual_curves"],[7,2,1,"","edge_valences"],[7,2,1,"","filled_triangulation"],[7,2,1,"","fundamental_group"],[7,2,1,"","gluing_equations"],[7,2,1,"","gluing_equations_pgl"],[7,2,1,"","has_finite_vertices"],[7,2,1,"","high_precision"],[7,2,1,"","holonomy_matrix_entries"],[7,2,1,"","homological_longitude"],[7,2,1,"","homology"],[7,2,1,"","hyperbolic_SLN_torsion"],[7,2,1,"","hyperbolic_adjoint_torsion"],[7,2,1,"","hyperbolic_torsion"],[7,2,1,"","identify"],[7,2,1,"","init_hyperbolic_structure"],[7,2,1,"","inside_view"],[7,2,1,"","invariant_trace_field_gens"],[7,2,1,"","is_isometric_to"],[7,2,1,"","is_orientable"],[7,2,1,"","is_two_bridge"],[7,2,1,"","isometry_signature"],[7,2,1,"","isomorphisms_to"],[7,2,1,"","length_spectrum"],[7,2,1,"","link"],[7,2,1,"","name"],[7,2,1,"","normal_boundary_slopes"],[7,2,1,"","normal_surfaces"],[7,2,1,"","num_cusps"],[7,2,1,"","num_tetrahedra"],[7,2,1,"","orientation_cover"],[7,2,1,"","pickle"],[7,2,1,"","plink"],[7,2,1,"","polished_holonomy"],[7,2,1,"","ptolemy_generalized_obstruction_classes"],[7,2,1,"","ptolemy_obstruction_classes"],[7,2,1,"","ptolemy_variety"],[7,2,1,"","randomize"],[7,2,1,"","reverse_orientation"],[7,2,1,"","save"],[7,2,1,"","set_name"],[7,2,1,"","set_peripheral_curves"],[7,2,1,"","set_target_holonomy"],[7,2,1,"","set_tetrahedra_shapes"],[7,2,1,"","short_slopes"],[7,2,1,"","simplify"],[7,2,1,"","slice_obstruction_HKL"],[7,2,1,"","solution_type"],[7,2,1,"","split"],[7,2,1,"","splitting_surfaces"],[7,2,1,"","symmetric_triangulation"],[7,2,1,"","symmetry_group"],[7,2,1,"","tetrahedra_field_gens"],[7,2,1,"","tetrahedra_shapes"],[7,2,1,"","trace_field_gens"],[7,2,1,"","triangulation_isosig"],[7,2,1,"","use_field_conversion"],[7,2,1,"","verify_hyperbolicity"],[7,2,1,"","volume"],[7,2,1,"","with_hyperbolic_structure"],[7,2,1,"","without_hyperbolic_structure"]],"snappy.NonalternatingKnotExteriors":[[2,2,1,"","next"]],"snappy.SymmetryGroup":[[0,2,1,"","abelian_description"],[0,2,1,"","abelianization"],[0,2,1,"","center"],[0,2,1,"","commutator_subgroup"],[0,2,1,"","direct_product_description"],[0,2,1,"","is_S5"],[0,2,1,"","is_abelian"],[0,2,1,"","is_amphicheiral"],[0,2,1,"","is_dihedral"],[0,2,1,"","is_direct_product"],[0,2,1,"","is_full_group"],[0,2,1,"","is_invertible_knot"],[0,2,1,"","is_polyhedral"],[0,2,1,"","isometries"],[0,2,1,"","multiply_elements"],[0,2,1,"","order"],[0,2,1,"","polyhedral_description"]],"snappy.Triangulation":[[25,2,1,"","alexander_polynomial"],[25,2,1,"","homological_longitude"],[25,2,1,"","normal_boundary_slopes"],[25,2,1,"","normal_surfaces"],[25,2,1,"","slice_obstruction_HKL"]],"snappy.database":[[2,1,1,"","ManifoldTable"]],"snappy.database.ManifoldTable":[[2,2,1,"","find"],[2,2,1,"","identify"],[2,2,1,"","keys"],[2,2,1,"","siblings"]],"snappy.ptolemy":[[14,5,1,"","solutions_from_magma"],[14,5,1,"","solutions_from_magma_file"]],"snappy.ptolemy.component":[[14,1,1,"","NonZeroDimensionalComponent"]],"snappy.ptolemy.coordinates":[[14,1,1,"","CrossRatios"],[14,1,1,"","Flattenings"],[14,1,1,"","PtolemyCoordinates"]],"snappy.ptolemy.coordinates.CrossRatios":[[14,2,1,"","N"],[14,2,1,"","check_against_manifold"],[14,2,1,"","evaluate_word"],[14,2,1,"","from_snappy_manifold"],[14,2,1,"","get_manifold"],[14,2,1,"","induced_representation"],[14,2,1,"","is_geometric"],[14,2,1,"","is_induced_from_psl2"],[14,2,1,"","is_pu_2_1_representation"],[14,2,1,"","is_real"],[14,2,1,"","long_edge"],[14,2,1,"","middle_edge"],[14,2,1,"","multiply_and_simplify_terms_in_RUR"],[14,2,1,"","multiply_terms_in_RUR"],[14,2,1,"","num_tetrahedra"],[14,2,1,"","numerical"],[14,2,1,"","short_edge"],[14,2,1,"","to_PUR"],[14,2,1,"","volume_numerical"],[14,2,1,"","x_coordinate"]],"snappy.ptolemy.coordinates.Flattenings":[[14,2,1,"","N"],[14,2,1,"","check_against_manifold"],[14,2,1,"","complex_volume"],[14,2,1,"","from_tetrahedra_shapes_of_manifold"],[14,2,1,"","get_manifold"],[14,2,1,"","get_order"],[14,2,1,"","get_zpq_triple"],[14,2,1,"","num_tetrahedra"]],"snappy.ptolemy.coordinates.PtolemyCoordinates":[[14,2,1,"","N"],[14,2,1,"","check_against_manifold"],[14,2,1,"","complex_volume_numerical"],[14,2,1,"","cross_ratios"],[14,2,1,"","cross_ratios_numerical"],[14,2,1,"","diamond_coordinate"],[14,2,1,"","evaluate_word"],[14,2,1,"","flattenings_numerical"],[14,2,1,"","get_manifold"],[14,2,1,"","has_obstruction"],[14,2,1,"","is_geometric"],[14,2,1,"","long_edge"],[14,2,1,"","middle_edge"],[14,2,1,"","multiply_and_simplify_terms_in_RUR"],[14,2,1,"","multiply_terms_in_RUR"],[14,2,1,"","num_tetrahedra"],[14,2,1,"","number_field"],[14,2,1,"","numerical"],[14,2,1,"","ratio_coordinate"],[14,2,1,"","short_edge"],[14,2,1,"","to_PUR"],[14,2,1,"","volume_numerical"]],"snappy.ptolemy.ptolemyVariety":[[14,1,1,"","PtolemyVariety"]],"snappy.ptolemy.ptolemyVariety.PtolemyVariety":[[14,2,1,"","compute_decomposition"],[14,2,1,"","compute_solutions"],[14,2,1,"","degree_to_shapes"],[14,2,1,"","filename_base"],[14,2,1,"","py_eval_section"],[14,2,1,"","to_magma"],[14,2,1,"","to_magma_file"]],"snappy.verify":[[29,3,1,"","CertifiedShapesEngine"],[29,1,1,"","ComplexCuspCrossSection"],[29,1,1,"","IntervalNewtonShapesEngine"],[29,1,1,"","KrawczykShapesEngine"],[29,1,1,"","RealCuspCrossSection"],[29,0,0,"-","exceptions"],[29,0,0,"-","squareExtensions"],[28,5,1,"","verified_canonical_retriangulation"]],"snappy.verify.ComplexCuspCrossSection":[[29,3,1,"","HoroTriangle"],[29,2,1,"","add_vertex_positions_to_horotriangles"],[29,2,1,"","all_normalized_translations"],[29,2,1,"","check_cusp_development_exactly"],[29,2,1,"","check_logarithmic_edge_equations_and_positivity"],[29,2,1,"","check_polynomial_edge_equations_exactly"],[29,2,1,"","cusp_areas"],[29,2,1,"","cusp_shapes"],[29,2,1,"","ensure_disjoint_on_edges"],[29,2,1,"","ensure_std_form"],[29,2,1,"","lift_vertex_positions_of_horotriangles"],[29,2,1,"","move_fixed_point_to_zero"],[29,2,1,"","move_lifted_vertex_positions_to_zero_first"],[29,2,1,"","normalize_cusps"],[29,2,1,"","scale_cusps"]],"snappy.verify.IntervalNewtonShapesEngine":[[29,2,1,"","certified_newton_iteration"],[29,2,1,"","expand_until_certified"],[29,2,1,"","interval_vector_is_contained_in"],[29,2,1,"","interval_vector_mid_points"],[29,2,1,"","interval_vector_union"],[29,2,1,"","log_gluing_LHS_derivatives"],[29,2,1,"","log_gluing_LHSs"],[29,2,1,"","mat_solve"],[29,2,1,"","newton_iteration"]],"snappy.verify.KrawczykShapesEngine":[[29,2,1,"","expand_until_certified"],[29,2,1,"","interval_vector_is_contained_in"],[29,2,1,"","interval_vector_mid_points"],[29,2,1,"","interval_vector_union"],[29,2,1,"","krawczyk_interval"],[29,2,1,"","log_gluing_LHS_derivatives"],[29,2,1,"","log_gluing_LHS_derivatives_sparse"],[29,2,1,"","log_gluing_LHSs"],[29,2,1,"","matrix_times_sparse"]],"snappy.verify.RealCuspCrossSection":[[29,3,1,"","HoroTriangle"],[29,2,1,"","check_cusp_development_exactly"],[29,2,1,"","check_logarithmic_edge_equations_and_positivity"],[29,2,1,"","check_polynomial_edge_equations_exactly"],[29,2,1,"","compute_tilts"],[29,2,1,"","cusp_areas"],[29,2,1,"","ensure_disjoint_on_edges"],[29,2,1,"","ensure_std_form"],[29,2,1,"","fromManifoldAndShapes"],[29,2,1,"","normalize_cusps"],[29,2,1,"","read_tilts"],[29,2,1,"","scale_cusps"]],"snappy.verify.exceptions":[[29,6,1,"","ConsistencyWithSnapPeaNumericalVerifyError"],[29,1,1,"","ConsistencyWithSnapPeaType"],[29,1,1,"","CuspConsistencyType"],[29,6,1,"","CuspDevelopmentExactVerifyError"],[29,1,1,"","CuspDevelopmentType"],[29,6,1,"","CuspEquationExactVerifyError"],[29,6,1,"","CuspEquationLogLiftNumericalVerifyError"],[29,1,1,"","CuspEquationType"],[29,6,1,"","EdgeEquationExactVerifyError"],[29,6,1,"","EdgeEquationLogLiftNumericalVerifyError"],[29,1,1,"","EdgeEquationType"],[29,1,1,"","EquationType"],[29,6,1,"","ExactVerifyError"],[29,6,1,"","InequalityNumericalVerifyError"],[29,6,1,"","IsZeroExactVerifyError"],[29,6,1,"","LogLiftNumericalVerifyError"],[29,6,1,"","NumericalVerifyError"],[29,6,1,"","ShapePositiveImaginaryPartNumericalVerifyError"],[29,1,1,"","ShapeType"],[29,6,1,"","TiltInequalityNumericalVerifyError"],[29,6,1,"","TiltIsZeroExactVerifyError"],[29,6,1,"","TiltProvenPositiveNumericalVerifyError"],[29,1,1,"","TiltType"],[29,6,1,"","VerifyErrorBase"]],"snappy.verify.squareExtensions":[[29,1,1,"","ComplexSqrtLinCombination"],[29,1,1,"","SqrtLinCombination"],[29,5,1,"","find_shapes_as_complex_sqrt_lin_combinations"]],"snappy.verify.squareExtensions.ComplexSqrtLinCombination":[[29,2,1,"","imag"],[29,2,1,"","real"]],"snappy.verify.squareExtensions.SqrtLinCombination":[[29,2,1,"","sign"],[29,2,1,"","sign_with_interval"]],"snappy.verify.verifyCanonical":[[29,5,1,"","exactly_checked_canonical_retriangulation"],[29,5,1,"","interval_checked_canonical_triangulation"]],"snappy.verify.verifyHyperbolicity":[[29,5,1,"","check_logarithmic_gluing_equations_and_positively_oriented_tets"]],"spherogram.Link":[[23,2,1,"","DT_code"],[23,2,1,"","KLPProjection"],[23,2,1,"","PD_code"],[23,2,1,"","alexander_matrix"],[23,2,1,"","alexander_poly"],[23,2,1,"","alexander_polynomial"],[23,2,1,"","all_crossings_oriented"],[23,2,1,"","alternating"],[23,2,1,"","backtrack"],[23,2,1,"","black_graph"],[23,2,1,"","braid_word"],[23,2,1,"","connected_sum"],[23,2,1,"","copy"],[23,2,1,"","crossing_entries"],[23,2,1,"","crossing_strands"],[23,2,1,"","deconnect_sum"],[23,2,1,"","determinant"],[23,2,1,"","digraph"],[23,2,1,"","dual_graph"],[23,2,1,"","exterior"],[23,2,1,"","faces"],[23,2,1,"","goeritz_matrix"],[23,2,1,"","is_alternating"],[23,2,1,"","is_planar"],[23,2,1,"","jones_polynomial"],[23,2,1,"","knot_floer_homology"],[23,2,1,"","knot_group"],[23,2,1,"","linking_matrix"],[23,2,1,"","linking_number"],[23,2,1,"","mirror"],[23,2,1,"","morse_diagram"],[23,2,1,"","morse_number"],[23,2,1,"","optimize_overcrossings"],[23,2,1,"","overstrands"],[23,2,1,"","peer_code"],[23,2,1,"","sage_link"],[23,2,1,"","seifert_matrix"],[23,2,1,"","signature"],[23,2,1,"","simplify"],[23,2,1,"","split_link_diagram"],[23,2,1,"","sublink"],[23,2,1,"","view"],[23,2,1,"","white_graph"],[23,2,1,"","writhe"]],snappy:[[0,1,1,"","AbelianGroup"],[2,1,1,"","AlternatingKnotExteriors"],[2,4,1,"","CensusKnots"],[11,4,1,"","CubicalNonorientableClosedCensus"],[11,4,1,"","CubicalNonorientableCuspedCensus"],[11,4,1,"","CubicalOrientableClosedCensus"],[11,4,1,"","CubicalOrientableCuspedCensus"],[0,1,1,"","CuspNeighborhood"],[0,1,1,"","DirichletDomain"],[11,4,1,"","DodecahedralNonorientableClosedCensus"],[11,4,1,"","DodecahedralNonorientableCuspedCensus"],[11,4,1,"","DodecahedralOrientableClosedCensus"],[11,4,1,"","DodecahedralOrientableCuspedCensus"],[2,4,1,"","HTLinkExteriors"],[0,1,1,"","HolonomyGroup"],[11,4,1,"","IcosahedralNonorientableClosedCensus"],[11,4,1,"","IcosahedralOrientableClosedCensus"],[2,4,1,"","LinkExteriors"],[7,1,1,"","Manifold"],[2,1,1,"","NonalternatingKnotExteriors"],[2,4,1,"","NonorientableClosedCensus"],[2,4,1,"","NonorientableCuspedCensus"],[11,4,1,"","OctahedralNonorientableCuspedCensus"],[11,4,1,"","OctahedralOrientableCuspedCensus"],[2,4,1,"","OrientableClosedCensus"],[2,4,1,"","OrientableCuspedCensus"],[0,1,1,"","SymmetryGroup"],[11,4,1,"","TetrahedralNonorientableCuspedCensus"],[11,4,1,"","TetrahedralOrientableCuspedCensus"],[25,1,1,"","Triangulation"],[13,0,0,"-","ptolemy"],[21,0,0,"-","snap"],[29,0,0,"-","verify"]],spherogram:[[23,1,1,"","ClosedBraid"],[23,1,1,"","Link"],[23,5,1,"","random_link"]]},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","data","Python data"],"5":["py","function","Python function"],"6":["py","exception","Python exception"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:data","5":"py:function","6":"py:exception"},terms:{"0":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29],"00":29,"000":29,"0000":[7,29],"000000":27,"0000000":27,"00000000":7,"000000000":[7,27],"0000000000":[7,27],"00000000000":[7,27],"0000000000000":7,"00000000000000":[7,16],"000000000000000":7,"0000000000000000":7,"0000000000000000000000000000":21,"0000000000000000000000000003":21,"0000000001":7,"0001":29,"001":23,"0019533695046":29,"0025":19,"0075523593782":27,"009":[7,25],"01":[7,14],"01110":7,"014388591584":7,"02":14,"0201043":23,"02412838":7,"0253221635226673172748587283":21,"02988":17,"029883":16,"02988321":[2,7,23],"029883212819":23,"029883212819307250042405108549040571883378615060599584034978214":8,"029883212819307250042405109":7,"02988321281931":[15,16,17],"02988321282":8,"02_tetrahedra":15,"03":14,"0302253322":7,"0307092":14,"031":2,"034":29,"0340":29,"03_tetrahedra":17,"04":6,"04204128":7,"04_1":[7,25],"053940530873898":7,"0548":[7,25],"05686022":7,"05976643":2,"06":14,"06217783":7,"068":29,"0707136":5,"07470803":11,"07731787":7,"078":29,"0800":29,"0804":[7,25],"0903":27,"0904":19,"0906155":5,"0961611977895952":0,"09812548":7,"1":[0,2,7,9,10,11,12,13,14,16,17,18,19,21,23,25,26,27,28,29],"10":[0,2,4,5,6,7,8,9,11,14,21,23,25,28,29],"100":[0,7,8,14,16,21,23,27,29],"1000":[7,28],"10000":7,"1007":[7,25],"1035":29,"10360701507":7,"1043047674605":7,"104304767460978078":7,"10795310":2,"10942659":2,"11":[2,7,21,23,25,26,29],"11031":2,"11044502":7,"1105476":5,"1109":27,"110m":6,"11101000":23,"1111":[7,14,19],"1118628555":7,"1185388389935516999882632998":21,"1185388389935516999882633007":21,"11a17":[7,25],"12":[2,7,17,23,28,29],"120":0,"1207":[7,14,19],"1210608":2,"12155872":7,"124559024":27,"12479830":7,"125":0,"1267":2,"128":29,"12n123":7,"12n345":[7,25],"13":[7,21,23],"1307":14,"1310":27,"131389112265699":0,"131436773607536668628081981267619":0,"13143677360753666862808198126761923":0,"131436773608":0,"1355":[7,25],"137871639973525691285247446":18,"14":[2,7,9,15,16,23,25],"1401":19,"14010":18,"1405":19,"14059979":7,"142120333822":7,"143084469681":7,"14941606":7,"14941606410":23,"15":[0,2,5,6,7,8,9,13,15,17,23,29],"1510204":5,"152188153612":7,"152977162509284":0,"15320413":7,"1560":18,"15679216175810579":7,"16":[2,7,13,15,17,21,23,25,29],"164542163":29,"1645421638874662848910671879":29,"168":7,"17":[2,11,17,23],"17563301006556":16,"176540027036":7,"1766049820997":7,"177940133813":27,"178":7,"18":[2,6,7,14,23,28],"1811156":5,"1893":19,"19":[15,16,23],"1955023488930":27,"196124":18,"1978":23,"198620491993677":0,"1e":14,"1j":29,"2":[0,2,3,5,6,7,8,9,10,11,12,13,14,18,19,21,23,25,26,27,28,29],"20":[0,2,6,7,21,23,25,28],"200":[7,21,29],"2000":[7,28],"2007":23,"2009":9,"2010":[7,9,25],"2011":[7,9],"2012":9,"2013":9,"2014":9,"2015":9,"2016":9,"2017":[9,26],"2018":9,"2019":[4,9,26],"2020":[5,9],"2021":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29],"2028208192855":7,"207":29,"21":[7,11,23],"212":[7,8,9,28],"22":[0,2,7,11,14,21],"22318540718077":0,"2236291171413":0,"223629117141336210196010062380191":0,"2236291171413362101960100623801910":0,"22671790":7,"23":[18,23,29],"238":11,"24":[2,7,18,29],"246":29,"2482":29,"25":[5,9,11,18,21,23],"250000000000000":17,"25194":11,"2521580040549576537090841783446072":0,"25215800405495765370908417834461":0,"252158004055":0,"253293":2,"25618853688042434043044508297577899":0,"25618853688042434043044508297578":0,"256188536881":0,"259696455247511":0,"26":[2,7,21,29],"26080402":7,"26930345526993":0,"27":[7,27],"2712450270":7,"278936315":7,"28":[2,7],"2828":[7,14,19],"283185307179586":7,"284940667895":7,"29":23,"29150262212918":7,"292":29,"29405713186238":7,"2_1":[2,7,11],"2_6":[7,25],"2_8":[2,7],"2n":29,"2x2":7,"3":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29],"30":[0,4,6,15,23],"300":29,"302":29,"30211422042248":[13,15,17],"3030710375877078211095122873223488":0,"3030710375877078211095122873224":0,"30307103759":0,"31020162":29,"3125":0,"312682687518267":[7,17],"313":29,"315973594129649":0,"315973594129651":0,"31991":23,"32":[4,7],"32287565553":7,"32287565553229":7,"32287565553230":[7,17],"32287565554":7,"324717957":27,"32475953":7,"330718913883074":17,"33348957":7,"33461303362557":0,"3376410213776269870195455729":21,"3376410213776269870195455731":21,"34":[7,25,29],"3472":27,"3513135103":7,"35355339059327376220042218105":7,"357403823939297224437738856":21,"357403823939297224437742077":21,"35768903":2,"36":7,"37":[7,16,17,25],"37354016":11,"375000000000000":17,"376":29,"378446302375451727042631346":21,"378446302375451727042633120":21,"38":[15,16,17],"39812948":11,"398888830":27,"3_1":[7,23],"3_12":23,"3_2":23,"3_72":2,"3_73":2,"3_74":2,"3a1":23,"3d":[0,3,5,6,7,9],"3sqrt":0,"4":[0,2,4,5,6,7,9,10,11,12,13,14,15,16,17,19,21,23,25,26,29],"40":[0,15,29],"40431358073618481197132660504":21,"40431358073618481197132661847":21,"409614585":27,"4110489425474123899213651272":18,"4142135623730950488016887242":7,"4146":11,"41791484":2,"426088934700737884313191344":18,"42720525":2,"430":29,"4375000000000":7,"4375000000000000":7,"44":[7,21],"45":[7,25],"454785439204566951537774898694356":0,"4547854392045669515377748986943560":0,"454785439205":0,"459731436553693":[7,17],"459868058287098030934":29,"4599773577869384936554":29,"46":29,"46002":29,"4600211":29,"460021167103732494700":29,"4600211755737":7,"4600211755737178641204":29,"460021175573717872891":29,"460021175573718":29,"46003":29,"4641016151377544":7,"47":23,"47120283346":0,"47120283346076781167174343474008914":0,"4712028334607678116717434347401":0,"47424776":2,"47470541152065":0,"477656250512815":0,"4800996900657":29,"48666015":2,"49":29,"49024467":7,"491327":2,"49440443":7,"4963":29,"496837853805869":[7,17],"49859164484929":0,"499999999999999":7,"4_1":[7,14,23,25,28],"4_1__sl2_c0":14,"4_1__sl2_c1":14,"4a1":23,"5":[0,2,4,5,6,7,9,11,12,14,16,17,19,21,23,25,29],"50":[0,21],"500":29,"50000000":7,"5000000000":16,"50000000000":7,"500000000000":7,"500000000000000":[7,16,17],"50000000000000000000000000":29,"5000000000000000000000000000":7,"50000000000000000000000000000":21,"500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000":21,"50479249917":7,"504866865874":7,"51":29,"5126610817613336586374292713":21,"5126610817613336586374448040":21,"5131157955971":27,"515625":0,"51918360":2,"52310839130992":16,"52619361":7,"53":[7,8,28,29],"53123093":2,"537092383":7,"54":7,"5400":29,"54436599614182":0,"54436599614183":0,"5478612583":7,"5493670288":7,"55091438":2,"5542":19,"56":7,"561":29,"56227951":7,"56227951206":29,"562279512062":7,"5622795120623":27,"562279512062301243":29,"56227951206230124389918214477":21,"56227951206230124389918214504":21,"5622795120623012438992":29,"5622795120623013":7,"56239915":7,"56897060":2,"5819817649675358086":15,"58439465":2,"58826933":7,"5890988184099251088892549440":21,"5890988184099251088892745185":21,"589495705074":7,"59807621":7,"59883089":7,"5_1":[16,23],"5_2":[7,14,21,23],"5j":29,"6":[0,2,5,6,7,9,12,14,17,21,23,25,27,29],"60":[0,7],"6005032476":7,"60676092":2,"61940871855835167317":29,"62":7,"625051576":7,"625222762246":27,"63":[7,8,29],"63251940718694538695":29,"6326":29,"63262":29,"632624":29,"6326241909236695020810":29,"6326241936052":7,"632624193605256":29,"632624193605256171637":29,"6326241936052562241142":29,"63263":29,"6327":29,"63j":29,"64":[4,6,7,23,29],"64255370258293":[13,17],"64333782":2,"64493407":7,"64549527022581":7,"64575131106459":7,"6515818912107":27,"65232354":7,"65567118002656":7,"66":29,"661437827766148":17,"662358978622":7,"6623589786223730":7,"66235897862237301298":29,"6623589786223730129805":29,"662358978622373012981":29,"6623589786224":27,"66235898":7,"66386238":[2,7],"66421454":2,"6666":29,"66674":17,"66674478":2,"66674478344907":17,"6697":14,"67064980598091504185767190":18,"6711":[7,14,19],"67347167":7,"6757599281290843845710310925394911":0,"6757599281290843845710310925395":0,"67575992813":0,"680993020093457":[7,17],"68603427":11,"68719745":7,"69":[7,11,23],"69338342":2,"698544082784440":17,"69999999999999995559107902":29,"6_2":23,"6_4":[7,25],"7":[2,4,6,7,9,11,17,19,21,23,25,29],"70":7,"700":29,"70385772":7,"704807293":27,"70710678118654752440084436210":7,"7091590087":7,"71240613125259":0,"72":[7,11,18],"725471193740844":[7,17],"725527974287718":7,"725536253181650":0,"7320508075688772":7,"7320508075688772935274463415":21,"73205080756888":16,"73205081":7,"732421":17,"73967449622339881238507307209":29,"7453498408":7,"747697694854404":0,"750000000":14,"75170196551790":16,"752":29,"7560424258059765562778":7,"7560424258060":7,"75939451500971650241038771418":21,"75939451500971650241038772223":21,"7690945490":7,"78":29,"78054":29,"78055":29,"7805525":29,"780552527850":7,"78055252785072483256":29,"7805525278507248325678":29,"78055252785072483798":29,"7805525278507248379869":29,"780552527850725":29,"78055252785073":29,"78055253":29,"78055253104531610049":29,"780552531045316100497":29,"78056":29,"78056102517632648594":29,"78183391239608":[7,13,17],"78674683118381457770":29,"786746831183814577703":29,"79":29,"79427928161946":0,"795":29,"797777659":27,"7_3":0,"8":[0,2,4,5,6,7,9,19,21,23,25,27,28,29],"80":[14,29],"81267480427":7,"81543089":7,"82168758617998":17,"821802363180149782221451472":21,"8281220883":27,"828122088330783162764":7,"82812209":7,"82829881681":7,"8284271247461900976033774484":7,"829":29,"8290":29,"8450034810535061601312104296":18,"84908538602825":0,"8536121048":7,"86":29,"86374431":2,"86602540":7,"866025403784":21,"8660254037844386":7,"86602540378443864676372317075":[7,21],"866025403784438646763723170752936183471402626905190314027903489725966508454400018540573093378624288":21,"866025403784439":[14,16],"8660254038":16,"868692062725708":0,"87":29,"8708286933869706927918743662":7,"875895332415105303646551573":18,"88266550875941":15,"88267370443418":[15,16],"895226186134782":0,"89824633":7,"8_1":2,"8_20":[2,23],"8_4":2,"8_5":23,"8f":29,"8j":29,"9":[0,2,4,5,6,7,9,14,19,21,23,27,29],"90":7,"9032849613891083021420278809":21,"9032849613891083021420278850":21,"9106738240":27,"910673824035377649698":7,"9144":29,"91447":29,"9144736":29,"91447366":29,"9144736621585220345231":29,"914473662967":7,"914473662967726":29,"91447366296772644033":29,"914473662967726440333":29,"91447366296772645593":29,"914473662967726455938":29,"91447366296773":[7,29],"91448":29,"9144962118446750482":29,"9145":29,"91j":29,"92":29,"9208680745160821379529":29,"92308491369":7,"92j":29,"93":11,"93541434669348534639593718308":7,"94159248086745":7,"942":29,"94215909915729":[13,17],"9427":13,"942707362776927720921299603":27,"9427073627769277209212996030922116475902":15,"942707362776931":[7,13,15,17],"94677098":7,"95728679":7,"96323909":2,"96736842":2,"97804689":7,"97944707":7,"98036162786":7,"9848715318466":7,"984871531846664":7,"9848715318467":7,"991330873713731":0,"99169047854575721271560179767750893":0,"991690478545757212715601797677509":0,"991690478546":0,"9999":29,"99999999999999":7,"9_2":2,"9_42":[7,25],"boolean":[7,14,29],"break":[6,12,23],"byte":14,"case":[2,7,12,15,17,23,25,27,28,29],"class":[2,5,8,9,10,13,15,16,17,18,24,25,29],"default":[0,2,4,7,9,12,14,15,23,25,28,29],"do":[0,1,2,4,5,6,7,12,13,14,15,16,21,23,25,26,29],"enum":7,"export":[0,4,7,9],"final":[0,6,7,23,29],"float":[0,7,8,29],"function":[0,2,7,9,13,15,16,21,23,24,29],"import":[0,7,14,15,19,21,23,28,29],"int":0,"long":[0,7,14,23,26,28,29],"new":[7,12,17,23,24,26],"public":5,"return":[0,2,6,7,14,15,16,17,23,25,26,28,29],"short":[0,6,7,13,14,17,27],"static":[14,29],"super":[9,23],"switch":[9,23],"szab\u00f3":[3,5,9,23],"true":[0,2,7,11,14,16,17,21,23,25,27,28,29],"try":[4,6,7,15,17,21,23,28,29],"var":[0,29],"while":[0,1,6,7,12,21,23],"zolt\u00e1n":[3,5,9,23],A:[0,2,7,8,9,11,13,14,18,19,22,23,24,25,27,29],And:[15,16,17,29],As:[1,2,7,15,16,25],At:16,But:[6,7,26],By:[2,7,10,14,15,17,23,27,28],For:[0,4,6,7,11,13,14,15,16,17,19,23,24,25,27,29],If:[0,2,4,5,6,7,12,14,15,16,17,19,23,25,28,29],In:[2,4,7,8,12,13,14,15,17,18,19,21,23,25,26,27,28,29],Is:29,It:[0,4,5,7,13,14,15,16,17,18,23,25,27,28,29],Its:29,No:23,Of:23,On:[6,7,23],One:[0,4,7,16,21,24,29],Or:[7,16],That:[0,7,12],The:[0,2,4,5,6,7,9,10,11,12,14,17,19,25,26,27,28,29],Then:[4,29],There:[2,6,7,14,16,22,24,29],These:[0,2,4,6,7,9,16,18,23,27,28,29],To:[0,1,2,4,5,6,7,8,11,12,14,15,17,23,28,29],With:[4,27],_:14,__contains__:2,__init__:[4,29],_accuracy_for_test:0,_canonical_retriangul:29,_factorizedsqrtlincombin:29,_magma_output_for_4_1__sl3:[7,14],_num_fake_cusp:23,_numer:16,_to_str:2,a0:[7,25,29],a1:[7,29],a_n:7,aaababbab:7,aab:7,aaba:0,aabbb:7,ab:[7,14,15,19,23,25,29],abaababbb:15,abab:0,ababaabab:7,abababab:[0,7],abb:0,abcba:17,abcd:23,abelian:0,abelian_descript:0,abeliangroup:[7,22],abelianinvari:7,abhijit:3,abl:[0,24],about:[4,6,7,12,14,15,16,19,21,27,29],abov:[0,2,6,7,13,15,16,17,19,23,27,29],absolut:[14,29],abut:23,acc:0,accept:[5,7,9,12,23],access:[2,6,8,9,14,15,17,21,23,28,29],accord:[0,14,23],account:[4,7],accumul:0,accuraci:[0,7],achiev:[0,23,27],act:[0,7],action:[5,7,14,19,29],activ:12,actual:[7,16,17,19,21,23,28,29],ad:[0,5,7,9,14,23,24,25,29],add:[2,7,8,9,24,25,29],add_vertex_positions_to_horotriangl:29,addit:[2,3,4,7,15,22,28,29],adjac:[0,29],adjoint:[7,21],administr:[4,6],admit:[11,19],advanc:[14,18],advantag:[6,16,29],affect:[7,25],aforement:6,after:[4,6,7,23,29],again:[12,16,17,28,29],against:7,agnost:29,agol:27,agre:23,aid:0,aitchison:11,aj:29,aka:7,al:23,alex:23,alexand:[7,9,21,23,25],alexander_matrix:23,alexander_poli:23,alexander_polynomi:[7,21,23,25],algebra:[15,16,17,23],algorithm:[5,7,9,19,21,23,25,27,28,29],alia:[4,29],all:[0,2,4,5,6,7,8,9,12,13,14,15,16,17,19,23,25,27,28,29],all_crossings_ori:23,all_lift:[7,21],all_normalized_transl:29,all_transl:0,allow:[2,7,8,9,12,14,16,22,23,24,25,29],allow_scaling_up:29,alon:[4,6,19],along:[7,9,28,29],alpha:[7,14],alphabet:[9,12,23],alreadi:[14,17,21,23,29],also:[0,2,4,5,6,7,9,11,12,14,15,16,17,18,19,21,22,23,24,25,27,29],alt:0,altern:[0,2,4,6,7,12,23],alternatingknotexterior:2,although:15,alwai:[0,1,7,12,14,15,19,23,28,29],ambigu:14,ambiti:24,amen:28,among:[7,25],amsref:3,an:[0,2,3,7,11,12,13,14,15,16,17,19,21,22,23,25,26,27,28,29],angl:11,ani:[1,5,6,7,8,12,14,16,17,19,21,22,23,25,27,29],anoth:[0,7,12,14,17,19,23,26,29],answer:[0,7,17,23],anyth:23,apostroph:12,app:[4,5,6,9],appar:23,appear:[4,7,17,29],append:16,appl:[5,6,9],appli:[16,23,27,29],applic:[6,7,28],apply_map:29,approach:6,appropri:[4,7,19,23,29],approxan:[7,21],approxim:[0,7,29],approximatealgebraicnumb:7,april:[5,9],apt:6,ar:[0,2,4,5,6,7,8,9,11,12,13,14,15,16,18,19,22,23,25,26,27,28,29],arbitrari:[0,7,8,9,21,23,24,29],arbitrarili:0,arc:12,arch:6,area:[0,7,27,29],aren:7,arg:23,argument:[0,2,7,14,15,16,17,23,25,28,29],arithmet:[15,16,27,28,29],around:[4,12,22,23,29],arrai:[7,29],arrow:[12,23],arxiv:[7,14,19,23,25,27],as_id:0,as_int_list:0,as_sage_braid:23,ask:0,aspect:8,assembl:23,assert:14,assertionerror:7,assign:[7,14,15,16,17,18,22,29],associ:[0,7,14,21,23,25,26,29],assum:[0,4,6,14,16,17,29],assumpt:7,attach:6,attempt:[7,12,23],attribut:[7,15,16,23],augktg:11,augment:11,august:9,author:[3,5],auto:13,autocomplet:13,automat:[7,13,14,29],avail:[3,6,7,15,16,23,26],avoid:[0,16,23,28,29],awai:23,axi:28,b0:[7,29],b1:[7,25,29],b:[0,2,7,15,17,19,23,25,29],b_0:7,b_1:7,b_n:7,ba:[0,15],baaba:[0,7],baca:7,bachman:3,back:8,background:12,backtrack:23,bad:23,bad_shap:29,bar:[9,23],base:[3,4,5,6,7,9,14,15,21,23,27,29],bash:4,bash_profil:4,basi:[7,16,18],basic:[5,7,9,23,24,25,26],bcac:17,bd:7,becaus:[0,2,7,14,15,16,19,23,28,29],becom:[7,12,16,17],been:[0,4,5,7,9,14,16,17,19,22,23,29],befor:[0,1,7,12,29],begin:[7,12,23],behavior:[7,16,23],being:[2,7,14,16,23,29],believ:17,bell:[3,10],belong:[0,7,14],below:[2,6,7,13,23,25],ben:[3,9],besid:7,best:0,beta:14,better:[9,15,17,18,29],betti:[2,11],betti_numb:[0,7],between:[0,7,8,12,14,15,23,28,29],bib:3,bibtex:3,big:[5,9,29],bin:[4,6],binari:[0,4,6],bit:[4,6,7,8,9,28,29],bitbucket:9,bits_prec:[0,7,14,21,27,29],bj:29,black:23,black_graph:23,blackboard:12,blah:9,bloch:14,block:27,blow:7,blown:7,blowup_multipl:7,bn:[7,25],bo:[7,25],bohua_cod:23,borel:19,both:[2,5,9,15,17,23,29],bottl:[0,7,25],bottom:[6,7,12],bound:[0,29],boundari:[0,7,13,14,15,16,22,25,27,29],box:29,braid:[5,7,9,23,25],braid_closur:23,braid_word:23,braidgroup:23,branch:[7,25],brasil:[7,25],bridg:[7,23,28],bridge_closur:23,bridgeman:23,bring:7,broadli:[7,25],brows:[6,7],browser:[6,7,9],bug:[4,5,9,13,17],build:[4,6,10,23],build_doc:4,build_pari:4,build_togl:6,built:[0,6,29],bump:[0,29],bundl:[4,7,10,25],burel:[3,9],burton:[3,7,9,28],button:12,c:[0,3,4,6,7,9,10,13,14,16,18,23,28,29],c_0011:14,c_0011_0:[7,14,15,16,17],c_0011_1:[15,16,17],c_0011_2:[16,17],c_0011_3:[16,17],c_0012_0:[7,15],c_0012_1:[7,15],c_0101:14,c_0101_0:[7,14,15,16,17,18],c_0101_1:[15,16,17,18],c_0102_0:[7,15],c_0102_1:15,c_0110:14,c_0110_0:[14,15,18],c_0110_1:15,c_0110_2:[16,17],c_0111_0:[7,15],c_0201_0:[7,18],c_1001:14,c_1001_0:[15,18],c_1001_1:15,c_1010:14,c_1010_0:[15,18],c_1010_1:[14,15],c_1011_0:[7,15],c_1011_1:7,c_1020_0:7,c_1100:14,c_1100_0:15,c_1100_1:15,c_1101_0:[7,15],c_1110_0:[14,15],c_1:29,c_2100_0:14,c_2:29,c_:14,c_i:29,c_n:29,ca:7,cacbca:23,cach:24,calcul:[8,9,23],calculu:[23,29],call:[0,2,7,14,16,17,19,22,23,25,28,29],callahan:[2,7],callback:0,can:[0,2,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,22,23,25,26,27,28,29],cancel:29,candid:29,cannot:[0,7,15,16,17,29],canon:[0,7,9,14,27],canonical_repres:[14,15],canonical_retriangul:[7,27,28],canonize_part_1:29,canonize_part_2:28,canva:12,cap:23,care:7,carefulli:0,cast:29,catalina:[5,9],caus:7,caution:29,cbacb:7,cd:[4,6],cell:[7,9,14,19,27,28],cellular:29,censu:[5,7,9,11,13,17,22,25],census:[2,3,9,22],censusknot:[2,5,9],center:[0,7,22,28,29],cento:6,central:28,centroid_at_origin:[0,7],certain:6,certainli:29,certif:[27,29],certifi:[7,27,28],certified_newton_iter:29,certified_shap:29,certifiedshapesengin:[7,29],chain:[16,23],champanerkar:[2,3,7],chang:[0,5,7,9,12,15,19,23,29],charact:[0,3,9],character:27,character_variety_vars_and_poli:0,characterist:[7,9],check:[7,13,14,15,17,23,25,29],check_against_manifold:[7,14,16],check_cusp_development_exactli:29,check_in_s3:[7,25],check_index:0,check_logarithmic_edge_equations_and_posit:29,check_logarithmic_gluing_equations_and_positively_oriented_tet:[7,29],check_planar:23,check_polynomial_edge_equations_exactli:29,checkerboard:23,cheeger:14,chern:[5,7,9,13,14,17,27],chern_simon:7,chernsimon:14,choic:[0,5,7,9,23],choos:7,chosen:[0,7,17,19,23],christi:2,christian:[7,19],cif:29,circl:[0,12,23],circubscrib:0,circular:12,circumv:28,cite:5,cl:[0,7],classmethod:[0,14],claus:2,clean:4,cleanup:9,clear:12,cli:4,click:[6,12,24],clickabl:4,clockwis:[0,23],clone:[4,6],close:[0,2,4,5,7,9,11,12,14,22,23,25,27,28,29],closer:7,closest:[0,6],closur:[7,9,23,25],cmi:26,cn:7,cob:7,cocalc:6,cocycl:[7,29],code:[0,3,4,5,7,9,12,14,15,23,24,25,27,29],codebas:4,coeffici:[0,7,14,23,25,29],coerc:29,cohomolog:[5,7,9],cohomology_class:7,coin:23,collaps:[14,19],collat:0,collect:0,collin:23,color:[12,23],column:[2,7,29],com:[4,6,13,17],combin:[5,7,19,23,29],combinator:7,combinatori:[7,9,14,25,28],come:[2,4,7,14,22],command:[4,5,6,12,16,17,22,26],comment:[16,29],common:[7,29],commonli:4,commut:0,commutator_subgroup:0,comp:[7,11,23],compact:[7,22,25],compar:[7,16,17,29],comparison:[13,14,29],compat:[9,16],compil:[4,6],compl:14,complement:[7,11,12,16,23,25],complementari:23,complet:[4,5,6,7,9,12,13,23,26,27,28,29],complete_length:7,complete_shap:7,complex:[0,5,7,9,13,14,19,23,27,29],complex_interval_field:29,complex_length:0,complex_volum:[5,7,9,14,27],complex_volume_numer:[7,14,17],complexcuspcrosssect:29,complexfield:7,complexhorotriangl:29,complexintervalfield:[7,29],complexsqrtlincombin:29,complic:[21,29],compon:[2,4,5,7,9,12,13,14,19,22,23,25],compos:14,composit:0,comput:[0,1,2,3,5,6,7,8,9,12,13,14,18,19,21,23,24,25,26,28],compute_decomposit:[14,15],compute_solut:[7,14,15,17],compute_tilt:29,computop:3,concaten:0,conceptu:29,concis:0,conclus:5,concret:4,conda:6,condit:[2,14],confer:26,confid:15,configur:[1,6,14,27],confin:7,conist:28,conjug:[0,7,13,14,15,16,17,19,29],conjugaci:[15,16,17],connect:[6,7,12,13,15,23],connected_compon:23,connected_sum:23,consecut:[7,23],consequ:23,consid:[14,19,24,29],consist:[0,7,12,19,23,28,29],consistencywithsnappeanumericalverifyerror:29,consistencywithsnappeatyp:29,consistent_twist_region:23,constant:16,constitut:7,construct:[7,14,18,19,23,28,29],constructor:[2,12,23],contain:[0,2,7,12,13,14,15,16,17,23,25,27,29],contains_zero:7,content:[7,12,25],context:24,continu:[0,6,7,12,23],contrast:[7,8,29],contribut:[3,4,5,9,27],conveni:[23,28],convent:[0,5,7,9,14,23,29],convers:[7,9,14],convert:[7,13,14,17,23,24,29],conwai:23,coordin:[0,7,12,13,14,15,17,18,19],copi:[1,2,3,6,7,23],core:[1,4],corner:23,correct:[4,7],correctli:17,correspond:[0,7,8,11,13,14,15,16,17,19,23,25,27,29],could:[7,16,17,28,29],count:[7,16],coupl:27,cours:23,cover:[7,25,26,29],cover_info:7,cover_typ:7,cpcbbbdxm:28,cpcbbbiht:28,cpcbbbiht_bacb:7,cr:14,creat:[0,4,6,7,12,14,17,23,26],critic:0,cross:[2,5,6,7,8,9,11,12,13,14,17,18,19,23,25],cross_ratio:[14,16,17],cross_ratios_numer:14,crossing_entri:23,crossing_strand:23,crossingentrypoint:23,crossingstrand:23,crossratio:[13,16,17],crosssect:29,cs:7,cube:[11,28,29],cubic:[11,29],cubicalnonorientableclosedcensu:11,cubicalnonorientablecuspedcensu:11,cubicalorientableclosedcensu:11,cubicalorientablecuspedcensu:11,culler:[3,5,15],cup:23,current:[0,4,6,7,9,14,15,16,17,21,23,24,25],cursor:12,curv:[7,9,12,13,19,25,27],cusp:[0,2,5,7,9,11,16,17,19,25,27,28],cusp_area:[5,7,9,27,29],cusp_area_matrix:[5,7,9,27],cusp_curv:17,cusp_info:[5,7,9],cusp_neighborhood:[0,7],cusp_shap:29,cusp_transl:[0,5,7,9],cusp_typ:7,cuspconsistencytyp:29,cuspcrosssect:29,cuspdevelopmentexactverifyerror:29,cuspdevelopmenttyp:29,cuspdevelopmenttypeexactverifyerror:29,cuspequationexactverifyerror:29,cuspequationlogliftnumericalverifyerror:29,cuspequationtyp:29,cuspneighborhood:22,cusps_to_fil:7,custom:[0,7],cut:[0,7,12,13],cutoff:[0,7],cutoff_length:0,cutoff_radiu:0,cutout:0,cuttoff_radiu:0,cvol:[7,14],cyc:7,cyclic:[7,25],cyopengl:[4,6],cypari:[4,6],cython:[4,6],d1:0,d3:0,d4:0,d6:7,d:[0,4,7,8,14,17,19,23,29],dadbcda:25,dadcdab:23,dark:9,data:[7,9,10,15,17,23,25,29],data_spec:7,databas:[2,3,4,7,13,17],dataset:2,date:3,david:3,db_path:2,dd:3,deal:[6,7],dealt:6,dean:[2,7],debian:6,debug:29,dec_prec:[7,14,21,27,29],decemb:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29],decend:14,decim:[8,15,29],declar:2,decomposit:[7,9,14,25,27,28],decompositon:28,deconnect_sum:23,decor:[2,7,9,13,16,17],decreas:29,def:23,default_vertex_epsilon:7,defin:[0,7,9,14,15,16,18,21,23,27,28,29],definit:[7,14,15,21],deform:19,degener:[7,19],degre:[7,11,19,21,28,29],degree_to_shap:[14,15,17],dehn:[7,19,22,25,27,28,29],dehn_fil:[7,11],dehydr:7,delet:[0,12],demo:[5,9,26],demonstr:6,denomin:[14,29],denominator_closur:23,denot:[0,7,23,29],dens:29,depend:[6,19,29],depth:7,deriv:[22,25,29],descend:23,describ:[0,2,4,5,6,7,14,16,19,21,23,29],descript:[0,7,12,22,25,26],desir:[16,23,29],desktop:4,destroy_origin:23,det:23,detail:[0,1,6,7,15,19,23,27],detect:[15,19,28],determin:[0,2,7,15,16,19,23,28,29],determinist:[0,7],dev:6,devel:6,develop:[1,3,5,9,13,18,19,29],df:29,dfj:[7,21],dg:[7,25],diagon:[15,19,29],diagram:[5,7,9,12,16],diagramat:23,diagrammat:23,diamet:29,diamond:[14,28],diamond_coordin:14,dickinson:[3,9],dict:15,dictionar:0,dictionari:[0,7,14,18,23,29],diff:[14,23],differ:[0,4,7,8,9,12,13,14,15,16,19,29],differenti:[23,29],difficulti:1,digit:[7,8,15],digraph:23,dihedr:[0,11],dilat:29,dimens:[0,13,14,17,23],dimensin:14,dimension:[6,7,13,14,16,19],direct:[0,23],direct_product_descript:0,directli:[0,6,7,13,23],directori:[4,6,7,14,25],dirichlet:[0,4,5,7,8,9,22],dirichlet_domain:[0,7],dirichletdomain:[7,22],disappear:29,disc:[7,25],discard:[19,23],disconnect:23,discov:16,discuss:[2,4,15],disjoint:[0,5,7,9,27,29],disk:[4,6],displac:[0,7],displai:[12,15,23],distanc:[0,29],distinct:[7,14],distinguish:[0,16,19],distribut:[6,9,23],divid:14,divisor:0,dlqacccbjkg:0,dlqacccjsnk:7,dlqacccjsnk_baab:7,dlqacccjsnk_barsb:7,dlqbcccdxwb:25,dm:5,dmg:6,doc:23,docker:[6,26],docstr:[15,21],doctest:[0,7,14,23,29],document:[4,9,10,23,24,29],dodecahedr:11,dodecahedra:11,dodecahedralnonorientableclosedcensu:11,dodecahedralnonorientablecuspedcensu:11,dodecahedralorientableclosedcensu:11,dodecahedralorientablecuspedcensu:11,doe:[0,6,7,8,13,14,16,19,23,25,26,29],doesn:7,doi:[7,25],domain:[0,4,5,7,8,9,22],don:6,done:[2,7,12,23],dot:[13,17],doubl:[3,6,7,8,9,12,14,29],doubli:14,dowker:[7,12,23,25],down:[12,23,29],download:[3,4,6,11],drag:12,drawback:29,drawn:12,drill:[7,24],drop_negative_vol:14,dt:[5,7,9,11,12,23,25],dt_alpha:[11,23],dt_code:[2,7,11,23],dual:[0,7,23,29],dual_curv:[7,24],dual_graph:23,duboi:[7,21],due:7,dummi:7,dump:0,dunfield:[2,3,4,5,27],dure:29,dx:[7,25],dylan:[7,19],dyland:7,e:[0,2,6,7,11,13,14,15,16,17,19,23,25,27,29],each:[0,1,7,12,14,15,16,17,18,19,21,22,23,25,28,29],earlier:[6,16,23,29],easi:[8,13,29],easier:[6,7,29],easiest:[4,6,26],easili:[9,28,29],ebbccdaeb:7,echo:17,edg:[0,7,12,14,16,17,19,23,29],edge_0_0:7,edge_0_1:7,edge_class:[0,7],edge_image_indic:0,edge_indic:0,edge_list:0,edge_orient:0,edge_val:7,edgeequationexactverifyerror:29,edgeequationlogliftnumericalverifyerror:29,edgeequationtyp:29,edit:[6,9,12],editor:[4,5,6,7,9,25],effect:23,eight:[0,7,16],either:[1,2,7,12,23,29],element:[0,6,7,14,15,16,19,23,29],elementari:0,elementary_divisor:0,elimin:[7,29],eliminate_fixed_ptolemi:[7,14],ellipsi:[14,29],elpkbdcddhgggb_bacbbacb:[7,27],elpkbdcddhgggb_bbcbbacb:7,els:23,elsewher:23,emac:4,email:13,emb:7,embed:[5,7,9,12,15,25,27,29],embed_cach:29,empir:23,emploi:23,empti:[16,23],enclos:12,encod:[7,9,12,23,29],encount:[1,5,6,17],end:[0,4,7,12,29],endpoint:[0,12],engin:[7,14,17,29],enischt:[13,17],enough:[7,19,29],ensur:[23,29],ensure_disjoint_on_edg:29,ensure_std_form:29,enterpris:6,entir:[7,23,28,29],entri:[0,7,23,29],enumer:17,environ:[4,6],ep:9,epel:6,epsilon2:14,epsilon:[14,23,29],epstein:28,eqn:7,equal:[7,14,15,18,23,25,27,29],equat:[7,13,14,15,19,27,29],equation_typ:7,equations_with_non_zero_condit:15,equationtyp:29,equipt:7,equival:[7,19,23],equivari:0,error:[0,1,7,14,17,29],especi:9,essenti:[7,16,25],estim:7,et:23,etc:[4,22,23],euclidean:[0,7,29],euler:[7,9],eval:14,eval_sect:14,evalu:[0,14,15,17,23,29],evaluate_word:[14,15,16,17],even:[4,6,7,11,14,16,19,27,29],evenn:14,eventu:[8,29],everi:[0,7,8,14,19,25],everyth:[4,9],ex:[4,6],exact:[7,13,14,21,27,28],exact_bits_prec_and_degre:[7,27,28],exact_sol:16,exactli:[13,14,21,28,29],exactly_checked_canonical_retriangul:29,exactverifyerror:29,examin:9,exampl:[4,7,10,12,13,14,19,21,23,25,27,28,29],except:[7,14,21,23,25,27],execut:17,exist:6,exit:4,expand:[14,24,29],expand_until_certifi:29,expect:[15,17,23],expected_valu:29,expens:28,experi:29,experiment:5,expert:7,explain:[15,18],explain_column:7,explain_row:7,explan:7,explicitli:[7,14,29],explor:26,export_stl:0,express:[0,5,9,12,29],extend:[0,5,7,9,12,14,16,19,28],extends_to_link:[2,7],extens:[9,16,29],exterior:[0,2,7,8,9,23,25],extra:[6,7,8,9,14,16,19,23],extract:[4,7],f:[0,7,14,23,29],f_2:23,f_q:[7,25],face:[0,7,14,23,28,29],face_list:0,fact:[7,19,29],factor:[0,7,8,19,23,25,29],factoris:14,fafbcaefd:7,fail:[4,6,7,14,17,21,28,29],failur:29,fair:23,fairli:[7,17],falbel:14,fals:[0,2,7,14,15,16,17,18,21,23,25,28,29],famili:[13,16,19,23],faq:22,far:[15,17,27,29],fast:[7,9,23],faster:[5,7,9,15,16],favorit:4,featur:[4,5,6,8,9,17,21,26],feb:9,februari:9,fedora:6,feel:17,fetch:4,few:[4,23],fewer:23,fiber:[7,23,25],field:[2,7,9,13,14,16,18,19,21,24,28,29],fig8:23,fig:[0,7],figur:[7,14,15,16,17,23],file:[0,4,6,7,12,14,17,18,23,25],file_nam:7,filenam:[0,7,14,15,25],filename_bas:[14,15],fill:[0,7,22,25,27,28],filled_length:7,filled_shap:7,filled_triangul:7,filling_data:7,fillings_may_affect_gener:7,filter:[2,11],filter_arg:2,find:[0,2,5,6,7,8,9,13,15,19,21,23,27,28,29],find_field:[7,21],find_shapes_as_complex_sqrt_lin_combin:29,fine:0,finger:12,finish:17,finit:[0,7,11,23,28],finitely_pres:23,finitelypresentedgroup:0,finitelypresentedgroup_with_categori:23,first:[0,2,4,7,15,16,17,21,23,25,27,28,29],first_cusp:7,five:[0,23],fix:[0,7,9,14,19,29],fixed_align:7,fkr2013:14,flag:[0,2,7,23,25],flash:12,flat:[7,16],flatten:[7,13,17],flattenings_numer:14,flaw:29,flexibl:[2,13],flip:[7,23],flipper:6,floer:[3,5,9,23],focu:5,fold:7,folder:[4,6],follow:[0,2,4,6,7,11,14,15,16,17,18,23,27,28,29],fominykh:28,force_recomput:7,ford:0,ford_domain:0,forget:7,forgotten:3,fork:4,form:[0,7,12,14,15,19,23,28,29],formal:1,format:[0,3,15,29],former:23,formerli:6,forth:8,found:[0,4,6,7,17,19,25,27,28],foundat:5,four:[7,8,15,23],fourth:[7,15],fox:23,fractal:[5,7,9],fraction:[0,7,14,18],frame:12,framework:4,free:[0,4,17],free_vari:[14,16,17],frequent:6,friend:26,from:[0,2,4,5,6,7,8,9,10,12,13,14,17,19,22,23,25,26,27,28,29],from_snappy_manifold:14,from_tetrahedra_shapes_of_manifold:14,frommanifoldandshap:29,fulfil:[7,29],full:[0,7,12,14,19,23],full_list:0,full_rigor:[0,7],full_solut:14,fulli:9,func:[0,7],fundament:[0,7,13,14,15,22],fundamental_group:[0,7,11,14,15,17,25],fundamental_group_arg:7,fundamentalgroup:22,further:15,furthermor:[27,29],futur:[13,15,17,18],fuzzy_four:29,fxrai:[7,25],g:[0,6,7,14,17,21,23,25,29],gain:6,galoi:[7,13,14,15,16,17,19],gamma:14,gap:[0,7],gap_str:0,garoufalidi:[7,14,19,28],gaussian:29,gcc:[4,6],gen:[0,7,23,29],gener:[0,4,5,7,8,9,11,13,14,15,16,17,18,23,25],generalis:19,generator_fil:0,generators_in_origin:0,genu:[5,9,14,23],genuin:[7,25],geodes:[0,7,29],geometr:[0,7,13,14,15,19,22,25,27,29],geometri:[3,5,7,22],geometric_solut:7,get:[0,4,6,7,13,14,15,16,17,18,23,24,25,29],get_displac:0,get_manifold:14,get_ord:14,get_ti:0,get_zpq_tripl:14,gf:23,ggz2012:[17,19],ggz2014:[15,16,19],git:[4,6],github:[4,5,6,9,24],give:[0,2,5,7,9,13,14,15,16,17,18,19,23,25,27,29],given:[0,2,7,13,14,15,16,19,23,25,26,28,29],gl:6,gllaqcdeefffdopuado_babbbaab:7,gllpqccdefffqffqqof:7,global:23,glpk:23,glu:[6,7,14,19,23,27,29],gluing_equ:[7,29],gluing_equations_pgl:7,gmail:[13,17],gnu:5,go:[4,7,8,12,16,17,23],goe:[2,7,23],goeritz:23,goeritz_matrix:23,goerner:[3,5,7,9,10,14,19,27,28],gon:28,good:0,good_shap:29,gordon:23,gquotient:7,gracefulli:29,grade:23,grant:5,graph:[7,11,23],graphic:[5,6,7,23],greater:14,greedi:7,grevlex:[7,14],grid:23,gridlink:6,groebner:[7,16,18],group:[0,7,9,10,13,14,15,16,19,22,23,24,25,27],grow:[7,23],gt:14,gtz2011:[15,19],guarante:[0,7,19,27,29],guess:[21,28],gui:[4,6,9,24],gz:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29],h:[0,6,7,8,14,19,23,29],h_1:[7,25],ha:[0,2,4,5,6,7,8,9,13,14,15,16,17,19,21,22,23,25,27,28,29],had:15,hahcheagbdf:23,half:0,hall:[3,10],hand:14,handed:12,handi:4,handl:[9,14,17],hang:6,happen:[17,19,23],hard:0,hardest:4,has_finite_vertic:[7,28,29],has_obstruct:14,hasattr:7,hash:2,hashabl:23,hat:[6,19],have:[0,2,4,5,6,7,8,9,13,14,15,16,17,18,19,21,23,24,25,27,28,29],hcdbbfhegbdac:11,head:23,header:6,heart:12,heavi:7,heegaard:[6,10],heegaardsplit:24,height:[0,23],help:[1,7,8,14,15,16,25],henc:[4,7,14,29],henri:[3,19],herald:[5,7,9,25],here:[0,4,5,6,7,11,13,15,16,17,18,19,21,23,25,28,29],hfhat:23,hfk:23,hh:0,hierarchi:29,high:[7,9,14,21,22,29],high_precis:[0,7,8],higher:[7,8,15,21,27],hikmot:[7,9,27,29],histori:5,hit:[6,12,15,16,26],hkl:[7,25],hlmzmkbcdefggghhhqxqhx_baab:7,hodgson:[2,7],hoffman:27,hold:[2,12,14],holonomi:[0,7,17,21,27,29],holonomoi:13,holonomy_accuraci:7,holonomy_matrix_entri:[7,21],holonomygroup:[0,7],home:[0,4],homework:26,homolog:[0,2,3,5,7,9,11,23,25],homological_longitud:[7,25],homomorph:[7,14],hood:[7,9,29],hope:[0,7,8],hopf:[0,23],horizont:23,horo:29,horobal:[0,4,7,9,24,29],horospher:0,horotoru:29,horotriangl:29,horoview:4,host:[2,3,4,7,9,23,25],hot:12,hour:26,hover:12,how:[0,4,5,6,7,8,14,15,18,21,23,29],howev:[8,15,17,29],howpublish:3,htlinkexterior:[2,5,6,9],http:[3,4,6,7,14,15,17,19,23,25],hue:0,hyperbol:[0,2,5,7,8,9,11,13,19,22,23,25,26,27,28],hyperbolic_adjoint_tors:7,hyperbolic_sln_tors:[7,21],hyperbolic_tors:[7,21],hyperbolicli:21,hyperlink:24,i686:4,i:[0,2,7,11,13,14,16,17,19,21,23,26,27,29],icebbgiafhcedb:11,icerm:26,icosahedr:11,icosahedra:11,icosahedralnonorientableclosedcensu:11,icosahedralorientableclosedcensu:11,id:[2,23,29],idea:17,ideal:[0,2,5,7,9,11,14,15,18,19,22,25,28],ident:[14,15,17],identif:[2,9],identifi:[0,2,7,11,14,21,23,28],identitybraid:23,iff:28,ignore_curve_orient:7,ignore_cusp_ord:7,ignore_exception_detail:29,ignore_solution_typ:7,ii:[23,26],iii:23,ij:14,ijl:14,illustr:23,ilya:3,im:[7,29],imag:[0,4,5,6,7,9,13,14,15,19,23,29],imaginari:[14,29],immut:7,implement:[7,17,19,23,25,27,29],impli:16,implic:29,implicitli:16,improv:[3,4,9,27,29],in_radiu:0,includ:[1,2,5,6,7,9,11,12,13,15,17,23,26,27,28,29],incom:12,incomplet:29,incompress:7,incorpor:[5,9,10],incorrect:7,increas:[7,13,23,29],inde:[7,17,29],independ:[19,29],index:[0,2,7,12,14,16,23,29],indexerror:0,indic:[0,2,7,12,14,16,29],individu:2,induc:[0,14],induced_represent:14,inequ:[14,29],inequalitynumericalverifyerror:29,inevit:8,inf:29,infimum:0,infin:[0,7,23],infinit:0,info:[0,7,12,24],inform:[7,12,14,19,25,28,29],infrastructur:9,infti:19,init_hyperbolic_structur:7,initi:[2,3,7,9,23,29],initial_map_gives_link:23,initial_shap:29,inject:[0,7],inner:16,inno:4,input:[0,2,12,14,29],inscrib:0,insert:16,insid:[0,3,7,9,17,21,23,27],inside_view:[5,7,9],insist:2,inspir:[19,29],instal:[1,2,4,5,7,9,17],installsnappi:6,instanc:[2,6,7,23,29],instanti:0,instead:[0,6,7,9,14,16,17,23,29],institut:5,instruct:[0,4,6,9,26],integ:[0,7,14,23,29],integr:[7,14],intend:7,interact:[4,6,22],interest:[0,29],interfac:[4,5,6,22],interior:[0,5,7,9,22,25],intermedi:[23,29],intern:[7,27],internet:[13,15],interoper:29,interpret:7,intersect:[7,17,29],interv:[0,7,14,15,16,27,28],interval_bits_prec:[7,28],interval_checked_canonical_triangul:29,interval_value_at_point:29,interval_vector_is_contained_in:29,interval_vector_mid_point:29,interval_vector_union:29,intervalnewtonshapesengin:29,intial:7,intrins:[19,27,28],intro:26,introduc:28,introduct:14,introspect:[21,26],invalid:0,invari:[5,7,9,16,19,24,27,28],invariant_trace_field_gen:[7,21],invention:23,invers:[0,23,29],invert:29,invok:[12,29],involv:29,ipython:[4,6,9,15],irr:7,irreduc:[7,15,25],is_abelian:0,is_altern:23,is_amphicheir:0,is_bridg:23,is_certifi:29,is_complet:[7,29],is_dihedr:0,is_direct_product:0,is_full_group:0,is_geometr:14,is_induced_from_psl2:14,is_invertible_knot:0,is_isometric_to:[0,7,23],is_numer:[14,15,16,17,18],is_orient:[7,25],is_planar:23,is_polyhedr:0,is_pu_2_1_represent:14,is_real:14,is_s5:0,is_two_bridg:7,isaugktg:11,isinst:23,isn:23,isol:[7,25,29],isom:[0,7],isometr:[2,7,27,28],isometri:[0,2,7,27,29],isometry_signatur:[7,27,28],isomorph:[7,9,25,27,28],isomorphisms_to:[7,27,28,29],isosig:[3,7],isotop:23,isotopi:23,issu:[1,6,23,24],iszeroexactverifyerror:29,item:[0,12,14],iter:[2,7,11,15,16,17,29],itervalu:16,ith:23,its:[0,4,5,6,7,15,17,23,24,27,28,29],itself:[0,4,7,16,17,23,29],j:[0,3,7,23,29],jacobian:29,jean:[3,9],jeff:[3,4,5],jeffrei:3,jeffsoldui:4,jennet:[3,9],jettison:18,ji:14,jim:[2,3],joe:2,join:[12,23],jold:23,jone:23,jones_polynomi:[5,9,23],jose:[3,9],jth:23,juli:9,june:[5,9],just:[4,6,7,8,13,14,16,17,19,23,25,29],k10n11:23,k10n1:23,k11n34:23,k11n42:[7,21],k12a123:23,k12a456:25,k12n123:[7,25],k12n813:[7,25],k13n123:23,k13n4587:7,k14n2345:23,k14n26039:7,k1:23,k2:23,k3_1:[7,25],k3a1:23,k4_3:2,k5_19:23,k5_1:2,k5_2:2,k5_3:2,k5a1:23,k6_21:7,k6a2:23,k8n1:[2,23],k9a1:23,k:[2,7,19,21,23,25,27,28,29],k_1:29,k_2:29,k_i:29,k_n:29,kabaya:[7,25],keep:1,kei:[0,2,7,12,14,15,16,26,29],kernel:[0,4,5,6,7,8,24,28,29],kernel_cod:7,key_z:14,keyword:[2,7,25],kill:7,kind:[7,16,29],kirk:[5,7,9,25],klein:[0,7,25],klpproject:23,knot:[2,3,5,6,7,8,9,11,16,23,25,28],knot_floer_homolog:[5,9,23],knot_group:23,knots_vs_link:2,knotscap:[7,25],knottheori:23,know:[3,6,29],known:[7,16,29],kofman:[2,3,7],koseleff:14,krawczyk:[9,29],krawczyk_interv:29,krawczyk_shapes_engin:29,krawczykshapesengin:29,kwarg:[7,23,25],l0:23,l104001:[7,25],l10n111:7,l11a127:23,l11n138:2,l12n1097:2,l12n123:23,l13n11308:23,l13n579:25,l13n5885:7,l14a5150:23,l14a7689:23,l14n1000:23,l14n12345:23,l14n13364:2,l14n13513:2,l14n15042:2,l14n24425:2,l14n24777:2,l14n26042:2,l14n467:23,l14n64110:[7,23],l1:23,l20935:[7,25],l2:23,l5a1:[7,25,27],l6a1:7,l7a2:[7,25],l7n1:23,l8n2:23,l:[2,7,8,23,28],l_copi:23,l_space_knot:23,la:7,label:[7,12,14,23,27],lack:[6,13,22],lackenbi:27,lambda:[14,29],languag:5,larg:[0,2,7,14,22,23],larger:[2,6,7,11,14,16],largest:[0,23],last:[0,4,7,12,15,23,25,28,29],later:[5,6,7,15,16],latest:[4,6],latin:9,latter:[6,12,15,16,23],lbar:23,lcgbcikhlbjecgafd:11,lead:14,leaf:16,learn:[5,26],least:[0,6,7,8,17,23],left:[0,7,12,14,29],legaci:14,legal:29,lemma:14,len:[0,2,7,11,15,17,23,27,28,29],length:[0,7,8,23,27,29],length_spectrum:7,length_spectrum_dict:0,less:[7,14,21,23,27,29],let:[3,6,15,17,29],letter:[0,23],level:[16,23],lexicograph:[16,18],lh:[14,29],lhss:29,libglu1:6,libglu:6,librari:[2,3,4,6,22],licata:27,licens:5,lie:7,lift:[0,7,15,16,18,19,29],lift_to_sl2:7,lift_to_sl:7,lift_vertex_positions_of_horotriangl:29,lifted_vertex_posit:29,like:[4,6,8,9,22,28,29],limit:[2,17,18],line:[4,5,12,13,16,17,29],linear:[7,12,29],linearli:23,link:[0,2,3,4,5,6,7,9,11,25,27,28],link_compon:23,linkexterior:2,linking_matrix:23,linking_numb:23,linux2:6,linux:5,lipschitz:[3,9],list:[0,2,5,6,7,11,13,14,15,17,19,23,25,26,28,29],listofshapeinterv:7,listofshapesinterv:7,litherland:23,live:14,livingston:[5,7,9,25],ll:6,lll:[21,27,28,29],llr:[7,25],lm:26,load:[0,7,25],local:[0,5,6,7,9],locat:[12,14],log:[7,14,29],log_gluing_lhs_deriv:29,log_gluing_lhs_derivatives_spars:29,log_gluing_lhss:29,logarithm:[7,14,29],logliftnumericalverifyerror:29,long_edg:[14,16],longer:[7,19],longest:23,longitud:[0,7,12,17,19,29],longitude_0_0:7,longitude_1_0:7,look:[0,2,7,17,19,25],lookup:[0,2],loop:[16,17],loos:16,lose:14,lost:16,low:[6,7,14],low_precis:8,lower:7,lowindexsubgroupsfpgroup:7,lrlr:[7,25],m003:[0,7,13,15,17,18,27,28],m003__sl2_c0:15,m003__sl2_c1:15,m004:[0,7,8,11,13,15,21,25,26,28,29],m006:7,m007:[2,7],m009:[2,14,15,17],m010:[2,14],m011:[7,13,14,15,17],m011__sl2_c0:17,m011__sl2_c1:17,m015:[0,7,25,27,28,29],m016:[7,23],m018:2,m019:[7,29],m069:18,m113:[7,25],m123:[7,25],m124:2,m125:[0,2,7,25],m128:2,m129:[2,7],m131:2,m137:[28,29],m153:2,m159:17,m177:2,m1:[5,7,9],m202:2,m203:27,m217:2,m218:2,m289:23,m292:7,m2:7,m371:[16,17],m410:17,m412:[7,27,28,29],m:[0,2,3,4,6,7,11,12,14,15,16,17,19,21,23,25,26,27,28,29],mac:[4,5,6,9],mac_osx_app:4,maco:[5,9],made:[0,7,23],magma:[0,7,13,14,18],magma_out:[15,17],magma_str:0,magma_templ:14,mai:[1,6,7,9,12,23],main:[22,25],maintain:23,mainten:3,major:[4,9],make:[0,4,6,7,9,12,13,23,24,27,28,29],malik:[3,5,9],mani:[1,5,6,7,8,9,15,16,23,25,28],manifold:[0,3,4,5,6,8,9,10,12,13,14,15,16,17,18,19,22,23,25,26,27,28,29],manifold_thunk:14,manifoldap:8,manifoldhp:[7,9,22],manifoldt:2,manjaro:6,manner:29,mantissa:8,manual:[4,23],map:[2,7,10,14,19,25],marc:[3,5,10,15],march:9,mark:[0,3,7,29],mash:23,maslov:23,massiv:[27,29],mat_entri:7,mat_solv:29,match:[2,29],match_kernel:7,materi:26,math:[7,14,23,25,29],mathemat:[5,6,10,13],matric:[0,7,13,14,19,29],matrix:[0,7,9,14,15,17,19,23,27,29],matrix_times_spars:29,matrix_trac:15,matter:[14,23],matthia:[3,5,7,9,10,19,27],max:[5,7,9],max_reach:0,max_seg:7,max_tri:23,maxim:[0,7,14,27,28,29],maxima:23,maximize_injectivity_radiu:[0,7],maximum:[0,7],mayb:7,mca:23,mcomplex:29,mdbcecejamhblckgdfi:11,me:12,mean:[7,14,16,17,18,19,23,29],meaningless:23,measur:[0,7,27,29],mechan:15,meet:[7,23],meld:12,member:0,memori:[14,26],memory_limit:14,mention:[7,19],menu:12,mere:[5,9],merg:24,meridian:[0,2,7,12,17,29],meridian_0_0:7,meridian_1_0:7,mesa:6,messag:[1,6,15,17],method:[0,2,5,7,9,14,15,16,17,18,21,23,24,25,26,27,28,29],methodmappinglist:16,meyerhoff:7,mfld:2,mfld_hash:2,mhat:14,microsoft:4,middl:[12,14],middle_edg:14,midpoint:29,might:[0,7,14,15,16,17,18,19,27,29],min:23,min_strand_index:23,mingw32:4,mingw64:4,mingw:4,minim:23,minimize_number_of_gener:[7,17],minimum:23,minkowski:0,minor:24,mint:6,minu:23,minut:26,mirror:[0,23],misc:[3,4],miss:[6,19],mklink:4,mkstemp:14,mm:3,mod:[7,14,15,16,17,18,23],mode:[7,9,23],model:[0,23],modifi:[0,7,14,19,23],modul:[2,4,5,7,9,14,15,16,17,18,19,23,25,29],modulo:27,modulu:[7,23],mojav:9,monterei:[5,9],more:[0,2,6,7,8,9,12,14,15,16,21,23,24,25,27,28,29],mors:23,morse_diagram:23,morse_numb:23,morselink:23,morselinkdiagram:23,morwen:[2,3],most:[1,2,4,6,7,9,16,19,25,27,29],mostli:9,mous:12,move:[5,7,9,12,23,28,29],move_ffixed_point_to_zero:29,move_fixed_point_to_zero:29,move_lifted_vertex_positions_to_zero_first:29,msvc:4,msys2:4,msys64:4,msys64mingw32:4,mu:29,much:[0,1,4,7,9,16,24],multi:23,multifacet:6,multigraph:23,multipl:[0,7,8,14,17,19,23,29],multipli:[8,14,29],multiply_and_simplify_term:14,multiply_and_simplify_terms_in_rur:14,multiply_el:0,multiply_term:14,multiply_terms_in_rur:14,multivar:23,multivari:[7,14,25],must:[0,4,7,9,14,25,27,29],mv:23,mvvlalqqqhfghjjlilkjklaaaaaffffffff:27,mydict:14,myideal:[7,14],mylist:2,mys2:4,mysolut:14,n0:7,n1:7,n2:7,n3:7,n4:7,n:[0,2,3,7,9,10,13,14,16,17,21,23,25,28,29],n_1:0,n_2:0,n_i:0,naiv:23,name:[0,2,7,14,15,16,23,25],namedtemporaryfil:0,nano:4,natan:[9,23],nathan:[3,4,5],nation:5,nativ:[5,9,18,29],natur:[14,23],ncube05_30945:11,ncube05_30946:11,ncube05_30947:11,nearest:0,necessari:[13,15,27,29],necessarili:[5,7,27],need:[1,4,6,7,14,17,21,23,29],neg:[5,7,8,9,14,23,29],neighbor:28,neighborhood:[0,5,7,9,27,29],nest:[7,13],neumann:[7,14],neumannzagiertypeequ:7,nevertheless:0,new_convent:23,new_curv:7,new_displac:0,new_nam:7,new_ti:0,newer:[5,6,9],newton:29,newton_iter:29,next:[2,6,7,23,25,28],nf:29,nice:29,nicocld02_00000:11,noct03_00007:11,noct03_00029:11,noct03_00047:11,noct03_00048:11,nois:14,non:[0,2,7,9,11,12,13,14,15,19,23,25,27,28,29],non_peripher:7,non_trivial_generalized_obstruction_class:14,nonabelian:0,nonaltern:2,nonalternatingknotexterior:2,none:[0,2,6,7,14,21,23,25,28,29],nonempti:[7,25],nongeometric_solut:7,nonneg:7,nonorient:[2,7],nonorientableclosedcensu:2,nonorientablecuspedcensu:2,nonplanar:23,nontrivi:[0,7,25],nonzero:[7,23,25],nonzerodimensionalcompon:[13,16,17],nor:7,norm:23,normal:[6,7,9,14,24,25,29],normal_boundary_slop:[7,25],normal_surfac:[7,25],normalize_cusp:29,normalize_whitespac:[7,14,29],notar:[5,9],notat:[2,14],note:[0,3,4,6,7,14,16,19,23,25,26,27,29],noth:16,notic:9,notion:19,nov:9,novemb:[5,9],now:[2,4,5,6,9,14,15,16,17,19,26,29],ntet01_00000:11,nu:23,num_compon:23,num_cusp:[0,2,7,23],num_edg:0,num_fac:0,num_finite_vertic:0,num_gener:0,num_ideal_vertic:0,num_original_gener:0,num_rel:0,num_subdivis:0,num_tet:2,num_tetrahedra:[2,7,14,25,28,29],num_vertic:0,number:[0,2,5,6,7,8,9,14,15,16,17,18,23,24,25,29],number_field:[14,15,29],numberfield:[15,18,29],numberfieldel:18,numer:[2,7,12,13,14,15,17,23,29],numerator_closur:23,numeric12:[7,29],numeric15:[7,29],numeric24:7,numeric30:0,numeric3:29,numeric6:[7,29],numeric9:[0,7],numerical_sol:16,numerical_solut:14,numericalfield:29,numericalverifyerror:29,nval:7,o31:0,o31_gener:0,o31matric:0,o9_35953:7,o9_44210:7,o9_44241:2,o9_44242:2,o9_44243:2,o:0,obei:23,obeidin:[3,5,9],obj:14,object:[0,2,7,14,15,16,17,18,25,26,29],obscur:0,obsolet:14,obstruct:[5,7,9,13,14,15,16,17,18,25],obstruction_class:[7,14,15,16],obtain:[0,7,14,15,17,19,29],obviou:23,octahedr:11,octahedra:11,octahedralnonorientablecuspedcensu:11,octahedralorientablecuspedcensu:11,ocube01_00002:11,odd:[7,14,25],odode02_00913:11,of_link:[7,27],off:29,offer:[6,19],offset:2,often:[0,7],oicocld01_00000:11,old:[4,7,12,23,24],old_precis:14,older:6,onc:[6,7,12,17,25],one:[0,2,4,6,7,8,9,11,12,13,14,15,16,17,19,21,23,25,27,29],one_cocycl:29,one_dim_sol:17,ones:[0,7,14,15,17,19,23,29],onli:[0,1,2,6,7,8,9,11,12,14,15,16,17,19,23,25,27,28,29],ooct01_00000:7,ooct01_00001:11,ooct02_00001:11,ooct02_00002:11,ooct02_00003:11,ooct02_00005:11,ooct04_00027:11,ooct04_00034:11,opac:29,open:[1,4,7,12,23,25,29],opengl:[4,6],openglmesa:6,openssh:4,opensus:6,oper:[0,7,12,18,29],opinion:5,oppos:23,opposit:[0,23,29],optim:[7,21],optimize_overcross:23,option:[0,2,6,7,12,14,17,23,28,29],orbifold:[0,7,22,25],order:[0,2,6,7,12,23,25],order_bi:2,ordinari:[7,8],org:[3,4,6,7,13,14,15,17,19,23,25],orient:[0,2,7,9,11,12,13,16,23,25,27,28,29],orientableclosedcensu:2,orientablecuspedcensu:[2,15,17,27],orientation_cov:7,origin:[0,2,7,23,29],original_gener:0,original_index:0,orthogon:0,os:[0,5,6,9,14],otet02_00001:11,otet05_00000:11,otet05_00001:11,otet20_00022:7,other:[0,2,3,5,6,7,12,13,16,17,19,21,23,25,28,29],other_knot:23,otherwis:[0,7,14,16,23,25,29],our:[6,15,23,24,29],ourselv:17,out:[0,4,7,14,15,17,19,21,28,29],out_radiu:0,output:[7,14,15,17,21,29],outsid:[0,18],over:[0,7,8,9,12,14,15,16,23,27],overcross:23,overflatten:16,overstrand:23,overview:[16,18],overwrit:29,own:[4,6,7,14,29],p:[0,3,7,14,15,16,17,19,23,25],p_max:[7,25],pacher:7,pachner:7,pack:0,packag:[4,6,7,14,23],pacman:[4,6],page:[2,6,26],pair:[0,7,14,23,25,28,29],pairing_matric:0,pairwis:0,paper:[7,9,14,23,29],parabol:7,parallel:14,paramet:[2,7,13,14,16,23,27,29],parametr:[7,19],parent:[7,23],pari:[3,6,7,14,15,16,18],pariti:[0,7],pars:[7,14,15,17],parse_solut:14,parse_solutions_from_fil:14,part:[4,7,8,10,13,14,26,29],partial:[5,19],particular:[7,9,13,16,18,23,29],pass:[0,2,7,12,23,25,29],passes_at_four:7,past:12,path:[4,6,7,17,23,25],path_to_fil:15,patterson:[2,7],pd:23,pd_code:23,pdf:[9,23],pdf_doc:23,peer_cod:23,pencil:12,penner:28,pentagon:7,penultimateshap:29,peopl:13,per:[7,19],perform:[7,9,23,29],peripher:[7,9,13,14,19,25,27],peripheral_curv:[0,7,17],peripheral_data:7,perl:4,perman:7,permut:[7,24],permutation_rep:7,permutationgroupel:7,pgl2:[15,17],pgl:[7,9,14,19],phi:[7,21],philipp:[3,9],pi:[7,14,27,29],pick:[7,14,15,16,17,19,23,28,29],pickl:[0,7],pickup:23,pictur:[0,4,7],piec:[7,23],piecewis:12,pin:4,pioneer:[21,27],pip:[4,6],pip_instal:4,pl:12,place:[8,12,23],plain:14,plan:15,planar:[5,9,12],planarmap:23,plane:[0,7,12,23,29],platform:[1,6,9],platon:[2,9,22],pleas:[3,5,6,13,15,23],plink:[4,6,7,11,12,23],pm:19,poincar:0,point:[0,7,8,12,13,14,16,19,23,28,29],point_in_interv:29,poldmod:18,poli:[0,29],polici:[7,27],polish:7,polished_holonomi:[7,21],polmod:[15,18],polygen:29,polyhedr:0,polyhedral_descript:0,polyhedron:0,polynomi:[0,7,9,14,15,16,18,19,21,23,25,28,29],polynomial_r:29,polynomial_root:29,polynomialr:[7,14],polyview:4,pop:[4,16],port:27,posit:[0,5,7,9,13,14,16,19,23,24,29],possibl:[0,7,16,23,28,29],postfix:16,potenti:[0,7,16,28],power:[5,7,13,23],pquotient:7,practic:26,pre:6,prebuilt:6,prec:[21,29],precis:[0,7,9,13,14,16,21,22,24,27,28,29],precomput:7,precomputed_solut:7,prefer:[7,14,15,18],preinstal:6,preliminari:[9,10,13],prepackag:6,prepar:28,present:[0,7,13,14,15,23,24,25],preserv:[0,7,23,29],presum:7,pretti:4,pretzel:23,previou:[16,23],previous:6,primari:[3,7],prime:[7,18,23,25],prime_decomposit:23,primes_spec:[7,25],print:[0,2,3,7,9,11,12,14,15,17,28,29],privileg:6,pro:[5,9],prob_type_1:23,prob_type_2:23,probabl:[6,7],problem:[5,6,19,26],procedur:29,process:[4,7,14,17,18,23],processfiledispatch:14,processmagmafil:[7,14],processor:[5,9],produc:[0,7,9,14,19,23,29],product:[0,14,27,29],program:[3,4,5,6,8,9,23],programmat:23,progress:7,prohibit:29,project:[0,7,12,19,23,24,25],prompt:[4,6],proof:[7,16],proper:0,properti:[7,23,29],proposit:[14,19],proto:[7,28,29],prototyp:4,provabl:[7,29],prove:[7,16,29],proven:[16,29],provid:[0,2,6,7,9,12,13,14,16,23,25,29],psl:[7,9,10,13,14,16,29],pt:14,ptolemi:[7,9,14,18],ptolemtycoordin:14,ptolemy_generalized_obstruction_class:7,ptolemy_obstruction_class:7,ptolemy_varieti:[7,13,14,15,16,17,18],ptolemycoordin:[13,15,16,17,18],ptolemygeneralizedobstructionclass:7,ptolemyobstructionclass:7,ptolemyvarieti:[13,15,16],ptolmei:19,pu:14,publish:[14,19],pull:[4,12],punctur:[7,23,25],purpos:4,push:12,put:[0,4,23,29],pxi:4,py2app:4,py:[4,6,29],py_eval_sect:[14,15],py_eval_variable_dict:[14,15],pyinstal:4,pypi:[6,9],pyreadlin:4,python36:6,python37:4,python3:[4,6],python:[0,2,4,5,7,9,14,15,16,18,22],pythonmegawidget:4,pyx:[0,4],pz:[7,25],q:[7,14,23,25],q_max:[7,25],q_min:[7,25],qd:3,qqbar:29,quad:[3,7,8,9,25],quadrupl:14,quadruples_with_fixed_sum_iter:14,quantiti:[15,29],querri:17,question:[17,29],quick:[7,25],quicker:7,quickstart:26,quotient:[19,29],r:[3,7,14,23,29],r_1:29,r_2:29,r_:29,r_i:29,r_n:29,radic:14,radicaldecomposit:[14,18],radii:0,radiu:[0,7,24],rai:[7,25],rais:[0,7,23,25,29],random:[7,9,17],random_link:23,rang:[0,6,7,14,25,29],rank:[0,23],rare:19,rather:[0,6,7,9,29],ratio:[7,13,14,17,18,19],ratio_coordin:14,ration:[7,13,14,23,25,29],rational_field:29,rationalfield:[7,14,29],rationaltangl:23,raw_form:0,raytrac:[3,5,7,9],re:[7,22,29],reach:[0,29],read:[0,4,7,12,14],read_tilt:29,readabl:15,reader:19,real:[0,4,7,14,15,29],real_mpfi:29,real_mpfr:29,realcuspcrosssect:29,realfield:[7,29],realhorotriangl:29,realintervalfield:[0,7,29],realiz:[0,7,23],realli:[4,8,14,23,24],realliter:29,reason:[7,17,19,29],recal:[15,16,28],recent:[4,7,25,27,29],recip:6,recogn:0,recognit:9,recommend:[5,6,9,15,29],recomput:7,reconnect:12,reconstruct:23,record:[23,26],recov:[14,19,23],recreat:7,rect:[7,16,21,27,29],rectangular:[7,27,29],recurs:[13,23,29],recycl:12,red:[6,12],redesign:9,redo:24,reduc:[7,13,14,15,23,29],refer:[13,26],refin:[7,29],reflect:[5,12],regard:[0,23],regina:[6,7,25,27],region:23,regula:11,regular:[11,15],reidemeist:23,reimplement:27,rel:[27,28],relabel:28,relat:[0,7,9,11,14,15,17,18,19,23,24,29],relationship:14,releas:[1,4,5,6,9,12],remain:12,remark:[0,7,13,14,15,16,17,18,27,29],rememb:[12,26],remov:[0,7,12,14,16,23],remove_finite_vertic:23,reorgan:9,repeat:[7,23,25],replac:[3,6,7],report:[5,7,13,14,16,17],repositori:[4,6,9],repres:[0,7,14,18,19,23,25,29],represent:[0,7,9,10,13,14,16,21,23,27,28,29],request:[4,7,23],requir:[2,5,7,8,9,12,15,25,27],resampl:23,rescal:[0,29],research:[5,26],reset:14,resiz:12,resolv:23,respect:[0,7,15,16,19,29],rest:4,restart:12,restor:7,restrict:2,result:[0,2,7,14,15,16,17,19,23,24,27,28,29],retriangl:29,retriangul:[7,27,29],retriev:[7,13,16],retrieve_decomposit:15,retrieve_solut:[7,13,15,16,17,18],return_all_piec:23,return_graph:23,return_isometri:7,return_matric:7,revers:[0,7,16],reverse_orient:7,revisit:[15,17],rewritten:9,rh:14,rho0:7,rho:7,riemann:14,rif:29,right:[0,4,14,29],right_kernel:23,rightarrow:19,rigor:[7,9],ring:[7,14,23,29],rise:7,robert:[3,9],rolfsen:[2,7,23,25],room:12,root:[15,18,19,29],roughli:8,rouillier:14,round:[7,14],roundoff:0,row:[7,29],rrl:[7,25],rubinstein:11,run:[1,4,5,6,7,9,17,29],runtimeerror:[7,29],rur:14,s000:[0,7],s00209:[7,25],s0:[14,23],s123:[7,25],s1:[14,23],s2009:19,s2:14,s345:0,s3:14,s3knot:24,s3link:24,s776:7,s862:2,s959:0,s960:0,s:[0,1,2,4,5,6,7,9,14,15,16,17,18,21,23,25,27,28,29],s_0_0:[7,15],s_0_1:[7,15],s_1_0:[7,15],s_1_1:[7,15],s_2_0:[7,15],s_2_1:[7,15],s_3_0:[7,15],s_3_1:[7,15,16],s_3_2:17,s_3_4:[16,17],s_:[7,25],sage:[0,6,7,9,13,14,15,18,21,23,24,25,27,28,29],sage_link:23,sagemath:[5,7,9,23,26],sagemathcloud:6,sai:[0,7,15,18,19],same:[0,2,6,7,12,13,14,16,19,21,23,27,28,29],sampl:[14,16,23],sanchez:[3,9],satellit:7,satisfi:2,saul:[3,10],save:[0,7,12],saw:17,scale:29,scale_cusp:29,schaeffer:23,schema:2,scheme:12,schleimer:[3,10],school:26,scienc:5,scilinux:6,screen:12,screencast:[24,26],screenshot:5,script:4,sdk:4,search:[7,25],second:[0,5,7,9,12,16,23,25,27,29],section:[6,14,19,28],see:[0,2,4,5,6,7,9,11,13,14,15,16,17,19,23,24,25,27,29],seem:6,seen:15,segerman:[3,19],segment:[0,12],seifert:[5,9,11,23],seifert_genu:23,seifert_matrix:23,select:[4,7,12],self:[0,7,15,23,29],semant:29,semifib:[7,25],send:[2,4,12],sens:[7,29],sent:7,separ:0,septemb:9,sequenc:[0,2,23],set:[0,2,4,7,15,16,17,19,23,25,27,29],set_displac:0,set_nam:7,set_peripheral_curv:7,set_real_precis:[14,15],set_target_holonomi:7,set_tetrahedra_shap:7,set_ti:0,setofaan:7,setup:[4,6,14,29],setuptool:4,sever:[2,5,7,9,19,29],sh:[4,6],shape1:29,shape2:29,shape:[0,5,7,9,13,14,16,17,21,24,27,28],shape_accuraci:7,shape_interv:29,shapepositiveimaginarypartnumericalverifyerror:29,shapetyp:29,sheet:26,shell:[4,7,22,25,26],shift:29,short_edg:14,short_slop:[5,7,9,27],shortcut:[0,4,7],shorter:[15,16,29],shortest:7,shortest_longitud:7,shortest_meridian:7,should:[3,4,6,7,12,15,23,24,29],show:[7,14,28],show_crossing_label:23,shown:[0,7,23],shrink_factor:0,sibl:2,side:[4,7,12,14,29],sierra:9,sigma:7,sigma_1:23,sigma_2_invers:23,sign:[5,7,9,14,23,29],sign_with_interv:29,signatur:[5,7,9,23,25,27],signific:[1,8,29],significand:8,significantli:7,silent:23,silicon:[5,9],silli:23,similar:[7,14,15,17,23,27,28,29],similarli:[7,15,19,29],simon:[5,7,9,13,14,17,27],simpl:[7,29],simplequoti:7,simpler:22,simplex:[7,14,17,29],simplfic:7,simpli:[6,17,29],simplic:[7,14,19,27],simplif:[0,7,9,23],simplifi:[7,9,14,23,29],simplified_solut:14,simplify_present:[7,17],simultan:7,sinc:[0,7,15,16,17,29],singl:[7,23],singular:7,site:5,situat:23,size:[2,7,12,19,27,29],skein:23,skeleton:7,skip:[2,7,14,23],skipvertic:14,sl2c:[0,7,21,27],sl:[0,3,7,9,10,13,14,16,17],slice:[0,2,5,7,9,25],slice_obstruction_hkl:[5,7,9,25],slide:[12,15],slope:[7,25,27],slow:27,slower:[8,29],small:29,smaller:[0,2,16,23],smallest:[0,16,29],smooth:9,smoothli:1,snap:[3,6,8,21,24,28,29],snappea:[0,2,4,5,7,8,12,22,25,28,29],snappea_manifold_directori:[7,25],snappea_valu:29,snappeagui:4,snappeapython:24,snappi:[0,1,2,4,7,8,9,10,11,13,14,15,16,17,18,19,21,23,24,25,26,27,28,29],snappy_15_knot:[2,6],snappycor:4,so:[0,1,2,4,6,7,8,14,15,16,17,21,23,25,26,27,28,29],softwar:6,sol:[7,15,16,17,18],solid:11,solut:[7,13,14,19,27,29],solution_typ:7,solutions_from_magma:[7,14],solutions_from_magma_fil:14,soluton:14,solv:[7,17,29],solver:23,some:[0,4,6,7,8,9,14,16,17,18,19,22,23,25,28,29],someth:[4,29],sometim:[0,7],somewhat:[0,29],sort:[7,16,23],sourc:[0,4,7,9],space:[0,4,6,7,11,14,22,25,27],span:14,spars:[23,29],sparse_m:29,spec:[7,25],special:[6,16,29],specif:[4,6,7,9,16,25],specifi:[0,2,7,8,14,17,22,23,25,27,29],spectrum:8,speed:[27,29],sphere:[0,7],spherogram:[3,4,23],sphinx:4,spine:0,spine_radiu:0,split:[7,9,10,14,23,25,28,29],split_link_diagram:23,splitting_surfac:7,spun:[7,9,25],sqlite3:[2,4],sqrt:[27,29],sqrtlincombin:29,squar:[16,29],squareextens:29,stabil:15,stabl:29,stai:16,stand:[4,6],standard:[7,23,29],start:[4,6,12,14,17,23,29],state:12,statement:14,stavro:[7,19],step:[10,13,23],still:[13,14,16,17,18],stl:[0,9],stop:[7,12,23],stopper:[0,29],stopping_displac:0,store:[0,2,29],straight:4,strand:23,strategi:23,strengthen:27,strict:[7,25],string:[0,7,12,14,25],strip:[7,14],structur:[0,5,7,8,9,13,14,22,23,25,27,29],studi:[3,5,9,10],studio:4,stupid:4,style:[9,15,25],su:4,sub:24,subclass:[2,15,16,18,23,25,29],subcompon:4,subdirectori:6,subdivid:0,subgraph:23,subgroup:[0,7,19],sublink:23,suboptim:7,subpackag:4,subrang:2,subrgroup:19,subsequ:23,subset:[7,25,29],subsidiari:8,subsimplex:7,subsimplic:15,succe:28,succeed:[23,29],success:7,successfulli:[23,29],sudo:6,suffer:[19,29],suffici:[7,29],suggest:[13,15],suit:18,suitabl:[0,7],sum:[7,23,29],summand:[23,29],summar:23,summari:7,superus:6,suppli:[11,14,17],support:[0,1,2,4,5,6,7,9,12,14,16,17,18,19,21,25,29],suppos:29,suppress:15,sur:[5,9],sure:[4,6,29],surfac:[7,9,10,14,24,25],surgeri:[7,27,29],suspend:28,suspens:[7,28],svg:9,swap:29,sy:[4,6],sym:14,symbol:[4,7],symmetr:0,symmetri:[0,7,28],symmetric_triangul:7,symmetry_group:[0,7],symmetrygroup:[22,24],syntax:2,system:[6,9,17,19],syu:4,t02333:7,t02774:29,t1:23,t2:23,t3m:[4,24,29],t:[2,6,7,8,21,23,28,29],t_complex:7,t_frac:7,t_int:7,t_real:7,ta:0,tab:[0,9,13,15,26],tabl:[2,7,13,17,23,25],tabul:[2,11,25],tail_vertex_index:0,take:[0,7,14,15,19,23,27,28,29],taken:[2,19],tamassia:23,tangl:[9,23],tar:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29],target:[7,29],tarkaev:28,taskbar:4,tau:[7,21,23],tb:0,technic:[4,7,25],techniqu:27,tell:16,tempfil:[0,14],templat:14,template_path:14,temporari:[14,17],ten:7,tend:[0,23],term:[0,5,7,14,29],termin:[4,6,29],tessel:11,test:[0,1,4,6,7,9,14,25,29],tests:4,tet:[7,14,29],tetrahedr:[7,9,11,27,28,29],tetrahedra:[0,2,5,7,9,11,14,15,17,21,28,29],tetrahedra_field_gen:[7,21],tetrahedra_shap:[7,14,16,21,27,29],tetrahedralnonorientablecuspedcensu:11,tetrahedralorientablecuspedcensu:11,tetrahedron:[7,14,15,22,24,25,29],tetrahehdra_shap:14,text:[0,2,4,7],th:[7,15,19,23],than:[0,2,4,6,7,9,14,15,16,21,23,27,29],thank:9,thei:[0,2,6,7,12,15,16,17,23,25,27,29],them:[4,5,6,7,14,17,23,28,29],theorem:[7,16,25,27,29],theori:[5,6,16],thereof:[7,25],thi:[0,2,4,5,6,7,8,9,12,13,14,15,16,17,18,19,21,22,23,24,25,27,28,29],thin:[0,12],thing:[0,1,6,8,12,19,22,26,29],think:14,thistlethwait:[2,3,7,12,23,25],those:[4,5,6,7,15,18,19,23,29],though:[0,4,7,14,27,29],thought:[7,19,25],three:[0,1,7,14,23,29],through:[2,7,14,16,17],throughout:8,thrown:23,thu:[5,7,9,14,15,16,17,19,27,28,29],thurston:[7,14,19,25,26],ti:0,ticket:1,tikz:9,tilt:29,tiltinequalitynumericalverifyerror:29,tiltiszeroexactverifyerror:29,tiltprovenpositivenumericalverifyerror:29,tilttyp:29,time:[0,4,7,8,13,14,23,28,29],tip:4,tip_vertex_index:0,titl:3,tk8:6,tk:[4,6],tkinter:6,tmp:17,tmppnsc8:17,to_magma:[7,14,15],to_magma_fil:[14,15],to_pur:14,todo:13,togeth:[7,12,14,16,22,23],togl:6,too:[12,16,23],took:17,tool:[4,6,12,13],top:12,topic:18,topolog:[0,3,5,6,7,9,25,28],tori:7,toris:21,torsion:[7,14,21],toru:[7,22,23,25],total:7,total_rank:23,touch:7,tower:29,trace:[0,7,13,16,19,24],trace_field_gen:[7,21],traceback:[7,25,29],traci:[3,10],tradit:[7,23],transcendent:16,transform:7,transit:7,translat:[0,7,9,29],transpar:28,transpos:23,trefoil:7,tri:[7,13,16,17,23,28],triangl:[7,29],triangul:[0,2,5,7,9,15,16,17,19,22,23,28,29],triangular:19,triangulation_isosig:[2,7,28],trigdepend:7,trigdependenttrycanon:7,tripl:14,trival:11,trivial:[7,15,16,17,18,19,23,25,29],troubl:6,truli:[14,29],truncat:[14,17],try_hard_to_shorten_rel:7,tupl:7,turn:[7,14,16,23,28],tutori:[5,24],tw:0,twice:[0,4,12,15,17],twist:[7,21,23,25],twisted_chain:23,twister:[3,7,9,25],two:[0,2,6,7,8,12,15,16,17,18,19,23,25,27,28,29],type:[0,4,6,7,8,9,13,15,18,21,23,27,28,29],type_iii_limit:23,typic:[0,7,8,23,27,29],u1:14,u2:14,u4:23,u5:23,u:[8,23],ubuntu:6,ui:4,ui_callback:0,ulimit:17,unam:4,unbias:[7,27],unbound:23,unchang:7,unclear:14,under:[0,4,5,7,9,13,15,17,18,19,29],undercross:23,underli:[7,23,29],understand:[17,29],undo:23,unfil:[7,25],unfortun:[16,29],unhyperbol:[7,13,15,17],unicod:4,uniform:23,union:[23,29],unipot:[7,13,14,15,16,29],uniqu:[7,15,19,23],unit:[7,19,23],uniti:[15,19],univari:[7,13,14],univers:[6,7],unix:4,unknot:23,unknown:14,unlik:[7,28],unlink:[0,23],unpot:16,unpublish:19,unrecogn:7,unsimplifi:14,until:[7,23,28,29],unus:29,unverifi:7,unzip:4,up:[0,2,4,6,7,9,11,14,15,17,23,25,27,28,29],updat:[4,5,9,12,17],upgrad:[2,4,6],upper:[0,19],url:3,us:[0,1,2,4,5,6,7,8,9,13,14,17,18,19,21,23,24,25,26,27,28,29],usabl:9,usag:[7,14],use_field_convers:[0,7],user:[0,4,6,7,8,9,14,29],user_radiu:0,usual:[0,4,6,16,25,29],util:14,uv:23,v0:14,v0v1v2:14,v123:[7,25],v142:4,v1539:[2,7,25],v1959:7,v1:14,v2854:7,v2:14,v3000:7,v3227:[0,7],v3227_fill:7,v3379:0,v:[23,29],valenc:7,valent:23,valid:[14,23],valu:[0,2,7,14,15,16,17,18,21,23,27,29],value1:29,value2:29,valueerror:[7,23,25],vari:[0,7],variabl:[0,7,14,15,17,23,25],variable_dict:14,variables_with_non_zero_condit:15,variant:22,varieti:[0,3,6,7,9,13,14,16,18],variou:[4,6,7,12,21,23],ve:[3,12],vec:29,veca:29,vecb:29,vector:[7,14,29],verbatim:1,verbos:[7,14,15,16,17,25,28,29],verbose_form:0,veri:[1,4,7,14,23,27,29],verif:[7,9,27],verifi:[0,5,7,9,28],verificatin:29,verified_canonical_retriangul:[7,28],verified_modulo_2_tors:[7,27],verify_hyperbol:[7,27],verifycanon:29,verifyerrorbas:29,verifyhyperbol:29,version:[2,4,5,6,7,9,15,29],versu:8,vert:23,vertex:[0,7,12,14,23,25,29],vertex_class:0,vertex_data_list:0,vertex_epsilon:[0,7],vertex_image_indic:0,vertex_index:0,vertex_indic:0,vertex_list:0,vertic:[0,7,12,14,23,28,29],vesnin:28,via:[0,4,5,6,7,9,21,23,29],video:[5,9,26],view:[0,3,5,7,9,11,23],viewer:[9,23],violat:14,virtualenv:4,visual:4,vogel:23,volum:[0,2,5,7,8,9,11,13,14,16,19,23,27],volume_numer:[13,14,15,16,17],vs:[4,7,13],w0:14,w1:14,w2:14,w64:4,w:[0,7,14,25],wa:[5,6,7,12,13,14,16,19,27,28,29],wada_convent:[7,21],wai:[4,6,7,9,14,16,19,23,25,26,27,29],walsh:[7,25],walter:14,want:[4,6,7,12,16,17,19,23,25,29],warn:[4,7,16,23,27],warwick:26,watch:[5,6,26],we:[0,1,3,6,7,8,13,14,15,16,17,18,19,21,23,26,28,29],weak:14,weber:11,webpag:[2,4],week:[2,3,5,7,13],weight:7,welcom:1,well:[1,4,12,15,16,19,29],were:[2,11],wget:[4,6],what:[7,8,10,14,17,22,26,29],whatev:8,wheel:[4,6],when:[0,3,6,7,9,12,14,15,16,17,18,19,23,25,26,27,28,29],whenev:[23,29],where:[0,2,3,7,8,12,14,17,18,19,22,23,25,29],wherea:4,whether:[0,2,7,14,16,17,23,29],which:[0,2,4,5,6,7,8,9,12,14,15,16,17,18,19,22,23,25,27,28,29],which_curv:7,which_cusp:[0,7],which_surfac:7,whichev:4,white:23,white_graph:23,whitehead:7,who:[13,29],whole:23,whose:[7,14,16,19,23],why:[15,21],widget:6,window:[5,7,9,12,17,22,23,25,26],windows_ex:4,winpti:4,wirefram:0,wirt:23,wirting:23,wise:29,wish:6,wit:[13,14,16],with_hyperbolic_structur:[0,7,23],with_modulo:14,within:[0,6,7,23],without:[2,7,11,13,23,29],without_hyperbolic_structur:7,word:[0,7,13,14,15,17,19,23,29],work:[0,4,5,6,7,13,14,15,17,23,25,29],would:[0,4,16,18,19,29],wrap:24,wrapper:7,write:[1,6,14,15,16,17,29],writh:23,written:[5,7,29],wrong:14,x101:28,x103:28,x11:6,x123:7,x124:7,x86:4,x86_64:4,x:[0,5,6,7,9,14,15,16,17,18,21,23,29],x_coordin:14,xfz:6,xllvlvmlpmplamqqcceflnjmmmospsrttvvvtswwwiieiifdeauinasltltahmbjn_bacbbaabbabbbbbaabba:7,xxxx:7,xy:[0,12],y233:7,y:[3,6,7,23],yamagachi:21,yamaguichi:7,yang:12,ye:8,yet:[14,16,17,19],yield:[15,17,19],yin:12,yosemit:9,you:[0,1,2,3,4,5,6,7,8,12,17,21,22,23,24,25,26],your:[1,3,4,5,6,7,12,13,15,17],yourself:17,youtub:26,yum:6,yyyi:3,z0:[7,29],z1:[7,29],z2014:19,z:[0,2,7,11,14,16,19,21,25,29],z_0000_0:[7,16,17],z_0000_1:[7,16,17],z_0000_2:17,z_0001_0:14,z_0010_0:14,z_center:29,z_xxxx_y:[7,14],zdpecbbujvtiwzslqpxyreadhokcmfgn:11,zeit:[7,25],zero:[7,13,14,15,19,29],zgliczynski:[27,29],zickert:[7,14,19],zip:29,zj:29,zp:[7,14],zp_0000_0:[7,16,17],zp_0000_1:[7,16],zp_0010_0:14,zp_xxxx_y:14,zpp:[7,14],zpp_0000_0:[7,16],zpp_0000_1:[7,16],zpp_0010_0:14,zpp_xxxx_y:14,zs:16,zypper:6},titles:["Additional Classes","Reporting bugs and other problems","Census manifolds","Credits","Development Basics","SnapPy","Installing SnapPy","Manifold: the main class","ManifoldHP: High-precision variant","News","Other components","Censuses of Platonic manifolds","Using SnapPy\u2019s link editor","The ptolemy module","Classes","Step-by-step examples: Part 1","Step-by-step examples: Part 2","Step-by-step examples: Part 3","Step-by-step examples: Part 4","Mathematical preliminaries","Screenshots: SnapPy in action","Number theory of hyperbolic 3-manifolds","The snappy module and its classes","Links: planar diagrams and invariants","To Do List","Triangulation","Tutorial","Verified computations","Canonical retriangulation and isometry signature","Internals of verified computations"],titleterms:{"1":15,"10":20,"13":20,"2":[15,16,17],"3":[17,21],"4":18,"7":20,"class":[0,7,14,19,22,23],"do":24,"function":14,"new":[5,9],"short":15,A:[15,16],The:[13,15,16,18,22,23],To:24,abeliangroup:0,action:20,addit:0,an:18,ar:17,auto:15,autocomplet:16,basic:[4,12],boundari:[17,19],bug:1,c:[15,17,19],canon:[28,29],cell:29,censu:2,census:11,certifi:29,cite:3,closedbraid:23,code:6,comparison:16,complet:15,complex:17,compon:[10,16,17],comput:[15,16,17,27,29],convert:16,coordin:16,credit:[3,5],cross:[16,29],crossratio:14,curv:17,cusp:29,cuspneighborhood:0,cut:15,databas:15,decomposit:29,decor:19,develop:4,diagram:23,differ:17,dimens:16,dimension:17,directli:16,dirichletdomain:0,document:[5,13],draw:12,editor:12,exact:[15,16,18,29],exampl:[15,16,17,18],except:29,famili:17,faq:8,featur:12,field:15,find:17,flatten:[14,16],from:[15,16],fundamentalgroup:0,futur:19,gener:[6,19,29],high:8,hyperbol:[16,21,29],imag:17,increas:15,instal:6,intern:29,interv:29,invari:23,isometri:28,its:22,kitchen:6,lack:16,link:[12,23],linux:[4,6,20],list:[16,24],m003:16,m004:16,mac:20,macintosh:6,maco:[4,6],magma:17,main:7,manifold:[2,7,11,21],manifoldhp:8,mathemat:19,matric:[15,17],miscellan:12,modul:[6,10,13,22],n:[15,19],name:29,nest:16,non:[16,17],nonzerodimensionalcompon:14,number:21,numer:16,obstruct:19,os:20,other:[1,10,14],overview:27,part:[15,16,17,18],patch:4,peripher:17,planar:23,platon:11,point:17,posit:17,precis:[8,15],preliminari:19,present:17,problem:1,psl:[15,17,19],ptolemi:[10,13,15,16,17,19],ptolemycoordin:14,ptolemyvarieti:14,python:6,random:23,ratio:16,ration:18,recurs:16,reduc:19,refer:19,report:1,represent:[15,17,18,19],retriangul:28,retriev:[15,17],s:12,sage:17,sagemath:6,same:17,screenshot:20,section:29,shape:29,signatur:28,sink:6,sl:[15,19],snappi:[3,5,6,12,20,22],solut:[15,16,17,18],sourc:6,step:[15,16,17,18],structur:[16,18],submit:4,symmetrygroup:0,tab:16,theori:21,todo:18,topic:27,trace:15,triangul:25,tutori:[23,26],twister:10,type:16,ubuntu:20,unipot:[17,19],univari:18,unix:6,us:[12,15,16],variant:8,varieti:[15,17,19],verif:29,verifi:[27,29],verifii:28,volum:[15,17],vs:[16,17,19],what:[5,13],window:[4,6,20],wit:17,work:[16,19],x:20,zero:17}})
1
+ Search.setIndex({"alltitles": {"A comparison of m003 and m004": [[16, "a-comparison-of-m003-and-m004"]], "A non-hyperbolic example": [[16, "a-non-hyperbolic-example"]], "A short cut for a PSL(N, C) Ptolemy variety": [[15, "a-short-cut-for-a-psl-n-c-ptolemy-variety"]], "AbelianGroup": [[0, "abeliangroup"]], "Additional Classes": [[0, null]], "Boundary-unipotent": [[19, "boundary-unipotent"]], "Census manifolds": [[2, null]], "Censuses of Platonic manifolds": [[11, null]], "Citing SnapPy": [[3, "citing-snappy"]], "Classes": [[14, null]], "Compute the matrices for a representation": [[15, "compute-the-matrices-for-a-representation"]], "Compute the trace field for a PSL(2, C)-representation": [[15, "compute-the-trace-field-for-a-psl-2-c-representation"]], "Compute the traces": [[15, "compute-the-traces"]], "Compute the volume": [[15, "compute-the-volume"]], "Computing cross ratios from Ptolemy coordinates": [[16, "computing-cross-ratios-from-ptolemy-coordinates"]], "Computing numerical solutions directly": [[16, "computing-numerical-solutions-directly"]], "Computing solutions with magma or sage vs retrieving solutions": [[17, "computing-solutions-with-magma-or-sage-vs-retrieving-solutions"]], "Computing the complex volume": [[17, "computing-the-complex-volume"]], "Computing the images of the peripheral curves for a representation": [[17, "computing-the-images-of-the-peripheral-curves-for-a-representation"]], "Computing the matrices for a different presentation": [[17, "computing-the-matrices-for-a-different-presentation"]], "Conda": [[6, "conda"]], "Converting exact solutions into numerical solutions": [[16, "converting-exact-solutions-into-numerical-solutions"]], "Credits": [[3, null], [5, "credits"]], "CrossRatios": [[14, "crossratios"]], "CuspNeighborhood": [[0, "cuspneighborhood"]], "Development Basics": [[4, null]], "DirichletDomain": [[0, "dirichletdomain"]], "Documentation": [[5, "documentation"], [13, "documentation"]], "Drawing Basics": [[12, "drawing-basics"]], "Exact computations for cusp cross sections": [[28, "module-snappy.verify.square_extensions"]], "Exceptions": [[28, "module-snappy.verify.exceptions"]], "FAQ": [[8, "faq"]], "Finding a witness point for a positively dimensional component of the Ptolemy variety": [[17, "finding-a-witness-point-for-a-positively-dimensional-component-of-the-ptolemy-variety"]], "Finding non-zero dimensional families of boundary-unipotent representations": [[17, "finding-non-zero-dimensional-families-of-boundary-unipotent-representations"]], "Flattening nested structures": [[16, "flattening-nested-structures"]], "Flattenings": [[14, "flattenings"]], "FundamentalGroup": [[0, "fundamentalgroup"]], "Future work": [[19, "future-work"]], "Generating certified shape intervals": [[28, "generating-certified-shape-intervals"]], "Generically decorated representations": [[19, "generically-decorated-representations"]], "Increase precision": [[15, "increase-precision"]], "Installing SnapPy": [[6, null]], "Internals of verified computations": [[28, null]], "Introduction": [[27, "introduction"]], "Kitchen sink": [[6, "kitchen-sink"]], "Lack of tab-autocompletion for nested structures": [[16, "lack-of-tab-autocompletion-for-nested-structures"]], "Links: planar diagrams and invariants": [[23, null]], "Linux": [[4, "linux"]], "Linux (Ubuntu 13.10)": [[20, "linux-ubuntu-13-10"]], "Linux app": [[6, "linux-app"]], "Mac OS X": [[20, "mac-os-x"]], "Manifold: the main class": [[7, null]], "ManifoldHP: High-precision variant": [[8, null]], "Mathematical preliminaries": [[19, null]], "Miscellaneous Features": [[12, "miscellaneous-features"]], "Naming": [[28, "naming"]], "News": [[5, "news"], [9, null]], "NonZeroDimensionalComponent": [[14, "nonzerodimensionalcomponent"]], "Number theory of hyperbolic 3-manifolds": [[21, null]], "Obstruction class": [[19, "obstruction-class"]], "Other components": [[10, null]], "Other functions": [[14, "other-functions"]], "Overview": [[27, "overview"]], "Ptolemy module": [[10, "ptolemy-module"]], "Ptolemy varieties for PSL(N, C)-representations": [[15, "ptolemy-varieties-for-psl-n-c-representations"]], "PtolemyCoordinates": [[14, "ptolemycoordinates"]], "PtolemyVariety": [[14, "ptolemyvariety"]], "Python Modules for Linux": [[6, "python-modules-for-linux"]], "Python Modules for macOS or Windows": [[6, "python-modules-for-macos-or-windows"]], "Random Links": [[23, "random-links"]], "Rational Univariate Representation": [[18, "rational-univariate-representation"]], "Reduced Ptolemy variety": [[19, "reduced-ptolemy-variety"]], "References": [[19, "references"]], "Reporting bugs and other problems": [[1, null]], "Representations that are the same as PSL(2, C)-representations": [[17, "representations-that-are-the-same-as-psl-2-c-representations"]], "Retrieving exact solutions from the database": [[15, "retrieving-exact-solutions-from-the-database"]], "SL(N, C) vs PSL(N, C)": [[19, "sl-n-c-vs-psl-n-c"]], "SageMath": [[6, "sagemath"]], "Screenshots: SnapPy in action": [[20, null]], "SnapPy": [[5, null]], "Source code": [[6, "source-code"]], "Step-by-step examples: Part 1": [[15, null]], "Step-by-step examples: Part 2": [[16, null]], "Step-by-step examples: Part 3": [[17, null]], "Step-by-step examples: Part 4": [[18, null]], "Submitting patches": [[4, "submitting-patches"]], "SymmetryGroup": [[0, "symmetrygroup"]], "TODO": [[18, "todo"]], "The ClosedBraid class": [[23, "the-closedbraid-class"]], "The Link class": [[23, "the-link-class"]], "The Ptolemy list type": [[16, "the-ptolemy-list-type"]], "The Ptolemy variety for SL(N, C)": [[15, "the-ptolemy-variety-for-sl-n-c"]], "The dimension of a component": [[16, "the-dimension-of-a-component"]], "The ptolemy module": [[13, null]], "The snappy module and its classes": [[22, null]], "The structure of an exact solution": [[18, "the-structure-of-an-exact-solution"]], "To Do List": [[24, null]], "Triangulation": [[25, null]], "Tutorial": [[23, "tutorial"], [26, null]], "Twister": [[10, "twister"]], "Using SnapPy\u2019s link editor": [[12, null]], "Using auto-completion": [[15, "using-auto-completion"]], "Using the Ptolemy list type recursively": [[16, "using-the-ptolemy-list-type-recursively"]], "Verification of hyperbolicity": [[28, "verification-of-hyperbolicity"]], "Verified canonical cell decompositions": [[28, "verified-canonical-cell-decompositions"]], "Verified computation topics": [[27, "verified-computation-topics"]], "Verified computations": [[27, null]], "What is SnapPy?": [[5, "what-is-snappy"]], "What is the ptolemy module?": [[13, "what-is-the-ptolemy-module"]], "Windows": [[4, "windows"], [6, "windows"]], "Windows 7": [[20, "windows-7"]], "Working with exact vs numerical solutions": [[16, "working-with-exact-vs-numerical-solutions"]], "macOS": [[4, "macos"], [6, "macos"]]}, "docnames": ["additional_classes", "bugs", "censuses", "credits", "development", "index", "installing", "manifold", "manifoldhp", "news", "other", "platonic_census", "plink", "ptolemy", "ptolemy_classes", "ptolemy_examples1", "ptolemy_examples2", "ptolemy_examples3", "ptolemy_examples4", "ptolemy_prelim", "screenshots", "snap", "snappy", "spherogram", "todo", "triangulation", "tutorial", "verify", "verify_internals"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["additional_classes.rst", "bugs.rst", "censuses.rst", "credits.rst", "development.rst", "index.rst", "installing.rst", "manifold.rst", "manifoldhp.rst", "news.rst", "other.rst", "platonic_census.rst", "plink.rst", "ptolemy.rst", "ptolemy_classes.rst", "ptolemy_examples1.rst", "ptolemy_examples2.rst", "ptolemy_examples3.rst", "ptolemy_examples4.rst", "ptolemy_prelim.rst", "screenshots.rst", "snap.rst", "snappy.rst", "spherogram.rst", "todo.rst", "triangulation.rst", "tutorial.rst", "verify.rst", "verify_internals.rst"], "indexentries": {"abelian_description() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.abelian_description", false]], "abeliangroup (class in snappy)": [[0, "snappy.AbelianGroup", false]], "abelianization() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.abelianization", false]], "alexander_matrix() (spherogram.link method)": [[23, "spherogram.Link.alexander_matrix", false]], "alexander_poly() (spherogram.link method)": [[23, "spherogram.Link.alexander_poly", false]], "alexander_polynomial() (snappy.manifold method)": [[7, "snappy.Manifold.alexander_polynomial", false]], "alexander_polynomial() (snappy.triangulation method)": [[25, "snappy.Triangulation.alexander_polynomial", false]], "alexander_polynomial() (spherogram.link method)": [[23, "spherogram.Link.alexander_polynomial", false]], "all_crossings_oriented() (spherogram.link method)": [[23, "spherogram.Link.all_crossings_oriented", false]], "all_translations() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.all_translations", false]], "alternating() (spherogram.link method)": [[23, "spherogram.Link.alternating", false]], "alternatingknotexteriors (class in snappy)": [[2, "snappy.AlternatingKnotExteriors", false]], "backtrack() (spherogram.link method)": [[23, "spherogram.Link.backtrack", false]], "betti_number() (snappy.abeliangroup method)": [[0, "snappy.AbelianGroup.betti_number", false]], "black_graph() (spherogram.link method)": [[23, "spherogram.Link.black_graph", false]], "braid_word() (spherogram.link method)": [[23, "spherogram.Link.braid_word", false]], "browse() (snappy.manifold method)": [[7, "snappy.Manifold.browse", false]], "canonical_retriangulation() (snappy.manifold method)": [[7, "snappy.Manifold.canonical_retriangulation", false]], "canonize() (snappy.manifold method)": [[7, "snappy.Manifold.canonize", false]], "category() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.category", false]], "censusknots (in module snappy)": [[2, "snappy.CensusKnots", false]], "center() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.center", false]], "certified_newton_iteration() (snappy.verify.intervalnewtonshapesengine static method)": [[28, "snappy.verify.IntervalNewtonShapesEngine.certified_newton_iteration", false]], "certifiedshapesengine (in module snappy.verify)": [[28, "snappy.verify.CertifiedShapesEngine", false]], "character_variety_vars_and_polys() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.character_variety_vars_and_polys", false]], "check_against_manifold() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.check_against_manifold", false]], "check_against_manifold() (snappy.ptolemy.coordinates.flattenings method)": [[14, "snappy.ptolemy.coordinates.Flattenings.check_against_manifold", false]], "check_against_manifold() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.check_against_manifold", false]], "check_index() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.check_index", false]], "check_logarithmic_gluing_equations_and_positively_oriented_tets() (in module snappy.verify.hyperbolicity)": [[28, "snappy.verify.hyperbolicity.check_logarithmic_gluing_equations_and_positively_oriented_tets", false]], "chern_simons() (snappy.manifold method)": [[7, "snappy.Manifold.chern_simons", false]], "closedbraid (class in spherogram)": [[23, "spherogram.ClosedBraid", false]], "commutator_subgroup() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.commutator_subgroup", false]], "complex_length() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.complex_length", false]], "complex_volume() (snappy.manifold method)": [[7, "snappy.Manifold.complex_volume", false]], "complex_volume() (snappy.ptolemy.coordinates.flattenings method)": [[14, "snappy.ptolemy.coordinates.Flattenings.complex_volume", false]], "complex_volume_numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.complex_volume_numerical", false]], "complexsqrtlincombination (class in snappy.verify.square_extensions)": [[28, "snappy.verify.square_extensions.ComplexSqrtLinCombination", false]], "compute_decomposition() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)": [[14, "snappy.ptolemy.ptolemyVariety.PtolemyVariety.compute_decomposition", false]], "compute_solutions() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)": [[14, "snappy.ptolemy.ptolemyVariety.PtolemyVariety.compute_solutions", false]], "connected_sum() (spherogram.link method)": [[23, "spherogram.Link.connected_sum", false]], "copy() (snappy.manifold method)": [[7, "snappy.Manifold.copy", false]], "copy() (snappy.triangulation method)": [[25, "snappy.Triangulation.copy", false]], "copy() (spherogram.link method)": [[23, "spherogram.Link.copy", false]], "cover() (snappy.manifold method)": [[7, "snappy.Manifold.cover", false]], "cover() (snappy.triangulation method)": [[25, "snappy.Triangulation.cover", false]], "cover_info() (snappy.manifold method)": [[7, "snappy.Manifold.cover_info", false]], "cover_info() (snappy.triangulation method)": [[25, "snappy.Triangulation.cover_info", false]], "covers() (snappy.manifold method)": [[7, "snappy.Manifold.covers", false]], "covers() (snappy.triangulation method)": [[25, "snappy.Triangulation.covers", false]], "cross_ratios() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.cross_ratios", false]], "cross_ratios_numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.cross_ratios_numerical", false]], "crossing_entries() (spherogram.link method)": [[23, "spherogram.Link.crossing_entries", false]], "crossing_strands() (spherogram.link method)": [[23, "spherogram.Link.crossing_strands", false]], "crossratios (class in snappy.ptolemy.coordinates)": [[14, "snappy.ptolemy.coordinates.CrossRatios", false]], "cubicalnonorientableclosedcensus (in module snappy)": [[11, "snappy.CubicalNonorientableClosedCensus", false]], "cubicalnonorientablecuspedcensus (in module snappy)": [[11, "snappy.CubicalNonorientableCuspedCensus", false]], "cubicalorientableclosedcensus (in module snappy)": [[11, "snappy.CubicalOrientableClosedCensus", false]], "cubicalorientablecuspedcensus (in module snappy)": [[11, "snappy.CubicalOrientableCuspedCensus", false]], "cusp_area_matrix() (snappy.manifold method)": [[7, "snappy.Manifold.cusp_area_matrix", false]], "cusp_areas() (snappy.manifold method)": [[7, "snappy.Manifold.cusp_areas", false]], "cusp_info() (snappy.manifold method)": [[7, "snappy.Manifold.cusp_info", false]], "cusp_info() (snappy.triangulation method)": [[25, "snappy.Triangulation.cusp_info", false]], "cusp_neighborhood() (snappy.manifold method)": [[7, "snappy.Manifold.cusp_neighborhood", false]], "cusp_translations() (snappy.manifold method)": [[7, "snappy.Manifold.cusp_translations", false]], "cuspconsistencytype (class in snappy.verify.exceptions)": [[28, "snappy.verify.exceptions.CuspConsistencyType", false]], "cuspequationexactverifyerror": [[28, "snappy.verify.exceptions.CuspEquationExactVerifyError", false]], "cuspequationlogliftnumericalverifyerror": [[28, "snappy.verify.exceptions.CuspEquationLogLiftNumericalVerifyError", false]], "cuspequationtype (class in snappy.verify.exceptions)": [[28, "snappy.verify.exceptions.CuspEquationType", false]], "cuspneighborhood (class in snappy)": [[0, "snappy.CuspNeighborhood", false]], "deconnect_sum() (spherogram.link method)": [[23, "spherogram.Link.deconnect_sum", false]], "degree_to_shapes() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)": [[14, "snappy.ptolemy.ptolemyVariety.PtolemyVariety.degree_to_shapes", false]], "dehn_fill() (snappy.manifold method)": [[7, "snappy.Manifold.dehn_fill", false]], "dehn_fill() (snappy.triangulation method)": [[25, "snappy.Triangulation.dehn_fill", false]], "determinant() (spherogram.link method)": [[23, "spherogram.Link.determinant", false]], "diamond_coordinate() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.diamond_coordinate", false]], "digraph() (spherogram.link method)": [[23, "spherogram.Link.digraph", false]], "direct_product_description() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.direct_product_description", false]], "dirichlet_domain() (snappy.manifold method)": [[7, "snappy.Manifold.dirichlet_domain", false]], "dirichletdomain (class in snappy)": [[0, "snappy.DirichletDomain", false]], "dodecahedralnonorientableclosedcensus (in module snappy)": [[11, "snappy.DodecahedralNonorientableClosedCensus", false]], "dodecahedralnonorientablecuspedcensus (in module snappy)": [[11, "snappy.DodecahedralNonorientableCuspedCensus", false]], "dodecahedralorientableclosedcensus (in module snappy)": [[11, "snappy.DodecahedralOrientableClosedCensus", false]], "dodecahedralorientablecuspedcensus (in module snappy)": [[11, "snappy.DodecahedralOrientableCuspedCensus", false]], "drill() (snappy.manifold method)": [[7, "snappy.Manifold.drill", false]], "drill_word() (snappy.manifold method)": [[7, "snappy.Manifold.drill_word", false]], "drill_words() (snappy.manifold method)": [[7, "snappy.Manifold.drill_words", false]], "dt_code() (snappy.manifold method)": [[7, "snappy.Manifold.DT_code", false]], "dt_code() (snappy.triangulation method)": [[25, "snappy.Triangulation.DT_code", false]], "dt_code() (spherogram.link method)": [[23, "spherogram.Link.DT_code", false]], "dual_curves() (snappy.manifold method)": [[7, "snappy.Manifold.dual_curves", false]], "dual_graph() (spherogram.link method)": [[23, "spherogram.Link.dual_graph", false]], "dump() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.dump", false]], "dumps() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.dumps", false]], "edge_list() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.edge_list", false]], "edge_valences() (snappy.manifold method)": [[7, "snappy.Manifold.edge_valences", false]], "edge_valences() (snappy.triangulation method)": [[25, "snappy.Triangulation.edge_valences", false]], "edgeequationexactverifyerror": [[28, "snappy.verify.exceptions.EdgeEquationExactVerifyError", false]], "edgeequationlogliftnumericalverifyerror": [[28, "snappy.verify.exceptions.EdgeEquationLogLiftNumericalVerifyError", false]], "edgeequationtype (class in snappy.verify.exceptions)": [[28, "snappy.verify.exceptions.EdgeEquationType", false]], "elementary_divisors() (snappy.abeliangroup method)": [[0, "snappy.AbelianGroup.elementary_divisors", false]], "equationtype (class in snappy.verify.exceptions)": [[28, "snappy.verify.exceptions.EquationType", false]], "evaluate_word() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.evaluate_word", false]], "evaluate_word() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.evaluate_word", false]], "exactly_checked_canonical_retriangulation() (in module snappy.verify.canonical)": [[28, "snappy.verify.canonical.exactly_checked_canonical_retriangulation", false]], "exactverifyerror": [[28, "snappy.verify.exceptions.ExactVerifyError", false]], "expand_until_certified() (snappy.verify.intervalnewtonshapesengine method)": [[28, "snappy.verify.IntervalNewtonShapesEngine.expand_until_certified", false]], "expand_until_certified() (snappy.verify.krawczykshapesengine method)": [[28, "snappy.verify.KrawczykShapesEngine.expand_until_certified", false]], "export_stl() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.export_stl", false]], "exterior() (spherogram.link method)": [[23, "spherogram.Link.exterior", false]], "exterior_to_link() (snappy.manifold method)": [[7, "snappy.Manifold.exterior_to_link", false]], "exterior_to_link() (snappy.triangulation method)": [[25, "snappy.Triangulation.exterior_to_link", false]], "face_list() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.face_list", false]], "faces() (spherogram.link method)": [[23, "spherogram.Link.faces", false]], "filename_base() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)": [[14, "snappy.ptolemy.ptolemyVariety.PtolemyVariety.filename_base", false]], "filled_triangulation() (snappy.manifold method)": [[7, "snappy.Manifold.filled_triangulation", false]], "filled_triangulation() (snappy.triangulation method)": [[25, "snappy.Triangulation.filled_triangulation", false]], "find() (snappy.database.manifoldtable method)": [[2, "snappy.database.ManifoldTable.find", false]], "find_shapes_as_complex_sqrt_lin_combinations() (in module snappy.verify.square_extensions)": [[28, "snappy.verify.square_extensions.find_shapes_as_complex_sqrt_lin_combinations", false]], "flattenings (class in snappy.ptolemy.coordinates)": [[14, "snappy.ptolemy.coordinates.Flattenings", false]], "flattenings_numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.flattenings_numerical", false]], "ford_domain() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.Ford_domain", false]], "from_snappy_manifold() (snappy.ptolemy.coordinates.crossratios static method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.from_snappy_manifold", false]], "from_tetrahedra_shapes_of_manifold() (snappy.ptolemy.coordinates.flattenings class method)": [[14, "snappy.ptolemy.coordinates.Flattenings.from_tetrahedra_shapes_of_manifold", false]], "fundamental_group() (snappy.manifold method)": [[7, "snappy.Manifold.fundamental_group", false]], "fundamental_group() (snappy.triangulation method)": [[25, "snappy.Triangulation.fundamental_group", false]], "gap_string() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.gap_string", false]], "generators() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.generators", false]], "generators_in_originals() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.generators_in_originals", false]], "get_custom_name() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.get_custom_name", false]], "get_displacement() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.get_displacement", false]], "get_manifold() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.get_manifold", false]], "get_manifold() (snappy.ptolemy.coordinates.flattenings method)": [[14, "snappy.ptolemy.coordinates.Flattenings.get_manifold", false]], "get_manifold() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.get_manifold", false]], "get_order() (snappy.ptolemy.coordinates.flattenings method)": [[14, "snappy.ptolemy.coordinates.Flattenings.get_order", false]], "get_tie() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.get_tie", false]], "get_zpq_triple() (snappy.ptolemy.coordinates.flattenings method)": [[14, "snappy.ptolemy.coordinates.Flattenings.get_zpq_triple", false]], "gluing_equations() (snappy.manifold method)": [[7, "snappy.Manifold.gluing_equations", false]], "gluing_equations() (snappy.triangulation method)": [[25, "snappy.Triangulation.gluing_equations", false]], "gluing_equations_pgl() (snappy.manifold method)": [[7, "snappy.Manifold.gluing_equations_pgl", false]], "gluing_equations_pgl() (snappy.triangulation method)": [[25, "snappy.Triangulation.gluing_equations_pgl", false]], "goeritz_matrix() (spherogram.link method)": [[23, "spherogram.Link.goeritz_matrix", false]], "has_finite_vertices() (snappy.manifold method)": [[7, "snappy.Manifold.has_finite_vertices", false]], "has_finite_vertices() (snappy.triangulation method)": [[25, "snappy.Triangulation.has_finite_vertices", false]], "has_obstruction() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.has_obstruction", false]], "high_precision() (snappy.manifold method)": [[7, "snappy.Manifold.high_precision", false]], "holonomy_matrix_entries() (snappy.manifold method)": [[7, "snappy.Manifold.holonomy_matrix_entries", false]], "holonomygroup (class in snappy)": [[0, "snappy.HolonomyGroup", false]], "homological_longitude() (snappy.manifold method)": [[7, "snappy.Manifold.homological_longitude", false]], "homological_longitude() (snappy.triangulation method)": [[25, "snappy.Triangulation.homological_longitude", false]], "homology() (snappy.manifold method)": [[7, "snappy.Manifold.homology", false]], "homology() (snappy.triangulation method)": [[25, "snappy.Triangulation.homology", false]], "horoballs() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.horoballs", false]], "htlinkexteriors (in module snappy)": [[2, "snappy.HTLinkExteriors", false]], "hyperbolic_adjoint_torsion() (snappy.manifold method)": [[7, "snappy.Manifold.hyperbolic_adjoint_torsion", false]], "hyperbolic_sln_torsion() (snappy.manifold method)": [[7, "snappy.Manifold.hyperbolic_SLN_torsion", false]], "hyperbolic_torsion() (snappy.manifold method)": [[7, "snappy.Manifold.hyperbolic_torsion", false]], "icosahedralnonorientableclosedcensus (in module snappy)": [[11, "snappy.IcosahedralNonorientableClosedCensus", false]], "icosahedralorientableclosedcensus (in module snappy)": [[11, "snappy.IcosahedralOrientableClosedCensus", false]], "identify() (snappy.database.manifoldtable method)": [[2, "snappy.database.ManifoldTable.identify", false]], "identify() (snappy.manifold method)": [[7, "snappy.Manifold.identify", false]], "imag() (snappy.verify.square_extensions.complexsqrtlincombination method)": [[28, "snappy.verify.square_extensions.ComplexSqrtLinCombination.imag", false]], "in_radius() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.in_radius", false]], "induced_representation() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.induced_representation", false]], "inequalitynumericalverifyerror": [[28, "snappy.verify.exceptions.InequalityNumericalVerifyError", false]], "inside_view() (snappy.manifold method)": [[7, "snappy.Manifold.inside_view", false]], "interval_checked_canonical_triangulation() (in module snappy.verify.canonical)": [[28, "snappy.verify.canonical.interval_checked_canonical_triangulation", false]], "interval_vector_is_contained_in() (snappy.verify.intervalnewtonshapesengine static method)": [[28, "snappy.verify.IntervalNewtonShapesEngine.interval_vector_is_contained_in", false]], "interval_vector_is_contained_in() (snappy.verify.krawczykshapesengine static method)": [[28, "snappy.verify.KrawczykShapesEngine.interval_vector_is_contained_in", false]], "interval_vector_mid_points() (snappy.verify.intervalnewtonshapesengine static method)": [[28, "snappy.verify.IntervalNewtonShapesEngine.interval_vector_mid_points", false]], "interval_vector_mid_points() (snappy.verify.krawczykshapesengine static method)": [[28, "snappy.verify.KrawczykShapesEngine.interval_vector_mid_points", false]], "interval_vector_union() (snappy.verify.intervalnewtonshapesengine static method)": [[28, "snappy.verify.IntervalNewtonShapesEngine.interval_vector_union", false]], "interval_vector_union() (snappy.verify.krawczykshapesengine static method)": [[28, "snappy.verify.KrawczykShapesEngine.interval_vector_union", false]], "intervalnewtonshapesengine (class in snappy.verify)": [[28, "snappy.verify.IntervalNewtonShapesEngine", false]], "invariant_trace_field_gens() (snappy.manifold method)": [[7, "snappy.Manifold.invariant_trace_field_gens", false]], "is_abelian() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.is_abelian", false]], "is_alternating() (spherogram.link method)": [[23, "spherogram.Link.is_alternating", false]], "is_amphicheiral() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.is_amphicheiral", false]], "is_dihedral() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.is_dihedral", false]], "is_direct_product() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.is_direct_product", false]], "is_full_group() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.is_full_group", false]], "is_geometric() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.is_geometric", false]], "is_geometric() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.is_geometric", false]], "is_induced_from_psl2() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.is_induced_from_psl2", false]], "is_invertible_knot() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.is_invertible_knot", false]], "is_isometric_to() (snappy.manifold method)": [[7, "snappy.Manifold.is_isometric_to", false]], "is_orientable() (snappy.manifold method)": [[7, "snappy.Manifold.is_orientable", false]], "is_orientable() (snappy.triangulation method)": [[25, "snappy.Triangulation.is_orientable", false]], "is_planar() (spherogram.link method)": [[23, "spherogram.Link.is_planar", false]], "is_polyhedral() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.is_polyhedral", false]], "is_pu_2_1_representation() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.is_pu_2_1_representation", false]], "is_real() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.is_real", false]], "is_s5() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.is_S5", false]], "is_two_bridge() (snappy.manifold method)": [[7, "snappy.Manifold.is_two_bridge", false]], "isometries() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.isometries", false]], "isometry_signature() (snappy.manifold method)": [[7, "snappy.Manifold.isometry_signature", false]], "isomorphisms_to() (snappy.manifold method)": [[7, "snappy.Manifold.isomorphisms_to", false]], "isomorphisms_to() (snappy.triangulation method)": [[25, "snappy.Triangulation.isomorphisms_to", false]], "iszeroexactverifyerror": [[28, "snappy.verify.exceptions.IsZeroExactVerifyError", false]], "jones_polynomial() (spherogram.link method)": [[23, "spherogram.Link.jones_polynomial", false]], "keys() (snappy.database.manifoldtable method)": [[2, "snappy.database.ManifoldTable.keys", false]], "klpprojection() (spherogram.link method)": [[23, "spherogram.Link.KLPProjection", false]], "knot_floer_homology() (spherogram.link method)": [[23, "spherogram.Link.knot_floer_homology", false]], "knot_group() (spherogram.link method)": [[23, "spherogram.Link.knot_group", false]], "krawczyk_interval() (snappy.verify.krawczykshapesengine method)": [[28, "snappy.verify.KrawczykShapesEngine.krawczyk_interval", false]], "krawczykshapesengine (class in snappy.verify)": [[28, "snappy.verify.KrawczykShapesEngine", false]], "length_spectrum() (snappy.manifold method)": [[7, "snappy.Manifold.length_spectrum", false]], "length_spectrum_alt() (snappy.manifold method)": [[7, "snappy.Manifold.length_spectrum_alt", false]], "length_spectrum_alt_gen() (snappy.manifold method)": [[7, "snappy.Manifold.length_spectrum_alt_gen", false]], "length_spectrum_dicts() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.length_spectrum_dicts", false]], "link (class in spherogram)": [[23, "spherogram.Link", false]], "link() (snappy.manifold method)": [[7, "snappy.Manifold.link", false]], "link() (snappy.triangulation method)": [[25, "snappy.Triangulation.link", false]], "linkexteriors (in module snappy)": [[2, "snappy.LinkExteriors", false]], "linking_matrix() (spherogram.link method)": [[23, "spherogram.Link.linking_matrix", false]], "linking_number() (spherogram.link method)": [[23, "spherogram.Link.linking_number", false]], "log_gluing_lhs_derivatives() (snappy.verify.intervalnewtonshapesengine static method)": [[28, "snappy.verify.IntervalNewtonShapesEngine.log_gluing_LHS_derivatives", false]], "log_gluing_lhs_derivatives() (snappy.verify.krawczykshapesengine method)": [[28, "snappy.verify.KrawczykShapesEngine.log_gluing_LHS_derivatives", false]], "log_gluing_lhs_derivatives_sparse() (snappy.verify.krawczykshapesengine method)": [[28, "snappy.verify.KrawczykShapesEngine.log_gluing_LHS_derivatives_sparse", false]], "log_gluing_lhss() (snappy.verify.intervalnewtonshapesengine static method)": [[28, "snappy.verify.IntervalNewtonShapesEngine.log_gluing_LHSs", false]], "log_gluing_lhss() (snappy.verify.krawczykshapesengine method)": [[28, "snappy.verify.KrawczykShapesEngine.log_gluing_LHSs", false]], "logliftnumericalverifyerror": [[28, "snappy.verify.exceptions.LogLiftNumericalVerifyError", false]], "long_edge() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.long_edge", false]], "long_edge() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.long_edge", false]], "longitude() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.longitude", false]], "magma_string() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.magma_string", false]], "manifold (class in snappy)": [[7, "snappy.Manifold", false]], "manifold() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.manifold", false]], "manifold() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.manifold", false]], "manifoldtable (class in snappy.database)": [[2, "snappy.database.ManifoldTable", false]], "matrix_times_sparse() (snappy.verify.krawczykshapesengine static method)": [[28, "snappy.verify.KrawczykShapesEngine.matrix_times_sparse", false]], "max_reach() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.max_reach", false]], "meridian() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.meridian", false]], "middle_edge() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.middle_edge", false]], "middle_edge() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.middle_edge", false]], "mirror() (spherogram.link method)": [[23, "spherogram.Link.mirror", false]], "module": [[0, "module-snappy", false], [13, "module-snappy.ptolemy", false], [21, "module-snappy.snap", false], [23, "module-spherogram", false], [28, "module-snappy.verify", false], [28, "module-snappy.verify.exceptions", false], [28, "module-snappy.verify.square_extensions", false]], "morse_diagram() (spherogram.link method)": [[23, "spherogram.Link.morse_diagram", false]], "morse_number() (spherogram.link method)": [[23, "spherogram.Link.morse_number", false]], "multiply_and_simplify_terms_in_rur() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.multiply_and_simplify_terms_in_RUR", false]], "multiply_and_simplify_terms_in_rur() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.multiply_and_simplify_terms_in_RUR", false]], "multiply_elements() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.multiply_elements", false]], "multiply_terms_in_rur() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.multiply_terms_in_RUR", false]], "multiply_terms_in_rur() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.multiply_terms_in_RUR", false]], "n() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.N", false]], "n() (snappy.ptolemy.coordinates.flattenings method)": [[14, "snappy.ptolemy.coordinates.Flattenings.N", false]], "n() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.N", false]], "name() (snappy.manifold method)": [[7, "snappy.Manifold.name", false]], "name() (snappy.triangulation method)": [[25, "snappy.Triangulation.name", false]], "newton_iteration() (snappy.verify.intervalnewtonshapesengine static method)": [[28, "snappy.verify.IntervalNewtonShapesEngine.newton_iteration", false]], "nonalternatingknotexteriors (class in snappy)": [[2, "snappy.NonalternatingKnotExteriors", false]], "nonorientableclosedcensus (in module snappy)": [[2, "snappy.NonorientableClosedCensus", false]], "nonorientablecuspedcensus (in module snappy)": [[2, "snappy.NonorientableCuspedCensus", false]], "nonzerodimensionalcomponent (class in snappy.ptolemy.component)": [[14, "snappy.ptolemy.component.NonZeroDimensionalComponent", false]], "normal_boundary_slopes() (snappy.manifold method)": [[7, "snappy.Manifold.normal_boundary_slopes", false]], "normal_boundary_slopes() (snappy.triangulation method)": [[25, "snappy.Triangulation.normal_boundary_slopes", false]], "normal_surfaces() (snappy.manifold method)": [[7, "snappy.Manifold.normal_surfaces", false]], "normal_surfaces() (snappy.triangulation method)": [[25, "snappy.Triangulation.normal_surfaces", false]], "num_cusps() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.num_cusps", false]], "num_cusps() (snappy.manifold method)": [[7, "snappy.Manifold.num_cusps", false]], "num_cusps() (snappy.triangulation method)": [[25, "snappy.Triangulation.num_cusps", false]], "num_edges() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.num_edges", false]], "num_faces() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.num_faces", false]], "num_finite_vertices() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.num_finite_vertices", false]], "num_generators() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.num_generators", false]], "num_ideal_vertices() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.num_ideal_vertices", false]], "num_original_generators() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.num_original_generators", false]], "num_relators() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.num_relators", false]], "num_tetrahedra() (snappy.manifold method)": [[7, "snappy.Manifold.num_tetrahedra", false]], "num_tetrahedra() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.num_tetrahedra", false]], "num_tetrahedra() (snappy.ptolemy.coordinates.flattenings method)": [[14, "snappy.ptolemy.coordinates.Flattenings.num_tetrahedra", false]], "num_tetrahedra() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.num_tetrahedra", false]], "num_tetrahedra() (snappy.triangulation method)": [[25, "snappy.Triangulation.num_tetrahedra", false]], "num_vertices() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.num_vertices", false]], "number_field() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.number_field", false]], "numerical() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.numerical", false]], "numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.numerical", false]], "numericalverifyerror": [[28, "snappy.verify.exceptions.NumericalVerifyError", false]], "o31() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.O31", false]], "octahedralnonorientablecuspedcensus (in module snappy)": [[11, "snappy.OctahedralNonorientableCuspedCensus", false]], "octahedralorientablecuspedcensus (in module snappy)": [[11, "snappy.OctahedralOrientableCuspedCensus", false]], "optimize_overcrossings() (spherogram.link method)": [[23, "spherogram.Link.optimize_overcrossings", false]], "order() (snappy.abeliangroup method)": [[0, "snappy.AbelianGroup.order", false]], "order() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.order", false]], "orientableclosedcensus (in module snappy)": [[2, "snappy.OrientableClosedCensus", false]], "orientablecuspedcensus (in module snappy)": [[2, "snappy.OrientableCuspedCensus", false]], "orientation_cover() (snappy.manifold method)": [[7, "snappy.Manifold.orientation_cover", false]], "orientation_cover() (snappy.triangulation method)": [[25, "snappy.Triangulation.orientation_cover", false]], "original_generators() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.original_generators", false]], "original_index() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.original_index", false]], "out_radius() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.out_radius", false]], "overstrands() (spherogram.link method)": [[23, "spherogram.Link.overstrands", false]], "pairing_matrices() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.pairing_matrices", false]], "pairing_words() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.pairing_words", false]], "parent() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.parent", false]], "pd_code() (spherogram.link method)": [[23, "spherogram.Link.PD_code", false]], "peer_code() (spherogram.link method)": [[23, "spherogram.Link.peer_code", false]], "peripheral_curves() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.peripheral_curves", false]], "plink() (snappy.manifold method)": [[7, "snappy.Manifold.plink", false]], "plink() (snappy.triangulation method)": [[25, "snappy.Triangulation.plink", false]], "polished_holonomy() (snappy.manifold method)": [[7, "snappy.Manifold.polished_holonomy", false]], "polyhedral_description() (snappy.symmetrygroup method)": [[0, "snappy.SymmetryGroup.polyhedral_description", false]], "ptolemy_generalized_obstruction_classes() (snappy.manifold method)": [[7, "snappy.Manifold.ptolemy_generalized_obstruction_classes", false]], "ptolemy_generalized_obstruction_classes() (snappy.triangulation method)": [[25, "snappy.Triangulation.ptolemy_generalized_obstruction_classes", false]], "ptolemy_obstruction_classes() (snappy.manifold method)": [[7, "snappy.Manifold.ptolemy_obstruction_classes", false]], "ptolemy_obstruction_classes() (snappy.triangulation method)": [[25, "snappy.Triangulation.ptolemy_obstruction_classes", false]], "ptolemy_variety() (snappy.manifold method)": [[7, "snappy.Manifold.ptolemy_variety", false]], "ptolemy_variety() (snappy.triangulation method)": [[25, "snappy.Triangulation.ptolemy_variety", false]], "ptolemycoordinates (class in snappy.ptolemy.coordinates)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates", false]], "ptolemyvariety (class in snappy.ptolemy.ptolemyvariety)": [[14, "snappy.ptolemy.ptolemyVariety.PtolemyVariety", false]], "py_eval_section() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)": [[14, "snappy.ptolemy.ptolemyVariety.PtolemyVariety.py_eval_section", false]], "random_link() (in module spherogram)": [[23, "spherogram.random_link", false]], "randomize() (snappy.manifold method)": [[7, "snappy.Manifold.randomize", false]], "randomize() (snappy.triangulation method)": [[25, "snappy.Triangulation.randomize", false]], "rank() (snappy.abeliangroup method)": [[0, "snappy.AbelianGroup.rank", false]], "ratio_coordinate() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.ratio_coordinate", false]], "reach() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.reach", false]], "real() (snappy.verify.square_extensions.complexsqrtlincombination method)": [[28, "snappy.verify.square_extensions.ComplexSqrtLinCombination.real", false]], "relators() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.relators", false]], "rename() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.rename", false]], "reset_name() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.reset_name", false]], "reverse_orientation() (snappy.manifold method)": [[7, "snappy.Manifold.reverse_orientation", false]], "reverse_orientation() (snappy.triangulation method)": [[25, "snappy.Triangulation.reverse_orientation", false]], "sage() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.sage", false]], "sage_link() (spherogram.link method)": [[23, "spherogram.Link.sage_link", false]], "save() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.save", false]], "save() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.save", false]], "save() (snappy.manifold method)": [[7, "snappy.Manifold.save", false]], "save() (snappy.triangulation method)": [[25, "snappy.Triangulation.save", false]], "seifert_matrix() (spherogram.link method)": [[23, "spherogram.Link.seifert_matrix", false]], "set_displacement() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.set_displacement", false]], "set_name() (snappy.manifold method)": [[7, "snappy.Manifold.set_name", false]], "set_name() (snappy.triangulation method)": [[25, "snappy.Triangulation.set_name", false]], "set_peripheral_curves() (snappy.manifold method)": [[7, "snappy.Manifold.set_peripheral_curves", false]], "set_peripheral_curves() (snappy.triangulation method)": [[25, "snappy.Triangulation.set_peripheral_curves", false]], "set_target_holonomy() (snappy.manifold method)": [[7, "snappy.Manifold.set_target_holonomy", false]], "set_tetrahedra_shapes() (snappy.manifold method)": [[7, "snappy.Manifold.set_tetrahedra_shapes", false]], "set_tie() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.set_tie", false]], "shapepositiveimaginarypartnumericalverifyerror": [[28, "snappy.verify.exceptions.ShapePositiveImaginaryPartNumericalVerifyError", false]], "shapetype (class in snappy.verify.exceptions)": [[28, "snappy.verify.exceptions.ShapeType", false]], "short_edge() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.short_edge", false]], "short_edge() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.short_edge", false]], "short_slopes() (snappy.manifold method)": [[7, "snappy.Manifold.short_slopes", false]], "siblings() (snappy.database.manifoldtable method)": [[2, "snappy.database.ManifoldTable.siblings", false]], "sign() (snappy.verify.square_extensions.sqrtlincombination method)": [[28, "snappy.verify.square_extensions.SqrtLinCombination.sign", false]], "sign_with_interval() (snappy.verify.square_extensions.sqrtlincombination method)": [[28, "snappy.verify.square_extensions.SqrtLinCombination.sign_with_interval", false]], "signature() (spherogram.link method)": [[23, "spherogram.Link.signature", false]], "simplify() (snappy.manifold method)": [[7, "snappy.Manifold.simplify", false]], "simplify() (snappy.triangulation method)": [[25, "snappy.Triangulation.simplify", false]], "simplify() (spherogram.link method)": [[23, "spherogram.Link.simplify", false]], "sl2c() (snappy.holonomygroup method)": [[0, "snappy.HolonomyGroup.SL2C", false]], "slice_obstruction_hkl() (snappy.manifold method)": [[7, "snappy.Manifold.slice_obstruction_HKL", false]], "slice_obstruction_hkl() (snappy.triangulation method)": [[25, "snappy.Triangulation.slice_obstruction_HKL", false]], "snappy": [[0, "module-snappy", false]], "snappy.ptolemy": [[13, "module-snappy.ptolemy", false]], "snappy.snap": [[21, "module-snappy.snap", false]], "snappy.verify": [[28, "module-snappy.verify", false]], "snappy.verify.exceptions": [[28, "module-snappy.verify.exceptions", false]], "snappy.verify.square_extensions": [[28, "module-snappy.verify.square_extensions", false]], "solution_type() (snappy.manifold method)": [[7, "snappy.Manifold.solution_type", false]], "solutions_from_magma() (in module snappy.ptolemy)": [[14, "snappy.ptolemy.solutions_from_magma", false]], "solutions_from_magma_file() (in module snappy.ptolemy)": [[14, "snappy.ptolemy.solutions_from_magma_file", false]], "spherogram": [[23, "module-spherogram", false]], "spine_radius() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.spine_radius", false]], "split() (snappy.manifold method)": [[7, "snappy.Manifold.split", false]], "split_link_diagram() (spherogram.link method)": [[23, "spherogram.Link.split_link_diagram", false]], "splitting_surfaces() (snappy.manifold method)": [[7, "snappy.Manifold.splitting_surfaces", false]], "sqrtlincombination (class in snappy.verify.square_extensions)": [[28, "snappy.verify.square_extensions.SqrtLinCombination", false]], "stopper() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.stopper", false]], "stopping_displacement() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.stopping_displacement", false]], "sublink() (spherogram.link method)": [[23, "spherogram.Link.sublink", false]], "symmetric_triangulation() (snappy.manifold method)": [[7, "snappy.Manifold.symmetric_triangulation", false]], "symmetry_group() (snappy.manifold method)": [[7, "snappy.Manifold.symmetry_group", false]], "symmetrygroup (class in snappy)": [[0, "snappy.SymmetryGroup", false]], "symplectic_basis() (snappy.manifold method)": [[7, "snappy.Manifold.symplectic_basis", false]], "symplectic_basis() (snappy.triangulation method)": [[25, "snappy.Triangulation.symplectic_basis", false]], "tetrahedra_field_gens() (snappy.manifold method)": [[7, "snappy.Manifold.tetrahedra_field_gens", false]], "tetrahedra_shapes() (snappy.manifold method)": [[7, "snappy.Manifold.tetrahedra_shapes", false]], "tetrahedralnonorientablecuspedcensus (in module snappy)": [[11, "snappy.TetrahedralNonorientableCuspedCensus", false]], "tetrahedralorientablecuspedcensus (in module snappy)": [[11, "snappy.TetrahedralOrientableCuspedCensus", false]], "tiltinequalitynumericalverifyerror": [[28, "snappy.verify.exceptions.TiltInequalityNumericalVerifyError", false]], "tiltiszeroexactverifyerror": [[28, "snappy.verify.exceptions.TiltIsZeroExactVerifyError", false]], "tiltprovenpositivenumericalverifyerror": [[28, "snappy.verify.exceptions.TiltProvenPositiveNumericalVerifyError", false]], "tilttype (class in snappy.verify.exceptions)": [[28, "snappy.verify.exceptions.TiltType", false]], "to_magma() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)": [[14, "snappy.ptolemy.ptolemyVariety.PtolemyVariety.to_magma", false]], "to_magma_file() (snappy.ptolemy.ptolemyvariety.ptolemyvariety method)": [[14, "snappy.ptolemy.ptolemyVariety.PtolemyVariety.to_magma_file", false]], "to_pur() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.to_PUR", false]], "to_pur() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.to_PUR", false]], "topology() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.topology", false]], "trace_field_gens() (snappy.manifold method)": [[7, "snappy.Manifold.trace_field_gens", false]], "translations() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.translations", false]], "triangulation (class in snappy)": [[25, "snappy.Triangulation", false]], "triangulation() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.triangulation", false]], "triangulation() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.triangulation", false]], "triangulation_isosig() (snappy.manifold method)": [[7, "snappy.Manifold.triangulation_isosig", false]], "triangulation_isosig() (snappy.triangulation method)": [[25, "snappy.Triangulation.triangulation_isosig", false]], "use_field_conversion() (snappy.manifold class method)": [[7, "snappy.Manifold.use_field_conversion", false]], "verify_hyperbolicity() (snappy.manifold method)": [[7, "snappy.Manifold.verify_hyperbolicity", false]], "verifyerrorbase": [[28, "snappy.verify.exceptions.VerifyErrorBase", false]], "vertex_list() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.vertex_list", false]], "view() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.view", false]], "view() (spherogram.link method)": [[23, "spherogram.Link.view", false]], "volume() (snappy.cuspneighborhood method)": [[0, "snappy.CuspNeighborhood.volume", false]], "volume() (snappy.dirichletdomain method)": [[0, "snappy.DirichletDomain.volume", false]], "volume() (snappy.manifold method)": [[7, "snappy.Manifold.volume", false]], "volume_numerical() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.volume_numerical", false]], "volume_numerical() (snappy.ptolemy.coordinates.ptolemycoordinates method)": [[14, "snappy.ptolemy.coordinates.PtolemyCoordinates.volume_numerical", false]], "white_graph() (spherogram.link method)": [[23, "spherogram.Link.white_graph", false]], "with_hyperbolic_structure() (snappy.manifold method)": [[7, "snappy.Manifold.with_hyperbolic_structure", false]], "with_hyperbolic_structure() (snappy.triangulation method)": [[25, "snappy.Triangulation.with_hyperbolic_structure", false]], "without_hyperbolic_structure() (snappy.manifold method)": [[7, "snappy.Manifold.without_hyperbolic_structure", false]], "writhe() (spherogram.link method)": [[23, "spherogram.Link.writhe", false]], "x_coordinate() (snappy.ptolemy.coordinates.crossratios method)": [[14, "snappy.ptolemy.coordinates.CrossRatios.x_coordinate", false]]}, "objects": {"": [[0, 0, 0, "-", "snappy"], [23, 0, 0, "-", "spherogram"]], "snappy": [[0, 1, 1, "", "AbelianGroup"], [2, 1, 1, "", "AlternatingKnotExteriors"], [2, 3, 1, "", "CensusKnots"], [11, 3, 1, "", "CubicalNonorientableClosedCensus"], [11, 3, 1, "", "CubicalNonorientableCuspedCensus"], [11, 3, 1, "", "CubicalOrientableClosedCensus"], [11, 3, 1, "", "CubicalOrientableCuspedCensus"], [0, 1, 1, "", "CuspNeighborhood"], [0, 1, 1, "", "DirichletDomain"], [11, 3, 1, "", "DodecahedralNonorientableClosedCensus"], [11, 3, 1, "", "DodecahedralNonorientableCuspedCensus"], [11, 3, 1, "", "DodecahedralOrientableClosedCensus"], [11, 3, 1, "", "DodecahedralOrientableCuspedCensus"], [2, 3, 1, "", "HTLinkExteriors"], [0, 1, 1, "", "HolonomyGroup"], [11, 3, 1, "", "IcosahedralNonorientableClosedCensus"], [11, 3, 1, "", "IcosahedralOrientableClosedCensus"], [2, 3, 1, "", "LinkExteriors"], [7, 1, 1, "", "Manifold"], [2, 1, 1, "", "NonalternatingKnotExteriors"], [2, 3, 1, "", "NonorientableClosedCensus"], [2, 3, 1, "", "NonorientableCuspedCensus"], [11, 3, 1, "", "OctahedralNonorientableCuspedCensus"], [11, 3, 1, "", "OctahedralOrientableCuspedCensus"], [2, 3, 1, "", "OrientableClosedCensus"], [2, 3, 1, "", "OrientableCuspedCensus"], [0, 1, 1, "", "SymmetryGroup"], [11, 3, 1, "", "TetrahedralNonorientableCuspedCensus"], [11, 3, 1, "", "TetrahedralOrientableCuspedCensus"], [25, 1, 1, "", "Triangulation"], [13, 0, 0, "-", "ptolemy"], [21, 0, 0, "-", "snap"], [28, 0, 0, "-", "verify"]], "snappy.AbelianGroup": [[0, 2, 1, "", "betti_number"], [0, 2, 1, "", "elementary_divisors"], [0, 2, 1, "", "order"], [0, 2, 1, "", "rank"]], "snappy.CuspNeighborhood": [[0, 2, 1, "", "Ford_domain"], [0, 2, 1, "", "all_translations"], [0, 2, 1, "", "check_index"], [0, 2, 1, "", "get_displacement"], [0, 2, 1, "", "get_tie"], [0, 2, 1, "", "horoballs"], [0, 2, 1, "", "manifold"], [0, 2, 1, "", "max_reach"], [0, 2, 1, "", "num_cusps"], [0, 2, 1, "", "original_index"], [0, 2, 1, "", "reach"], [0, 2, 1, "", "set_displacement"], [0, 2, 1, "", "set_tie"], [0, 2, 1, "", "stopper"], [0, 2, 1, "", "stopping_displacement"], [0, 2, 1, "", "topology"], [0, 2, 1, "", "translations"], [0, 2, 1, "", "triangulation"], [0, 2, 1, "", "view"], [0, 2, 1, "", "volume"]], "snappy.DirichletDomain": [[0, 2, 1, "", "edge_list"], [0, 2, 1, "", "export_stl"], [0, 2, 1, "", "face_list"], [0, 2, 1, "", "in_radius"], [0, 2, 1, "", "length_spectrum_dicts"], [0, 2, 1, "", "manifold"], [0, 2, 1, "", "num_edges"], [0, 2, 1, "", "num_faces"], [0, 2, 1, "", "num_finite_vertices"], [0, 2, 1, "", "num_ideal_vertices"], [0, 2, 1, "", "num_vertices"], [0, 2, 1, "", "out_radius"], [0, 2, 1, "", "pairing_matrices"], [0, 2, 1, "", "pairing_words"], [0, 2, 1, "", "save"], [0, 2, 1, "", "spine_radius"], [0, 2, 1, "", "triangulation"], [0, 2, 1, "", "vertex_list"], [0, 2, 1, "", "volume"]], "snappy.HolonomyGroup": [[0, 2, 1, "", "O31"], [0, 2, 1, "", "SL2C"], [0, 2, 1, "", "category"], [0, 2, 1, "", "character_variety_vars_and_polys"], [0, 2, 1, "", "complex_length"], [0, 2, 1, "", "dump"], [0, 2, 1, "", "dumps"], [0, 2, 1, "", "gap_string"], [0, 2, 1, "", "generators"], [0, 2, 1, "", "generators_in_originals"], [0, 2, 1, "", "get_custom_name"], [0, 2, 1, "", "longitude"], [0, 2, 1, "", "magma_string"], [0, 2, 1, "", "meridian"], [0, 2, 1, "", "num_generators"], [0, 2, 1, "", "num_original_generators"], [0, 2, 1, "", "num_relators"], [0, 2, 1, "", "original_generators"], [0, 2, 1, "", "parent"], [0, 2, 1, "", "peripheral_curves"], [0, 2, 1, "", "relators"], [0, 2, 1, "", "rename"], [0, 2, 1, "", "reset_name"], [0, 2, 1, "", "sage"], [0, 2, 1, "", "save"]], "snappy.Manifold": [[7, 2, 1, "", "DT_code"], [7, 2, 1, "", "alexander_polynomial"], [7, 2, 1, "", "browse"], [7, 2, 1, "", "canonical_retriangulation"], [7, 2, 1, "", "canonize"], [7, 2, 1, "", "chern_simons"], [7, 2, 1, "", "complex_volume"], [7, 2, 1, "", "copy"], [7, 2, 1, "", "cover"], [7, 2, 1, "", "cover_info"], [7, 2, 1, "", "covers"], [7, 2, 1, "", "cusp_area_matrix"], [7, 2, 1, "", "cusp_areas"], [7, 2, 1, "", "cusp_info"], [7, 2, 1, "", "cusp_neighborhood"], [7, 2, 1, "", "cusp_translations"], [7, 2, 1, "", "dehn_fill"], [7, 2, 1, "", "dirichlet_domain"], [7, 2, 1, "", "drill"], [7, 2, 1, "", "drill_word"], [7, 2, 1, "", "drill_words"], [7, 2, 1, "", "dual_curves"], [7, 2, 1, "", "edge_valences"], [7, 2, 1, "", "exterior_to_link"], [7, 2, 1, "", "filled_triangulation"], [7, 2, 1, "", "fundamental_group"], [7, 2, 1, "", "gluing_equations"], [7, 2, 1, "", "gluing_equations_pgl"], [7, 2, 1, "", "has_finite_vertices"], [7, 2, 1, "", "high_precision"], [7, 2, 1, "", "holonomy_matrix_entries"], [7, 2, 1, "", "homological_longitude"], [7, 2, 1, "", "homology"], [7, 2, 1, "", "hyperbolic_SLN_torsion"], [7, 2, 1, "", "hyperbolic_adjoint_torsion"], [7, 2, 1, "", "hyperbolic_torsion"], [7, 2, 1, "", "identify"], [7, 2, 1, "", "inside_view"], [7, 2, 1, "", "invariant_trace_field_gens"], [7, 2, 1, "", "is_isometric_to"], [7, 2, 1, "", "is_orientable"], [7, 2, 1, "", "is_two_bridge"], [7, 2, 1, "", "isometry_signature"], [7, 2, 1, "", "isomorphisms_to"], [7, 2, 1, "", "length_spectrum"], [7, 2, 1, "", "length_spectrum_alt"], [7, 2, 1, "", "length_spectrum_alt_gen"], [7, 2, 1, "", "link"], [7, 2, 1, "", "name"], [7, 2, 1, "", "normal_boundary_slopes"], [7, 2, 1, "", "normal_surfaces"], [7, 2, 1, "", "num_cusps"], [7, 2, 1, "", "num_tetrahedra"], [7, 2, 1, "", "orientation_cover"], [7, 2, 1, "", "plink"], [7, 2, 1, "", "polished_holonomy"], [7, 2, 1, "", "ptolemy_generalized_obstruction_classes"], [7, 2, 1, "", "ptolemy_obstruction_classes"], [7, 2, 1, "", "ptolemy_variety"], [7, 2, 1, "", "randomize"], [7, 2, 1, "", "reverse_orientation"], [7, 2, 1, "", "save"], [7, 2, 1, "", "set_name"], [7, 2, 1, "", "set_peripheral_curves"], [7, 2, 1, "", "set_target_holonomy"], [7, 2, 1, "", "set_tetrahedra_shapes"], [7, 2, 1, "", "short_slopes"], [7, 2, 1, "", "simplify"], [7, 2, 1, "", "slice_obstruction_HKL"], [7, 2, 1, "", "solution_type"], [7, 2, 1, "", "split"], [7, 2, 1, "", "splitting_surfaces"], [7, 2, 1, "", "symmetric_triangulation"], [7, 2, 1, "", "symmetry_group"], [7, 2, 1, "", "symplectic_basis"], [7, 2, 1, "", "tetrahedra_field_gens"], [7, 2, 1, "", "tetrahedra_shapes"], [7, 2, 1, "", "trace_field_gens"], [7, 2, 1, "", "triangulation_isosig"], [7, 2, 1, "", "use_field_conversion"], [7, 2, 1, "", "verify_hyperbolicity"], [7, 2, 1, "", "volume"], [7, 2, 1, "", "with_hyperbolic_structure"], [7, 2, 1, "", "without_hyperbolic_structure"]], "snappy.SymmetryGroup": [[0, 2, 1, "", "abelian_description"], [0, 2, 1, "", "abelianization"], [0, 2, 1, "", "center"], [0, 2, 1, "", "commutator_subgroup"], [0, 2, 1, "", "direct_product_description"], [0, 2, 1, "", "is_S5"], [0, 2, 1, "", "is_abelian"], [0, 2, 1, "", "is_amphicheiral"], [0, 2, 1, "", "is_dihedral"], [0, 2, 1, "", "is_direct_product"], [0, 2, 1, "", "is_full_group"], [0, 2, 1, "", "is_invertible_knot"], [0, 2, 1, "", "is_polyhedral"], [0, 2, 1, "", "isometries"], [0, 2, 1, "", "multiply_elements"], [0, 2, 1, "", "order"], [0, 2, 1, "", "polyhedral_description"]], "snappy.Triangulation": [[25, 2, 1, "", "DT_code"], [25, 2, 1, "", "alexander_polynomial"], [25, 2, 1, "", "copy"], [25, 2, 1, "", "cover"], [25, 2, 1, "", "cover_info"], [25, 2, 1, "", "covers"], [25, 2, 1, "", "cusp_info"], [25, 2, 1, "", "dehn_fill"], [25, 2, 1, "", "edge_valences"], [25, 2, 1, "", "exterior_to_link"], [25, 2, 1, "", "filled_triangulation"], [25, 2, 1, "", "fundamental_group"], [25, 2, 1, "", "gluing_equations"], [25, 2, 1, "", "gluing_equations_pgl"], [25, 2, 1, "", "has_finite_vertices"], [25, 2, 1, "", "homological_longitude"], [25, 2, 1, "", "homology"], [25, 2, 1, "", "is_orientable"], [25, 2, 1, "", "isomorphisms_to"], [25, 2, 1, "", "link"], [25, 2, 1, "", "name"], [25, 2, 1, "", "normal_boundary_slopes"], [25, 2, 1, "", "normal_surfaces"], [25, 2, 1, "", "num_cusps"], [25, 2, 1, "", "num_tetrahedra"], [25, 2, 1, "", "orientation_cover"], [25, 2, 1, "", "plink"], [25, 2, 1, "", "ptolemy_generalized_obstruction_classes"], [25, 2, 1, "", "ptolemy_obstruction_classes"], [25, 2, 1, "", "ptolemy_variety"], [25, 2, 1, "", "randomize"], [25, 2, 1, "", "reverse_orientation"], [25, 2, 1, "", "save"], [25, 2, 1, "", "set_name"], [25, 2, 1, "", "set_peripheral_curves"], [25, 2, 1, "", "simplify"], [25, 2, 1, "", "slice_obstruction_HKL"], [25, 2, 1, "", "symplectic_basis"], [25, 2, 1, "", "triangulation_isosig"], [25, 2, 1, "", "with_hyperbolic_structure"]], "snappy.database": [[2, 1, 1, "", "ManifoldTable"]], "snappy.database.ManifoldTable": [[2, 2, 1, "", "find"], [2, 2, 1, "", "identify"], [2, 2, 1, "", "keys"], [2, 2, 1, "", "siblings"]], "snappy.ptolemy": [[14, 4, 1, "", "solutions_from_magma"], [14, 4, 1, "", "solutions_from_magma_file"]], "snappy.ptolemy.component": [[14, 1, 1, "", "NonZeroDimensionalComponent"]], "snappy.ptolemy.coordinates": [[14, 1, 1, "", "CrossRatios"], [14, 1, 1, "", "Flattenings"], [14, 1, 1, "", "PtolemyCoordinates"]], "snappy.ptolemy.coordinates.CrossRatios": [[14, 2, 1, "", "N"], [14, 2, 1, "", "check_against_manifold"], [14, 2, 1, "", "evaluate_word"], [14, 2, 1, "", "from_snappy_manifold"], [14, 2, 1, "", "get_manifold"], [14, 2, 1, "", "induced_representation"], [14, 2, 1, "", "is_geometric"], [14, 2, 1, "", "is_induced_from_psl2"], [14, 2, 1, "", "is_pu_2_1_representation"], [14, 2, 1, "", "is_real"], [14, 2, 1, "", "long_edge"], [14, 2, 1, "", "middle_edge"], [14, 2, 1, "", "multiply_and_simplify_terms_in_RUR"], [14, 2, 1, "", "multiply_terms_in_RUR"], [14, 2, 1, "", "num_tetrahedra"], [14, 2, 1, "", "numerical"], [14, 2, 1, "", "short_edge"], [14, 2, 1, "", "to_PUR"], [14, 2, 1, "", "volume_numerical"], [14, 2, 1, "", "x_coordinate"]], "snappy.ptolemy.coordinates.Flattenings": [[14, 2, 1, "", "N"], [14, 2, 1, "", "check_against_manifold"], [14, 2, 1, "", "complex_volume"], [14, 2, 1, "", "from_tetrahedra_shapes_of_manifold"], [14, 2, 1, "", "get_manifold"], [14, 2, 1, "", "get_order"], [14, 2, 1, "", "get_zpq_triple"], [14, 2, 1, "", "num_tetrahedra"]], "snappy.ptolemy.coordinates.PtolemyCoordinates": [[14, 2, 1, "", "N"], [14, 2, 1, "", "check_against_manifold"], [14, 2, 1, "", "complex_volume_numerical"], [14, 2, 1, "", "cross_ratios"], [14, 2, 1, "", "cross_ratios_numerical"], [14, 2, 1, "", "diamond_coordinate"], [14, 2, 1, "", "evaluate_word"], [14, 2, 1, "", "flattenings_numerical"], [14, 2, 1, "", "get_manifold"], [14, 2, 1, "", "has_obstruction"], [14, 2, 1, "", "is_geometric"], [14, 2, 1, "", "long_edge"], [14, 2, 1, "", "middle_edge"], [14, 2, 1, "", "multiply_and_simplify_terms_in_RUR"], [14, 2, 1, "", "multiply_terms_in_RUR"], [14, 2, 1, "", "num_tetrahedra"], [14, 2, 1, "", "number_field"], [14, 2, 1, "", "numerical"], [14, 2, 1, "", "ratio_coordinate"], [14, 2, 1, "", "short_edge"], [14, 2, 1, "", "to_PUR"], [14, 2, 1, "", "volume_numerical"]], "snappy.ptolemy.ptolemyVariety": [[14, 1, 1, "", "PtolemyVariety"]], "snappy.ptolemy.ptolemyVariety.PtolemyVariety": [[14, 2, 1, "", "compute_decomposition"], [14, 2, 1, "", "compute_solutions"], [14, 2, 1, "", "degree_to_shapes"], [14, 2, 1, "", "filename_base"], [14, 2, 1, "", "py_eval_section"], [14, 2, 1, "", "to_magma"], [14, 2, 1, "", "to_magma_file"]], "snappy.verify": [[28, 5, 1, "", "CertifiedShapesEngine"], [28, 1, 1, "", "IntervalNewtonShapesEngine"], [28, 1, 1, "", "KrawczykShapesEngine"], [28, 0, 0, "-", "exceptions"], [28, 0, 0, "-", "square_extensions"]], "snappy.verify.IntervalNewtonShapesEngine": [[28, 2, 1, "", "certified_newton_iteration"], [28, 2, 1, "", "expand_until_certified"], [28, 2, 1, "", "interval_vector_is_contained_in"], [28, 2, 1, "", "interval_vector_mid_points"], [28, 2, 1, "", "interval_vector_union"], [28, 2, 1, "", "log_gluing_LHS_derivatives"], [28, 2, 1, "", "log_gluing_LHSs"], [28, 2, 1, "", "newton_iteration"]], "snappy.verify.KrawczykShapesEngine": [[28, 2, 1, "", "expand_until_certified"], [28, 2, 1, "", "interval_vector_is_contained_in"], [28, 2, 1, "", "interval_vector_mid_points"], [28, 2, 1, "", "interval_vector_union"], [28, 2, 1, "", "krawczyk_interval"], [28, 2, 1, "", "log_gluing_LHS_derivatives"], [28, 2, 1, "", "log_gluing_LHS_derivatives_sparse"], [28, 2, 1, "", "log_gluing_LHSs"], [28, 2, 1, "", "matrix_times_sparse"]], "snappy.verify.canonical": [[28, 4, 1, "", "exactly_checked_canonical_retriangulation"], [28, 4, 1, "", "interval_checked_canonical_triangulation"]], "snappy.verify.exceptions": [[28, 1, 1, "", "CuspConsistencyType"], [28, 6, 1, "", "CuspEquationExactVerifyError"], [28, 6, 1, "", "CuspEquationLogLiftNumericalVerifyError"], [28, 1, 1, "", "CuspEquationType"], [28, 6, 1, "", "EdgeEquationExactVerifyError"], [28, 6, 1, "", "EdgeEquationLogLiftNumericalVerifyError"], [28, 1, 1, "", "EdgeEquationType"], [28, 1, 1, "", "EquationType"], [28, 6, 1, "", "ExactVerifyError"], [28, 6, 1, "", "InequalityNumericalVerifyError"], [28, 6, 1, "", "IsZeroExactVerifyError"], [28, 6, 1, "", "LogLiftNumericalVerifyError"], [28, 6, 1, "", "NumericalVerifyError"], [28, 6, 1, "", "ShapePositiveImaginaryPartNumericalVerifyError"], [28, 1, 1, "", "ShapeType"], [28, 6, 1, "", "TiltInequalityNumericalVerifyError"], [28, 6, 1, "", "TiltIsZeroExactVerifyError"], [28, 6, 1, "", "TiltProvenPositiveNumericalVerifyError"], [28, 1, 1, "", "TiltType"], [28, 6, 1, "", "VerifyErrorBase"]], "snappy.verify.hyperbolicity": [[28, 4, 1, "", "check_logarithmic_gluing_equations_and_positively_oriented_tets"]], "snappy.verify.square_extensions": [[28, 1, 1, "", "ComplexSqrtLinCombination"], [28, 1, 1, "", "SqrtLinCombination"], [28, 4, 1, "", "find_shapes_as_complex_sqrt_lin_combinations"]], "snappy.verify.square_extensions.ComplexSqrtLinCombination": [[28, 2, 1, "", "imag"], [28, 2, 1, "", "real"]], "snappy.verify.square_extensions.SqrtLinCombination": [[28, 2, 1, "", "sign"], [28, 2, 1, "", "sign_with_interval"]], "spherogram": [[23, 1, 1, "", "ClosedBraid"], [23, 1, 1, "", "Link"], [23, 4, 1, "", "random_link"]], "spherogram.Link": [[23, 2, 1, "", "DT_code"], [23, 2, 1, "", "KLPProjection"], [23, 2, 1, "", "PD_code"], [23, 2, 1, "", "alexander_matrix"], [23, 2, 1, "", "alexander_poly"], [23, 2, 1, "", "alexander_polynomial"], [23, 2, 1, "", "all_crossings_oriented"], [23, 2, 1, "", "alternating"], [23, 2, 1, "", "backtrack"], [23, 2, 1, "", "black_graph"], [23, 2, 1, "", "braid_word"], [23, 2, 1, "", "connected_sum"], [23, 2, 1, "", "copy"], [23, 2, 1, "", "crossing_entries"], [23, 2, 1, "", "crossing_strands"], [23, 2, 1, "", "deconnect_sum"], [23, 2, 1, "", "determinant"], [23, 2, 1, "", "digraph"], [23, 2, 1, "", "dual_graph"], [23, 2, 1, "", "exterior"], [23, 2, 1, "", "faces"], [23, 2, 1, "", "goeritz_matrix"], [23, 2, 1, "", "is_alternating"], [23, 2, 1, "", "is_planar"], [23, 2, 1, "", "jones_polynomial"], [23, 2, 1, "", "knot_floer_homology"], [23, 2, 1, "", "knot_group"], [23, 2, 1, "", "linking_matrix"], [23, 2, 1, "", "linking_number"], [23, 2, 1, "", "mirror"], [23, 2, 1, "", "morse_diagram"], [23, 2, 1, "", "morse_number"], [23, 2, 1, "", "optimize_overcrossings"], [23, 2, 1, "", "overstrands"], [23, 2, 1, "", "peer_code"], [23, 2, 1, "", "sage_link"], [23, 2, 1, "", "seifert_matrix"], [23, 2, 1, "", "signature"], [23, 2, 1, "", "simplify"], [23, 2, 1, "", "split_link_diagram"], [23, 2, 1, "", "sublink"], [23, 2, 1, "", "view"], [23, 2, 1, "", "white_graph"], [23, 2, 1, "", "writhe"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "data", "Python data"], "4": ["py", "function", "Python function"], "5": ["py", "attribute", "Python attribute"], "6": ["py", "exception", "Python exception"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:data", "4": "py:function", "5": "py:attribute", "6": "py:exception"}, "terms": {"": [0, 1, 2, 4, 5, 6, 7, 9, 14, 15, 16, 17, 18, 21, 23, 25, 27, 28], "0": [0, 2, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28], "000": 28, "0000": [7, 25, 28], "00000": 7, "000000": [7, 27], "0000000": 27, "00000000": 7, "000000000": 27, "0000000000": 27, "00000000000": [7, 27], "000000000000": 7, "0000000000000": 7, "00000000000000": [0, 7, 16], "0000000000000000000000000000": 21, "0000000000000000000000000003": 21, "0000000000001": 7, "0000000001": 7, "0001": 28, "001": 23, "00150226276052": 7, "00150226276073": 7, "0019533695046": 28, "0025": 19, "0075523593782": 27, "009": [7, 25], "01": [7, 14], "01110": [7, 25], "014388591584": 7, "02": 14, "0201043": 23, "02412838": 7, "0253221635226673172748587283": 21, "02669828218116": 7, "02988": 17, "029883": 16, "02988321": [2, 7, 23, 25], "029883212819": 23, "029883212819307250042405108549040571883378615060599584034978214": 8, "029883212819307250042405109": 7, "02988321281931": [15, 16, 17], "02988321282": 8, "02_tetrahedra": 15, "03": 14, "0307092": 14, "031": 2, "034": 28, "0340": 28, "03_tetrahedra": 17, "04": 6, "04204128": 7, "04_1": [7, 25], "0548": [7, 25], "05686022": 7, "05976643": 2, "06": 14, "06127506190504": 0, "06217783": 7, "06491027903143": 7, "068": 28, "0707136": 5, "07470803": 11, "07731787": 7, "078": 28, "08": 7, "0800": 28, "0804": [7, 25], "0870701449957390997853": 7, "08707014499574": 7, "08707015": 7, "0903": 27, "0904": 19, "0906155": 5, "0961611977895952": 0, "09812548": 7, "1": [0, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28], "10": [0, 2, 4, 5, 6, 7, 8, 9, 11, 14, 21, 23, 25, 27, 28], "100": [0, 7, 8, 14, 16, 21, 23, 27, 28], "1000": 7, "10000": 7, "1007": [7, 25], "1035": 28, "10360701507": 7, "10795310": 2, "10942659": 2, "11": [2, 5, 6, 7, 9, 21, 23, 25, 26, 28], "11031": 2, "11044502": 7, "1105476": 5, "1109": 27, "110m": 6, "11101000": 23, "1111": [7, 14, 19, 25], "1118628555": 7, "1185388389935516999882632998": 21, "1185388389935516999882633007": 21, "11983007979743": 7, "11a17": [7, 25], "12": [0, 2, 6, 7, 17, 23, 25, 28], "120": 0, "1207": [7, 14, 19, 25], "1210608": 2, "12132034355964": 0, "12155872": 7, "124559024": 27, "12479830": 7, "125": 0, "1267": 2, "128": 28, "12n123": [7, 25], "12n345": [7, 25], "13": [4, 5, 7, 9, 21, 23, 25], "1307": 14, "131": 0, "1310": 27, "131389112265699": 0, "131436773607536668628081981267619": 0, "13143677360753666862808198126761923": 0, "131436773608": 0, "1355": [7, 25], "137871639973525691285247446": 18, "14": [0, 2, 6, 7, 9, 15, 16, 23, 25], "14000000000000": 0, "1401": 19, "14010": 18, "1405": 19, "14059979": 7, "142120333822": 7, "143084469681": 7, "14742465268512": 7, "14820741547094": 7, "148207415470948": 7, "14820741547097": 7, "14941606": 7, "14941606410": 23, "15": [0, 2, 6, 7, 8, 9, 13, 15, 17, 23, 25, 28], "150": [0, 7], "1510204": 5, "152188153612": 7, "152977162509284": 0, "15320413": 7, "153204133297152": 7, "1560": 18, "16": [2, 7, 13, 15, 17, 21, 23, 25, 28], "164542163": 28, "1645421638874662848910671879": 28, "168": 7, "17": [2, 11, 17, 23], "17563301006556": 16, "176540027036": 7, "1766049820997": 7, "177940133813": 27, "178": 7, "178792491242577": 7, "18": [2, 7, 14, 23], "1811156": 5, "1893": 19, "19": [7, 15, 16, 23, 25], "1955023488930": 27, "196124": 18, "1978": 23, "198620491993677": 0, "1e": [7, 14], "1j": 28, "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "20": [0, 2, 7, 21, 23, 25], "200": [7, 21, 28], "2000": 7, "2007": 23, "2009": 9, "2010": [7, 9, 25], "2011": 9, "2012": 9, "2013": 9, "2014": 9, "2015": 9, "2016": 9, "2017": [9, 26], "2018": 9, "2019": [4, 9, 26], "2020": 9, "2021": 9, "2023": [5, 9], "2025": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "2028208192855": 7, "207": 28, "21": [7, 11, 23, 25], "212": [7, 8, 9], "22": [0, 2, 7, 11, 14, 21, 25], "22318540718077": 0, "223574975263386": 7, "2236291171413": 0, "223629117141336210196010062380191": 0, "2236291171413362101960100623801910": 0, "22671790": 7, "23": [18, 23, 28], "23703575928741": 0, "238": 11, "24": [2, 6, 7, 18, 25], "246": 28, "2482": 28, "25": [9, 11, 18, 21, 23], "250000000000000": 17, "25194": 11, "2521580040549576537090841783446072": 0, "25215800405495765370908417834461": 0, "252158004055": 0, "253293": 2, "25618853688042434043044508297577899": 0, "25618853688042434043044508297578": 0, "256188536881": 0, "259696455247511": 0, "26": [2, 7, 21, 28], "26080402": 7, "26930345526993": 0, "26933288854145": 7, "27": [7, 27], "278936315": 7, "28": [2, 7], "2828": [7, 14, 19, 25], "283185307179586": 7, "284940667895": 7, "29": 23, "29150262212918": 7, "292": 28, "29405713186238": [7, 25], "298": 0, "2_": [7, 25], "2_1": [2, 7, 11, 25], "2_34": [7, 25], "2_6": [7, 25], "2_8": 2, "2n": 28, "2x2": 7, "3": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28], "30": [0, 15, 23], "300": [0, 28], "302": 28, "30211422042248": [13, 15, 17], "3030710375877078211095122873223488": 0, "3030710375877078211095122873224": 0, "30307103759": 0, "3125": 0, "312682687518267": [7, 17, 25], "313": 28, "315973594129649": 0, "315973594129651": 0, "317363079597924": 7, "31991": 23, "32": 7, "32287565553": 7, "32287565553229": 7, "32287565553230": [7, 17], "32287565554": 7, "324717957": 27, "32475953": 7, "330718913883074": 17, "33348957": 7, "33461303362557": 0, "3376410213776269870195455729": 21, "3376410213776269870195455731": 21, "34": [7, 25], "3472": 27, "35105908147863": 7, "35355339059327376220042218105": 7, "357403823939297224437738856": 21, "357403823939297224437742077": 21, "35768903": 2, "36": 7, "37": [7, 16, 17, 25], "37354016": 11, "375000000000000": 17, "376": 28, "378446302375451727042631346": 21, "378446302375451727042633120": 21, "38": [15, 16, 17], "38451103485706": 7, "39812948": 11, "398888830": 27, "39996262244127": 7, "39996262244128": 7, "3_1": [7, 23], "3_12": 23, "3_2": 23, "3_72": 2, "3_73": 2, "3_74": 2, "3a1": 23, "3d": [0, 3, 4, 5, 7, 9], "3sqrt": 0, "4": [0, 2, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27, 28], "40": [0, 15, 27, 28], "40431358073618481197132660504": 21, "40431358073618481197132661847": 21, "409614585": 27, "41": [0, 6], "4110489425474123899213651272": 18, "4142135623730950488016887242": 7, "4146": 11, "41791484": 2, "426088934700737884313191344": 18, "42720525": 2, "43": 0, "430": 28, "43153441294719": 7, "4375000000000": 7, "43914411734250": 7, "43914411734251": 7, "44": [0, 7, 21], "446": 0, "45": [0, 7, 25], "454785439204566951537774898694356": 0, "4547854392045669515377748986943560": 0, "454785439205": 0, "459731436553693": [7, 17, 25], "459868058287098030934": 28, "4599773577869384936554": 28, "460": 28, "46002": 28, "4600211": 28, "460021167103732494700": 28, "4600211755737": 7, "4600211755737178641204": 28, "460021175573717872891": 28, "460021175573718": 28, "46003": 28, "46009": 28, "4641016151377544": 7, "47": [0, 23], "47120283346": 0, "47120283346076781167174343474008914": 0, "4712028334607678116717434347401": 0, "47424776": 2, "47470541152065": 0, "475": 0, "477656250512815": 0, "4800996900657": 28, "481": 0, "48157893409218": 7, "48666015": 2, "49024467": 7, "491327": 2, "49405010583448": 7, "49440443": 7, "4953704555604684110903962008": 7, "495370455560469": 7, "49537045556047": 7, "4963": 28, "496837853805869": [7, 17, 25], "49859164484929": 0, "499999999999999": 7, "4_1": [7, 14, 23, 25], "4_1__sl2_c0": 14, "4_1__sl2_c1": 14, "4a1": 23, "5": [0, 2, 4, 5, 6, 7, 9, 11, 12, 14, 16, 17, 19, 21, 23, 25, 28], "50": [0, 21], "500": 28, "50000000": 7, "5000000000": 16, "50000000000": 7, "500000000000": 7, "50000000000000": [0, 27], "500000000000000": [0, 7, 16, 17], "50000000000000000000000000": 28, "5000000000000000000000000000": 7, "50000000000000000000000000000": 21, "500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000": 21, "500000000000001": 0, "500000000000002": 0, "50479249917": 7, "504866865874": 7, "510804267610103": 7, "5126610817613336586374292713": 21, "5126610817613336586374448040": 21, "5131157955971": 27, "514": 0, "515625": 0, "51918360": 2, "52310839130992": 16, "52619361": 7, "53": [7, 8, 28], "53123093": 2, "537092383": 7, "54": 7, "5400": 28, "54436599614182": 0, "54436599614183": 0, "549": 0, "5493670288": 7, "55": 7, "55091438": 2, "5542": 19, "56": 7, "561": 28, "56227951": 7, "56227951206": 28, "562279512062": 7, "5622795120623": 27, "562279512062301243": 28, "56227951206230124389918214477": 21, "56227951206230124389918214504": 21, "5622795120623012438992": 28, "5622795120623013": 7, "56239915": 7, "56897060": 2, "5819817649675358086": 15, "58439465": 2, "58460368501798696932015666264": 7, "584603685017987": 7, "58460368501799": 7, "58826933": 7, "5890988184099251088892549440": 21, "5890988184099251088892745185": 21, "589495705074": 7, "59807621": 7, "59883089": 7, "5_1": [16, 23], "5_2": [7, 14, 21, 23], "5j": 28, "6": [0, 2, 6, 7, 9, 12, 14, 17, 21, 23, 25, 27, 28], "60": [0, 7, 27], "60676092": 2, "61245944742151": 7, "61940871855835167317": 28, "625051576": 7, "625222762246": 27, "63": [7, 8, 25, 28], "63251940718694538695": 28, "6326": 28, "63262": 28, "632624": 28, "6326241909236695020810": 28, "6326241936052": 7, "632624193605256": 28, "632624193605256171637": 28, "6326241936052562241142": 28, "63263": 28, "6327": 28, "63765810995071": 7, "639j": 28, "64": [4, 7, 23, 28], "64255370258293": [13, 17], "64333782": 2, "64493407": 7, "64549527022581": [7, 25], "64575131106459": 7, "64575131107": 7, "6515818912107": 27, "65232354": 7, "65902431489655": 7, "66": 28, "661437827766148": 17, "662358978622": 7, "6623589786223730": 7, "66235897862237301298": 28, "6623589786223730129805": 28, "662358978622373012981": 28, "6623589786224": 27, "66235898": 7, "66246879992795": 7, "66246879992796": 7, "66386238": [2, 7], "66421454": 2, "6666": 28, "66674": 17, "66674478": 2, "66674478344907": 17, "6697": 14, "67064980598091504185767190": 18, "6711": [7, 14, 19, 25], "67347167": 7, "6757599281290843845710310925394911": 0, "6757599281290843845710310925395": 0, "67575992813": 0, "68": 0, "680993020093457": [7, 17, 25], "68603427": 11, "68719745": 7, "69": [7, 11, 23], "69338342": 2, "698544082784440": 17, "69999999999999995559107902": 28, "6_2": 23, "6_4": [7, 25], "7": [2, 7, 9, 11, 17, 19, 21, 23, 25, 28], "700": 28, "70060614107722": 7, "70385772": 7, "704807293": 27, "707106781186545": 0, "707106781186547": 0, "70710678118654752440084436210": 7, "707106781186548": 0, "707106781186549": 0, "71240613125259": 0, "72": [7, 11, 18, 25], "72276844987009": 7, "725471193740844": [7, 17, 25], "725536253181650": 0, "72911699294426": 7, "72978937305180": 7, "7320508075688772": 7, "7320508075688772935274463415": 21, "73205080756888": 16, "73205081": 7, "732421": 17, "73712388065": 7, "7392": 7, "73967449622339881238507307209": 28, "7453498408": 7, "747697694854404": 0, "75": 7, "750000000": 14, "75170196551790": 16, "752": 28, "75939451500971650241038771418": 21, "75939451500971650241038772223": 21, "76955170166922": 7, "76955170166923": 7, "76955170166924": 7, "78054": 28, "78055": 28, "7805525": 28, "780552527850": 7, "78055252785072483256": 28, "7805525278507248325678": 28, "78055252785072483798": 28, "7805525278507248379869": 28, "780552527850725": 28, "78055252785073": 28, "78055253": 28, "78055253104531610049": 28, "780552531045316100497": 28, "780559": 28, "78056": 28, "78056102517632648594": 28, "7806": 28, "78183391239608": [7, 13, 17, 25], "78287093565202": 7, "78674683118381457770": 28, "786746831183814577703": 28, "79356651781096": 7, "79427928161946": 0, "795": 28, "797777659": 27, "7_3": 0, "8": [0, 2, 4, 6, 7, 9, 19, 21, 23, 25, 27, 28], "80": [14, 28], "81161414965958": 7, "81267480427": 7, "81543089": 7, "82168758617998": 17, "821802363180149782221451472": 21, "8281220883": 27, "828122088330783162764": 7, "82812209": 7, "82829881681": 7, "8284271247461900976033774484": 7, "829": 28, "8290": 28, "84163270359334": 7, "8450034810535061601312104296": 18, "84908538602825": 0, "8536121048": 7, "86374431": 2, "86602540": 7, "866025403784": 21, "8660254037844386": 7, "86602540378443864676372317075": [7, 21], "866025403784438646763723170752936183471402626905190314027903489725966508454400018540573093378624288": 21, "866025403784439": [14, 16], "86602540378444": 27, "8660254038": 16, "868692062725708": 0, "8708286933869706927918743662": 7, "875895332415105303646551573": 18, "88": 7, "88266550875941": 15, "88267370443418": [15, 16], "88944299721255": 7, "895226186134782": 0, "89824633": 7, "8_1": 2, "8_20": [2, 23], "8_4": 2, "8_5": 23, "8j": 28, "9": [0, 2, 4, 6, 7, 9, 14, 19, 21, 23, 25, 27, 28], "9032849613891083021420278809": 21, "9032849613891083021420278850": 21, "9106738240": 27, "910673824035377649698": 7, "9144": 28, "91447": 28, "9144736": 28, "91447366": 28, "9144736621585220345231": 28, "914473662967": 7, "914473662967726": 28, "91447366296772644033": 28, "914473662967726440333": 28, "91447366296772645593": 28, "914473662967726455938": 28, "91447366296773": [7, 28], "91448": 28, "9144962118446750482": 28, "91449j": 28, "9144j": 28, "9145": 28, "9208680745160821379529": 28, "92308491369": 7, "92397456664239": 7, "93": [7, 11], "93461379591349": 7, "93541434669348534639593718308": 7, "94135129037387168886341739832": 7, "94159248086745": [7, 25], "94185904702273": 7, "942": 28, "94215909915729": [13, 17], "9427": 13, "942707362776927720921299603": 27, "9427073627769277209212996030922116475902": 15, "942707362776931": [7, 13, 15, 17, 25], "94677098": 7, "95728679": 7, "96218768626877": 7, "96323909": 2, "96736842": 2, "97804689": 7, "97944707": 7, "98036162786": 7, "99": [7, 25], "991330873713731": 0, "99169047854575721271560179767750893": 0, "991690478545757212715601797677509": 0, "991690478546": 0, "9999999999996": 7, "9999999999999": 7, "9_2": 2, "9_42": [0, 7, 25], "A": [0, 2, 5, 6, 7, 8, 9, 11, 13, 14, 18, 19, 22, 23, 24, 25, 27, 28], "And": [15, 16, 17, 28], "As": [1, 2, 7, 15, 16, 25, 27], "At": [7, 16], "But": [4, 7, 25, 26], "By": [2, 5, 7, 9, 10, 14, 15, 17, 23, 25, 27], "For": [0, 4, 6, 7, 11, 13, 14, 15, 16, 17, 19, 23, 24, 25, 27, 28], "If": [0, 2, 4, 5, 6, 7, 12, 14, 15, 16, 17, 19, 23, 25, 27, 28], "In": [0, 2, 4, 5, 7, 8, 9, 12, 13, 14, 15, 17, 18, 19, 21, 23, 25, 26, 27, 28], "It": [0, 4, 5, 7, 9, 13, 14, 15, 16, 17, 18, 23, 25, 27, 28], "Its": 28, "No": [7, 23, 25], "Of": 23, "On": [4, 6, 7, 23, 25], "One": [0, 4, 7, 16, 21, 24], "Or": [0, 7, 16, 25], "That": [0, 7, 12, 25], "The": [0, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 17, 19, 25, 26, 27, 28], "Then": 7, "There": [0, 2, 6, 7, 14, 16, 22, 24, 25, 28], "These": [0, 2, 4, 6, 7, 9, 16, 18, 23, 25, 27], "To": [0, 1, 2, 4, 5, 6, 7, 8, 11, 12, 14, 15, 17, 23, 25, 28], "With": [4, 27], "_": [7, 14, 25], "__contains__": 2, "__init__": [4, 28], "_accuracy_for_test": 0, "_factorizedsqrtlincombin": 28, "_magma_output_for_4_1__sl3": [7, 14, 25], "_num_fake_cusp": 23, "_numer": 16, "_sageobject__custom_nam": 0, "_to_str": 2, "a0": [7, 25, 28], "a1": [7, 25, 28], "a_": 7, "a_n": [7, 25], "aaaababbab": 0, "aaaabbabbbabb": 0, "aaababbab": [7, 25], "aab": [0, 7], "aaba": 0, "aababbaababb": 0, "aabbb": 7, "aabcdabcb": 7, "ab": [0, 7, 14, 15, 19, 23, 25, 28], "abab": 0, "ababaabab": 7, "abababab": [0, 7, 25], "ababbabab": 7, "abb": 0, "abba": 0, "abc": 27, "abcba": [15, 17], "abcd": 23, "abelian": 0, "abelian_descript": 0, "abeliangroup": [7, 22, 25], "abelianinvari": 7, "abhijit": 3, "abl": [0, 24], "about": [5, 7, 12, 14, 15, 16, 19, 21, 25, 27], "abov": [0, 2, 6, 7, 13, 15, 16, 17, 19, 23, 25, 27, 28], "absolut": [14, 28], "abut": 23, "acc": 0, "accept": [7, 9, 12, 23, 25], "access": [2, 6, 7, 8, 9, 14, 15, 17, 21, 23], "accord": [0, 14, 23], "account": [4, 7, 25], "accumul": 0, "accuraci": [0, 7], "achiev": [0, 23, 27], "act": [0, 7, 25], "action": [5, 7, 14, 19, 25, 28], "activ": [6, 12], "actual": [6, 7, 16, 17, 19, 21, 23, 28], "ad": [0, 5, 7, 9, 14, 23, 24, 25], "add": [0, 2, 7, 8, 9, 24, 25], "addit": [2, 3, 4, 7, 15, 22, 28], "addition": 27, "adjac": [0, 7], "adjoint": [7, 21], "adjust": 6, "administr": [4, 6], "admit": [11, 19], "advanc": [14, 18], "advantag": [16, 28], "advoid": 27, "affect": [7, 25], "after": [6, 7, 23, 25, 28], "again": [7, 12, 16, 17, 28], "against": [7, 25], "agol": 27, "agre": 23, "ahead": 6, "aid": 0, "aitchison": 11, "aj": 28, "aka": [7, 25], "al": 23, "alex": 23, "alexand": [7, 9, 21, 23, 25], "alexander_matrix": 23, "alexander_poli": 23, "alexander_polynomi": [7, 21, 23, 25], "algebra": [15, 16, 17, 23], "algorithm": [5, 7, 9, 19, 21, 23, 25, 27, 28], "alia": [4, 28], "all": [0, 2, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 23, 25, 27, 28], "all_crossings_ori": 23, "all_lift": [7, 21], "all_transl": 0, "allow": [2, 5, 7, 8, 9, 12, 14, 16, 22, 23, 24, 25, 28], "almalinux": 6, "alon": [4, 5, 9, 19], "along": [7, 9, 25], "alpha": [7, 14, 25], "alphabet": [9, 12, 23], "alreadi": [14, 17, 21, 23, 28], "also": [0, 2, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28], "alt": 0, "altern": [0, 2, 4, 5, 6, 7, 9, 12, 23], "alternatingknotexterior": [0, 2, 22], "although": 15, "alwai": [0, 1, 6, 7, 12, 14, 15, 19, 23, 25, 28], "ambigu": 14, "ambiti": 24, "amd64": 4, "among": [0, 7, 25], "amsref": 3, "an": [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28], "angl": 11, "ani": [1, 5, 6, 7, 8, 9, 12, 14, 16, 17, 19, 21, 22, 23, 25, 27], "anoth": [0, 7, 12, 14, 17, 19, 23, 26, 28], "answer": [0, 7, 17, 23], "anyth": 23, "apart": 27, "apostroph": 12, "app": [4, 9], "appar": 23, "appear": [4, 7, 17], "append": [7, 16], "appimag": 6, "appl": [6, 9], "appli": [5, 7, 9, 16, 23, 25, 27, 28], "applic": [5, 6, 9], "apply_map": 28, "appropri": [4, 19, 23], "approxan": [7, 21], "approxim": [0, 7, 27, 28], "approximatealgebraicnumb": 7, "april": 9, "apt": 6, "ar": [0, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 22, 23, 25, 26, 27, 28], "arbitrari": [0, 7, 8, 9, 21, 23, 24, 28], "arbitrarili": 0, "arc": 12, "arch": 6, "area": [0, 5, 7, 9, 27, 28], "aren": 7, "arg": 23, "arguabl": 7, "argument": [0, 2, 7, 14, 15, 16, 17, 23, 25], "aris": 7, "arithmet": [7, 15, 16, 27, 28], "around": [0, 4, 12, 22, 23], "arrai": 7, "arrow": [12, 23], "articl": 6, "arxiv": [7, 14, 19, 23, 25, 27], "as_id": 0, "as_int_list": 0, "as_sage_braid": 23, "ask": [0, 6], "aspect": 8, "assembl": 23, "assert": 14, "assertionerror": [7, 25], "assign": [7, 14, 15, 16, 17, 18, 22], "associ": [0, 7, 14, 21, 23, 25, 26], "assum": [0, 4, 6, 14, 16, 17, 28], "attach": 6, "attempt": [7, 12, 23], "attribut": [0, 7, 15, 16, 23, 25], "augktg": 11, "augment": 11, "august": 9, "author": [3, 5], "auto": 13, "autocomplet": 13, "automat": [7, 13, 14, 25, 28], "avail": [3, 6, 7, 15, 16, 23, 26, 27], "avoid": [0, 16, 23, 27, 28], "awai": 23, "axi": 7, "b": [0, 2, 7, 15, 17, 19, 23, 25, 28], "b0": [7, 25, 28], "b1": [7, 25, 28], "b_0": [7, 25], "b_1": [7, 25], "b_n": [7, 25], "ba": [0, 15], "baaba": [0, 7], "babcbcbcabcbcbccbcba": 0, "baca": [7, 25], "bachman": 3, "back": 8, "background": 12, "backtrack": 23, "bad": 23, "bad_shap": 28, "ball": [5, 9], "bar": [6, 9, 23], "barycentr": 7, "base": [3, 5, 6, 7, 9, 14, 15, 21, 23, 25, 27, 28], "bash": 4, "bash_profil": 4, "basi": [7, 16, 18, 25], "basic": [5, 7, 9, 23, 24, 25, 26], "bba": 0, "bbabba": 0, "bc": 7, "bcac": [15, 17], "bcbcbcbab": 0, "bcdc": 7, "bd": 7, "bear": [5, 9], "becaus": [0, 2, 7, 14, 15, 16, 19, 23, 25, 28], "becom": [7, 12, 16, 17], "been": [0, 4, 7, 9, 14, 16, 17, 19, 22, 23, 25], "befor": [0, 1, 7, 12, 25], "begin": [7, 12, 23, 25], "behavior": [7, 16, 23], "being": [2, 7, 14, 16, 23, 28], "believ": 17, "bell": [3, 10], "belong": [0, 7, 14, 25], "below": [2, 6, 7, 13, 23, 25], "ben": [3, 9], "besid": [7, 25], "best": 0, "beta": 14, "better": [9, 15, 17, 18, 28], "betti": [2, 11], "betti_numb": [0, 7], "between": [0, 7, 8, 12, 14, 15, 23, 25], "bib": 3, "bibtex": 3, "big": [9, 28], "bin": [4, 6], "binari": [0, 4, 6], "binput": 0, "bit": [4, 7, 8, 9, 28], "bitbucket": 9, "bits_prec": [0, 7, 14, 21, 27, 28], "bj": 28, "black": 23, "black_graph": 23, "blackboard": 12, "blah": 9, "bloch": 14, "block": 27, "blown": 7, "blowup_multipl": [7, 25], "bn": [7, 25], "bo": [7, 25], "bohua_cod": 23, "bool": [7, 25, 27], "boolean": [0, 7, 14, 25, 28], "borel": 19, "both": [2, 7, 9, 15, 17, 23, 25, 28], "bottl": [0, 7, 25], "bottom": [6, 7, 12, 25], "bound": [0, 7, 28], "boundari": [0, 7, 13, 14, 15, 16, 22, 25, 27], "box": 28, "braid": [7, 9, 23, 25], "braid_closur": 23, "braid_word": 23, "braidgroup": 23, "branch": [5, 7, 9, 25], "brasil": [7, 25], "break": [6, 12, 23, 27], "bridg": [7, 23], "bridge_closur": 23, "bridgeman": 23, "bring": [7, 25], "broadli": [7, 25], "brows": [6, 7], "browser": [7, 9], "bug": [4, 5, 9, 13, 17], "build": [4, 10, 23], "built": [0, 4], "bump": 0, "bundl": [4, 7, 10, 25], "burel": [3, 9], "burton": [3, 7, 9, 25], "button": [5, 9, 12], "byte": 14, "c": [0, 3, 4, 7, 9, 10, 13, 14, 16, 18, 23, 25, 28], "c_": 14, "c_0011": 14, "c_0011_0": [7, 14, 15, 16, 17, 25], "c_0011_1": [15, 16, 17], "c_0011_2": [16, 17], "c_0011_3": [16, 17], "c_0012_0": [7, 15, 25], "c_0012_1": [7, 15, 25], "c_0101": 14, "c_0101_0": [7, 14, 15, 16, 17, 18, 25], "c_0101_1": [15, 16, 17, 18], "c_0102_0": [7, 15, 25], "c_0102_1": 15, "c_0110": 14, "c_0110_0": [14, 15, 18], "c_0110_1": 15, "c_0110_2": [16, 17], "c_0111_0": [7, 15, 25], "c_0201_0": [7, 18, 25], "c_1": 28, "c_1001": 14, "c_1001_0": [15, 18], "c_1001_1": 15, "c_1010": 14, "c_1010_0": [15, 18], "c_1010_1": [14, 15], "c_1011_0": [7, 15, 25], "c_1011_1": [7, 25], "c_1020_0": [7, 25], "c_1100": 14, "c_1100_0": 15, "c_1100_1": 15, "c_1101_0": [7, 15, 25], "c_1110_0": [14, 15], "c_2": 28, "c_2100_0": 14, "c_i": [7, 28], "c_j": 7, "c_n": 28, "caa": 7, "cacbca": 23, "cach": 24, "calcul": [8, 9, 23], "calculu": [23, 28], "call": [0, 2, 7, 14, 16, 17, 19, 22, 23, 25, 28], "callahan": [2, 7, 25], "callback": 0, "callfunclist": 0, "camera": [5, 9], "cameron": 3, "can": [0, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28], "cancel": 28, "candid": [7, 28], "cannot": [0, 7, 15, 16, 17, 25, 28], "canon": [0, 5, 7, 9, 14, 25, 27], "canonical_repres": [14, 15], "canonical_retriangul": [5, 7, 9, 25, 27], "canva": 12, "cap": 23, "captur": [7, 25], "care": 7, "careful_perturb": [7, 25], "carefulli": 0, "carri": 0, "case": [2, 5, 7, 9, 12, 15, 17, 23, 25, 27, 28], "cast": [7, 28], "catalina": 9, "categori": 0, "caus": [7, 25], "caution": 28, "cbacb": [7, 25], "cd": 4, "cdcddcdcddcddcdcddcdcddcddcdcddcdd": 7, "cdef": 0, "cell": [7, 9, 14, 19, 27], "censu": [7, 9, 11, 13, 17, 22, 25], "census": [2, 3, 9, 22], "censusknot": [0, 2, 9, 22], "center": [0, 7, 22, 28], "cento": 6, "central": 7, "centroid_at_origin": [0, 7], "certainli": 28, "certif": [27, 28], "certifi": [7, 27], "certified_newton_iter": 28, "certified_shap": 28, "certifiedshapesengin": [7, 28], "chain": [16, 23], "champanerkar": [2, 3, 7], "chang": [0, 7, 9, 12, 15, 19, 23, 25, 28], "chapoton": 3, "charact": [0, 3, 9], "character": 27, "character_variety_vars_and_poli": 0, "characterist": [7, 9], "check": [5, 7, 9, 13, 14, 15, 17, 23, 25, 28], "check_against_manifold": [7, 14, 16, 25], "check_answ": [7, 25], "check_in_s3": [7, 25], "check_index": 0, "check_input": [7, 25], "check_logarithmic_gluing_equations_and_positively_oriented_tet": [7, 28], "check_planar": 23, "checkerboard": 23, "cheeger": 14, "chern": [7, 9, 13, 14, 17, 27], "chern_simon": [7, 25], "chernsimon": 14, "chiral": [7, 25], "chmod": 6, "choic": [0, 6, 7, 9, 23, 25], "choos": 7, "chosen": [0, 7, 17, 19, 23], "christi": 2, "christian": [7, 19, 25], "cif": 28, "circl": [0, 7, 12, 23], "circubscrib": 0, "circular": 12, "cite": 5, "class": [2, 5, 8, 9, 10, 13, 15, 16, 17, 18, 24, 25, 28], "classmethod": [7, 14], "claus": 2, "clean": 4, "cleanup": [3, 9], "clear": 12, "clearli": [7, 27], "cli": 4, "click": [6, 12, 24], "clickabl": 4, "clockwis": [0, 23], "clone": [4, 6], "close": [0, 2, 4, 5, 7, 9, 11, 12, 14, 22, 23, 25, 27, 28], "closest": 0, "closur": [7, 9, 23, 25], "cluster": 6, "cmi": 26, "cn": 7, "coarsen": 7, "cob": 7, "cocalc": 6, "cocycl": [7, 25], "code": [0, 3, 4, 5, 7, 9, 12, 14, 15, 23, 24, 25, 27], "codebas": 4, "coeffici": [0, 5, 7, 9, 14, 23, 25], "coercion": 0, "cohomologi": [7, 9], "cohomology_class": 7, "coin": 23, "coincid": 7, "collaps": [14, 19], "collat": 0, "collect": 0, "collin": 23, "color": [12, 23], "column": [2, 7, 25, 28], "com": [4, 6, 13, 17], "combin": [5, 7, 19, 23, 28], "combinator": 7, "combinatori": [5, 7, 9, 14, 25, 27], "come": [2, 4, 7, 14, 22, 25], "command": [0, 4, 5, 6, 7, 12, 16, 17, 22, 25, 26], "comment": [16, 28], "common": [7, 28], "commut": 0, "commutator_subgroup": 0, "comp": [0, 7, 11, 23, 25], "compact": [7, 22, 25], "compar": [5, 7, 9, 16, 17, 25, 28], "comparison": [13, 14, 28], "compat": [9, 16, 27], "compil": 4, "compl": 14, "complement": [7, 11, 12, 16, 23, 25], "complementari": 23, "complet": [4, 5, 6, 7, 9, 12, 13, 23, 25, 26, 27], "complete_length": 7, "complete_shap": 7, "complex": [0, 7, 9, 13, 14, 19, 23, 25, 27, 28], "complex_length": [0, 7], "complex_volum": [7, 9, 14, 27], "complex_volume_numer": [7, 14, 17, 25], "complexfield": 7, "complexintervalfield": [7, 27, 28], "complexsqrtlincombin": 28, "complic": [7, 21, 25], "compon": [2, 4, 5, 7, 9, 12, 13, 14, 19, 22, 23, 25], "compos": 14, "composit": 0, "compress": 0, "comput": [0, 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 18, 19, 21, 23, 24, 25, 26], "compute_decomposit": [14, 15], "compute_solut": [7, 14, 15, 17, 25], "computop": 3, "concaten": 0, "conceptu": 28, "concis": 0, "conclus": 5, "condit": [2, 14], "cone": 7, "confer": 26, "confid": 15, "configur": [1, 6, 14, 27], "confin": 7, "confirm": [7, 25], "conjug": [0, 7, 13, 14, 15, 16, 17, 19, 25, 28], "conjugaci": [15, 16, 17], "connect": [4, 7, 12, 13, 15, 23], "connected_compon": 23, "connected_sum": 23, "consecut": [7, 23], "consequ": 23, "consid": [7, 14, 19, 24, 25, 28], "consist": [0, 7, 12, 19, 23, 25, 27], "consistent_twist_region": 23, "constant": 16, "constitut": 7, "construct": [7, 14, 18, 19, 23, 25, 28], "constructor": [2, 12, 23], "contain": [0, 2, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 23, 25, 27, 28], "contains_zero": 7, "content": [7, 12, 25], "context": 24, "continu": [0, 7, 12, 23, 25, 27], "contrast": [7, 8, 28], "contribut": [3, 4, 5, 9, 27], "control": [7, 25], "conveni": [7, 23], "convent": [0, 7, 9, 14, 23, 25], "convers": [7, 9, 14], "convert": [0, 7, 13, 14, 17, 23, 24, 28], "conwai": 23, "coordin": [0, 7, 12, 13, 14, 15, 17, 18, 19, 25], "copi": [1, 2, 3, 6, 7, 23, 25], "core": [1, 4, 5, 7, 9], "core_length": 7, "corner": 23, "correct": [7, 25, 27], "correctli": [0, 17], "correspond": [0, 5, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 23, 25, 27, 28], "could": [7, 16, 17, 28], "count": [7, 16, 25], "coupl": [7, 27], "cours": 23, "cover": [5, 7, 9, 25, 26], "cover_info": [7, 25], "cover_typ": [7, 25], "cpcbbbiht_bacb": [7, 25], "cr": 14, "creat": [0, 4, 6, 7, 12, 14, 17, 23, 25, 26], "critic": 0, "cross": [0, 2, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 23, 25], "cross_ratio": [14, 16, 17], "cross_ratios_numer": 14, "crossing_entri": 23, "crossing_strand": 23, "crossingentrypoint": 23, "crossingstrand": 23, "crossratio": [13, 16, 17], "cube": [7, 11, 28], "cubic": [11, 28], "cubicalnonorientableclosedcensu": [0, 11], "cubicalnonorientablecuspedcensu": [0, 11], "cubicalorientableclosedcensu": [0, 11], "cubicalorientablecuspedcensu": [0, 11], "culler": [3, 5, 15], "cup": 23, "current": [0, 4, 6, 7, 9, 14, 15, 16, 17, 21, 23, 24, 25], "cursor": 12, "curv": [7, 9, 12, 13, 19, 25, 27], "cusp": [0, 2, 5, 7, 9, 11, 16, 17, 19, 25, 27], "cusp_area": [5, 7, 9, 27], "cusp_area_matrix": [5, 7, 9, 27], "cusp_curv": 17, "cusp_info": [7, 9, 25], "cusp_neighborhood": [0, 7], "cusp_transl": [0, 5, 7, 9], "cusp_typ": [7, 25], "cuspconsistencytyp": 28, "cuspcrosssect": 28, "cuspequationexactverifyerror": 28, "cuspequationlogliftnumericalverifyerror": 28, "cuspequationtyp": 28, "cuspneighborhood": [7, 22], "cuspneighborhoodhp": 0, "cusps_to_fil": [7, 25], "custom": [0, 7], "cut": [0, 7, 12, 13, 25], "cutoff": [0, 7], "cutoff_length": 0, "cutoff_radiu": 0, "cutout": 0, "cuttoff_radiu": 0, "cvol": [7, 14, 25], "cyc": [7, 25], "cyclic": [7, 25], "cyopengl": 4, "cypari": 4, "cython": [0, 4], "d": [0, 4, 7, 8, 14, 17, 19, 23, 25, 28], "d1": 0, "d3": 0, "d4": 0, "d6": 7, "dacab": 0, "dadbcda": 25, "dadcdab": 23, "dark": 9, "dash": 6, "data": [7, 9, 10, 15, 17, 23, 25, 28], "data_spec": [7, 25], "databas": [2, 3, 4, 7, 13, 17, 25], "dataset": 2, "date": 3, "david": 3, "db_path": 2, "dbae": 0, "dbcacbabcacbdbcacbabcacbacbabcacbd": 0, "dbcacbabcacbdbcacbabcacbcbdbcacbabcabcacbabcacbdacbabcacbdbcbcacbabcacbd": 0, "dd": 3, "deactiv": 6, "deal": 7, "dean": [2, 7], "deb": 0, "debian": [4, 6], "debug": 28, "dec_prec": [7, 14, 21, 27, 28], "decemb": 9, "decend": 14, "decim": [8, 15, 28], "declar": 2, "decomposit": [7, 9, 14, 25, 27], "decompress": 0, "deconnect_sum": 23, "decor": [2, 7, 9, 13, 16, 17, 25], "decreas": [7, 28], "def": 23, "default": [0, 2, 4, 5, 7, 9, 12, 14, 15, 23, 25, 28], "defin": [0, 7, 9, 14, 15, 16, 18, 21, 23, 27], "definit": [7, 14, 15, 21, 25], "deform": 19, "degener": [7, 19, 25], "degre": [7, 11, 19, 21, 25, 28], "degree_to_shap": [14, 15, 17], "dehn": [7, 19, 22, 25, 27], "dehn_fil": [7, 11, 25], "dehydr": [7, 25], "delet": [0, 12], "demo": [7, 9, 26], "demonstr": [0, 6], "denomin": [7, 14, 25, 28], "denominator_closur": 23, "denot": [0, 7, 23, 25, 28], "dens": 28, "depend": [6, 7, 19, 25, 28], "deprec": 7, "depth": [6, 7, 25], "deriv": [0, 22, 25, 28], "descend": 23, "describ": [0, 2, 4, 5, 6, 7, 14, 16, 19, 21, 23, 25, 28], "descript": [0, 7, 12, 22, 25, 26], "desir": [7, 16, 23, 28], "desktop": [4, 6], "despit": [6, 7], "destroy_origin": 23, "det": 23, "detail": [0, 1, 6, 7, 15, 19, 23, 25, 27], "detect": [15, 19], "determin": [0, 2, 5, 7, 9, 15, 16, 19, 23, 25, 28], "determinist": [0, 7], "dev": 4, "devel": 4, "develop": [1, 3, 5, 9, 13, 18, 19], "df": 28, "dfj": [7, 21], "di": 0, "diagon": [15, 19], "diagram": [3, 5, 7, 9, 12, 16, 25], "diagramat": 23, "diagrammat": 23, "diamond": 14, "diamond_coordin": 14, "dickinson": [3, 9], "dict": 15, "dictionar": 0, "dictionari": [0, 7, 14, 18, 23, 25], "did": 7, "diff": [14, 23], "differ": [0, 7, 8, 9, 12, 13, 14, 15, 16, 19, 25, 27, 28], "differenti": [23, 28], "difficulti": 1, "digit": [7, 8, 15], "digraph": 23, "dihedr": [0, 11], "dimens": [0, 13, 14, 17, 23], "dimension": [6, 13, 14, 16, 19], "direct": [0, 23], "direct_product_descript": 0, "directli": [0, 5, 7, 9, 13, 23], "directori": [4, 6, 7, 14, 25], "dirichlet": [0, 4, 5, 7, 8, 9, 22], "dirichlet_domain": [0, 7], "dirichletdomain": [7, 22], "dirichletdomainhp": 0, "disappear": 28, "disc": [7, 25], "discard": [19, 23], "disconnect": 23, "discourag": 6, "discov": 16, "discuss": [2, 4, 15], "disjoint": [0, 7, 9, 27], "disk": [4, 6], "displac": [0, 7], "displai": [12, 15, 23], "distanc": 0, "distinct": [7, 14], "distinguish": [0, 16, 19], "distribut": [6, 9, 23], "divid": [7, 14], "divisor": 0, "dlqacccbjkg": 0, "dlqbcccdero": [7, 25], "dlqbcccdxwb": 25, "dlqbccceekg": [7, 25], "dm": 5, "dmg": 6, "dnf": 6, "do": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 21, 23, 25, 26, 28], "doc": 23, "docker": [6, 7, 26], "docstr": [15, 21, 25], "doctest": [0, 7, 14, 23, 28], "document": [4, 9, 10, 23, 24, 28], "dodecahedr": 11, "dodecahedra": 11, "dodecahedralnonorientableclosedcensu": [0, 11], "dodecahedralnonorientablecuspedcensu": [0, 11], "dodecahedralorientableclosedcensu": [0, 11], "dodecahedralorientablecuspedcensu": [0, 11], "doe": [0, 5, 7, 8, 9, 13, 14, 16, 19, 23, 25, 26, 27], "doesn": [7, 25], "doi": [7, 25], "domain": [0, 4, 5, 7, 8, 9, 22], "don": 6, "done": [2, 7, 12, 23, 25, 27], "dot": [13, 17], "doubl": [3, 6, 7, 8, 9, 12, 14, 28], "doubli": 14, "dowker": [7, 12, 23, 25], "down": [12, 23], "download": [3, 4, 6, 11], "drag": 12, "dramat": [5, 9], "drawn": 12, "drill": [5, 7, 9, 24], "drill_word": [5, 7, 9, 27], "drop_negative_vol": 14, "dt": [7, 9, 11, 12, 23, 25], "dt_alpha": [11, 23], "dt_code": [2, 7, 11, 23, 25], "dtcodec": 0, "dual": [0, 7, 23], "dual_curv": [7, 24], "dual_graph": 23, "duboi": [7, 21], "due": 7, "dummi": [7, 25], "dump": 0, "dunfield": [2, 3, 4, 5, 7, 9, 25, 27], "dure": 28, "dx": [7, 25], "dylan": [7, 19, 25], "dyland": [7, 25], "e": [0, 2, 4, 6, 7, 11, 13, 14, 15, 16, 17, 19, 23, 25, 27, 28], "each": [0, 1, 7, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 28], "ealier": [7, 25], "earli": 7, "earlier": [5, 6, 9, 16, 23, 28], "easi": [6, 8, 13], "easier": [7, 25, 28], "easiest": [4, 6, 26], "easili": 9, "ebbccdaeb": [7, 25], "ecbc": 0, "echo": 17, "edfgabcgedfgadcc": 7, "edg": [0, 5, 7, 9, 12, 14, 16, 17, 19, 23, 25, 28], "edge_0_0": [7, 25], "edge_0_1": [7, 25], "edge_class": [0, 7, 25], "edge_image_indic": 0, "edge_indic": 0, "edge_list": 0, "edge_orient": 0, "edge_val": [7, 25], "edgeequationexactverifyerror": 28, "edgeequationlogliftnumericalverifyerror": 28, "edgeequationtyp": 28, "edit": [9, 12], "editor": [4, 5, 7, 9, 25], "effect": 23, "eight": [0, 7, 16, 25], "either": [1, 2, 6, 7, 12, 23, 25, 28], "element": [0, 7, 14, 15, 16, 19, 23, 25, 28], "elementari": [0, 6], "elementary_divisor": 0, "elimin": [7, 25, 28], "eliminate_fixed_ptolemi": [7, 14, 25], "ellipsi": [7, 14, 28], "elpkbcdddhggsj": 7, "elpkbdcddhgggb": 7, "elpkbdcddhgggb_bacbbacb": [7, 27], "elpkbdcddhgggb_bbcbbacb": 7, "elpkbdcddxvvcv": 7, "els": 23, "elsewher": 23, "emac": 4, "email": 13, "embed": [7, 9, 12, 15, 25, 27, 28], "embed_cach": 28, "emit": 7, "empir": 23, "emploi": 23, "empti": [16, 23], "empty_tupl": 0, "enclos": 12, "encod": [7, 9, 12, 23, 25], "encount": [1, 5, 6, 17], "end": [0, 4, 12], "endeavouro": 6, "endpoint": [0, 7, 12], "engin": [7, 14, 17, 25, 28], "enischt": [13, 17], "enlarg": 7, "enough": [7, 19, 28], "ensur": [7, 23, 25, 27], "enterpris": 6, "entir": [7, 23, 25], "entri": [0, 7, 23], "enum": 7, "enumer": [7, 17], "environ": [4, 6], "ep": 9, "epsilon": [14, 23, 28], "epsilon2": 14, "epstein": 7, "eqn": [7, 25], "equal": [7, 14, 15, 18, 23, 25, 27, 28], "equat": [7, 13, 14, 15, 19, 25, 27, 28], "equation_typ": [7, 25], "equations_with_non_zero_condit": 15, "equationtyp": 28, "equip": 7, "equival": [7, 19, 23, 25], "equivari": 0, "error": [0, 1, 6, 7, 14, 17, 28], "especi": [6, 9], "essenti": [7, 16, 25], "estim": 7, "et": 23, "etc": [4, 7, 22, 23], "euclidean": [0, 7], "euler": [7, 9], "eval": 14, "eval_sect": 14, "evalu": [0, 14, 15, 17, 23, 28], "evaluate_word": [14, 15, 16, 17], "even": [5, 6, 7, 9, 11, 14, 16, 19, 25, 27], "evenn": 14, "eventu": [8, 28], "everi": [0, 7, 8, 14, 19, 25], "everyth": [4, 9], "ex": [4, 6], "exact": [7, 13, 14, 21, 25, 27], "exact_bits_prec_and_degre": [7, 27], "exact_sol": 16, "exactli": [7, 13, 14, 21], "exactly_checked_canonical_retriangul": 28, "exactverifyerror": 28, "examin": [7, 9, 25], "exampl": [0, 4, 5, 6, 7, 9, 10, 12, 13, 14, 19, 21, 23, 25, 27, 28], "exceed": 7, "except": [5, 7, 9, 14, 21, 23, 25, 27], "execut": 17, "exist": [0, 6, 7, 25], "exit": 4, "expand": [14, 24, 28], "expand_until_certifi": 28, "expect": [7, 15, 17, 23], "expected_valu": 28, "experi": 28, "experiment": 5, "explain": [7, 15, 18, 25], "explain_column": [7, 25], "explain_row": [7, 25], "explan": [7, 25], "explicitli": [7, 14, 25, 28], "explor": [7, 26], "export": [0, 4, 7, 9, 25], "export_stl": 0, "express": [0, 5, 9, 12, 28], "extend": [0, 7, 9, 12, 14, 16, 19, 25], "extends_to_link": [2, 7], "extens": [0, 9, 16, 28], "exterior": [0, 2, 3, 5, 7, 8, 9, 23, 25], "exterior_to_link": [5, 7, 9, 25], "extern": 6, "extra": [0, 6, 7, 8, 9, 14, 16, 19, 23], "extract": [4, 7], "ey": [5, 9], "f": [0, 6, 7, 14, 23, 25, 28], "f_2": 23, "f_q": [7, 25], "fa": 7, "face": [0, 7, 14, 23, 25, 27, 28], "face_list": 0, "fact": [7, 19], "factor": [0, 7, 8, 19, 23, 25, 28], "factoris": 14, "fafbcaefd": 7, "fail": [5, 7, 9, 14, 17, 21, 25, 28], "failur": [27, 28], "fair": 23, "fairli": [7, 17], "faithfulli": [7, 25], "falbel": 14, "fals": [0, 2, 7, 14, 15, 16, 17, 18, 21, 23, 25, 27, 28], "famili": [13, 16, 19, 23], "faq": 22, "far": [7, 15, 17, 27], "fast": [9, 23], "faster": [5, 7, 9, 15, 16, 25], "favorit": 4, "featur": [4, 5, 6, 8, 9, 17, 21, 26], "feb": 9, "februari": 9, "fedora": [4, 6], "feel": 17, "fetch": 4, "few": [4, 23], "fewer": [7, 23], "fiber": [7, 23, 25], "field": [0, 2, 7, 9, 13, 14, 16, 18, 19, 21, 24, 25, 28], "fig": [0, 7, 25], "fig8": 23, "figur": [7, 14, 15, 16, 17, 23, 25], "file": [0, 4, 6, 7, 12, 14, 17, 18, 23, 25], "file_nam": [7, 25], "filenam": [0, 7, 14, 15, 25], "filename_bas": [14, 15], "fill": [0, 5, 7, 9, 22, 25, 27], "filled_length": 7, "filled_shap": 7, "filled_triangul": [7, 25], "filling_data": [7, 25], "fillings_may_affect_gener": [7, 25], "filter": [2, 11], "filter_arg": 2, "final": [0, 7, 23, 25, 28], "find": [0, 2, 5, 7, 8, 9, 13, 15, 19, 21, 23, 25, 27, 28], "find_field": [7, 21], "find_shapes_as_complex_sqrt_lin_combin": 28, "fine": 0, "finger": 12, "finish": 17, "finit": [0, 7, 11, 23, 25], "finitely_pres": 23, "finitelypresentedgroup": 0, "finitelypresentedgroup_with_categori": 23, "first": [0, 2, 6, 7, 15, 16, 17, 21, 23, 25, 27, 28], "first_cusp": 7, "five": [0, 7, 23], "fix": [0, 5, 7, 9, 14, 19, 25], "fixed_align": 7, "fkr2013": 14, "flag": [0, 2, 5, 7, 9, 23, 25, 27], "flash": 12, "flat": [7, 16], "flatten": [7, 13, 17, 25], "flattenings_numer": 14, "flavor": [7, 25], "flexibl": [2, 13], "flip": [7, 23, 25], "flipper": 6, "fllqcacdedenbxxrr": 7, "float": [0, 7, 8, 27], "floer": [3, 9, 23], "focu": 5, "fold": [7, 25], "folder": [4, 6], "follow": [0, 2, 4, 6, 7, 11, 14, 15, 16, 17, 18, 23, 25, 28], "forc": 6, "ford": 0, "ford_domain": 0, "forget": 7, "forgotten": 3, "fork": 4, "form": [0, 7, 12, 14, 15, 19, 23, 25, 28], "formal": 1, "format": [0, 3, 15, 28], "former": [6, 7, 23, 25], "formerli": 6, "forth": 8, "found": [0, 6, 7, 17, 19, 25, 27], "foundat": 5, "four": [7, 8, 15, 23, 25], "fourth": [7, 15, 25], "fox": 23, "fractal": [7, 9], "fraction": [0, 7, 14, 18], "frame": 12, "framework": [0, 4], "free": [0, 4, 17], "free_vari": [14, 16, 17], "freegroup": 0, "friend": 26, "from": [0, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 22, 23, 25, 26, 27, 28], "from_snappy_manifold": 14, "from_tetrahedra_shapes_of_manifold": 14, "fromat": 0, "fromisosig": [7, 25], "fr\u00e9d\u00e9ric": 3, "fulfil": [7, 28], "full": [0, 7, 12, 14, 19, 23, 25], "full_list": 0, "full_rigor": [0, 7], "full_solut": 14, "fulli": 9, "func": 7, "function": [0, 2, 7, 9, 13, 15, 16, 21, 23, 24, 25, 28], "fundament": [0, 7, 13, 14, 15, 22, 25], "fundamental_group": [0, 7, 11, 14, 15, 17, 25], "fundamental_group_arg": 7, "fundamentalgroup": [22, 25], "further": [5, 7, 9, 15], "furthermor": [7, 27], "futur": [13, 15, 17, 18], "fxrai": [4, 7, 25], "g": [0, 4, 6, 7, 14, 17, 21, 23, 25, 27, 28], "gain": 6, "galoi": [7, 13, 14, 15, 16, 17, 19, 25], "gamma": 14, "gap": [0, 5, 7, 9, 25], "gap_str": 0, "garoufalidi": [7, 14, 19, 25], "gaussian": 28, "gave": 7, "gcc": 4, "gen": [0, 7, 23, 28], "gener": [0, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 23, 25], "generalis": 19, "generator_fil": 0, "generators_in_origin": 0, "genu": [9, 14, 23], "genuin": [7, 25], "geodes": [0, 5, 7, 9, 27], "geometr": [0, 7, 13, 14, 15, 19, 22, 25, 27], "geometri": [3, 5, 7, 22], "geometric_solut": 7, "get": [0, 4, 5, 6, 7, 9, 13, 14, 15, 16, 17, 18, 23, 24, 25, 28], "get_custom_nam": 0, "get_displac": 0, "get_manifold": 14, "get_ord": 14, "get_ti": 0, "get_zpq_tripl": 14, "gf": 23, "ggz2012": [17, 19], "ggz2014": [15, 16, 19], "giesek": 0, "git": [4, 6], "github": [4, 6, 9, 24], "give": [0, 2, 6, 7, 9, 13, 14, 15, 16, 17, 18, 19, 23, 25, 27, 28], "given": [0, 2, 5, 7, 9, 13, 14, 15, 16, 19, 23, 25, 26, 28], "gl": 4, "global": [0, 7, 23, 25], "glpk": 23, "glu": [4, 7, 14, 19, 23, 25, 27, 28], "gluing_equ": [7, 25, 28], "gluing_equations_pgl": [7, 25], "gmail": [13, 17], "gnome": 6, "gnu": 5, "go": [4, 5, 7, 8, 9, 12, 16, 17, 23, 25], "goe": [2, 7, 23, 25], "goeritz": 23, "goeritz_matrix": 23, "goerner": [3, 5, 7, 9, 10, 14, 19, 25, 27], "gon": 7, "good": [0, 6], "good_shap": 28, "gordon": 23, "gquotient": 7, "gracefulli": 28, "grade": 23, "grant": 5, "graph": [11, 23], "graphic": [4, 5, 6, 7, 23], "greater": 14, "greedi": 7, "grevlex": [7, 14, 25], "grid": 23, "gridlink": 6, "groebner": [7, 16, 18, 25], "group": [0, 7, 9, 10, 13, 14, 15, 16, 19, 22, 23, 24, 25, 27], "grow": [7, 23], "gt": 14, "gtz2011": [15, 19], "guarante": [0, 7, 19, 25, 27], "guess": [7, 21], "gui": [4, 6, 9, 24], "gz": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "h": [0, 4, 7, 8, 14, 19, 23, 25], "h_1": [7, 25], "ha": [0, 2, 4, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 27, 28], "had": 15, "hahcheagbdf": 23, "half": 0, "hall": [3, 10], "hand": 14, "handed": [7, 12, 25], "handi": 4, "handl": [9, 14, 17], "hang": 6, "happen": [7, 17, 19, 23, 25], "hard": [0, 7, 25], "hardest": 4, "has_finite_vertic": [7, 25, 28], "has_obstruct": 14, "hasattr": 7, "hash": 2, "hashabl": 23, "hat": [6, 19], "have": [0, 2, 4, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28], "hcdbbfhegbdac": 11, "head": 23, "header": 4, "heart": 12, "heavi": [7, 25], "heegaard": [6, 10], "heegaardsplit": 24, "height": [0, 23], "help": [1, 7, 8, 14, 15, 16, 25], "henc": [7, 14, 25, 28], "henri": [3, 19], "herald": [7, 9, 25], "here": [0, 4, 5, 6, 7, 9, 11, 13, 15, 16, 17, 18, 19, 21, 23, 25, 28], "hfhat": 23, "hfk": 23, "hh": 0, "hierarchi": 28, "high": [6, 7, 9, 14, 21, 22, 28], "high_precis": [0, 7, 8], "higher": [7, 8, 15, 21, 27], "highest": 0, "hikmot": [7, 9, 27, 28], "hildebrand": [7, 25], "histori": 5, "hit": [12, 15, 16, 26], "hkl": [7, 25], "hodgson": [2, 7], "hoffman": 27, "hold": [2, 12, 14], "holonomi": [0, 7, 13, 17, 21, 27], "holonomy_accuraci": 7, "holonomy_matrix_entri": [7, 21], "holonomygroup": [0, 7], "holonomygrouphp": 0, "home": [0, 4, 6], "homeomorph": [7, 25], "homework": 26, "homolog": [7, 25], "homologi": [0, 2, 3, 5, 7, 9, 11, 23, 25], "homological_longitud": [7, 25], "homomorph": [7, 14], "homotop": 7, "homotopi": [7, 25], "hood": [7, 9, 28], "hope": [0, 7, 8, 25], "hopf": [0, 23], "horizont": 23, "horobal": [0, 4, 7, 9, 24], "horospher": 0, "horoview": 4, "host": [2, 3, 4, 7, 9, 23, 25], "hot": 12, "hour": [7, 26], "hover": 12, "how": [0, 4, 5, 6, 7, 8, 14, 15, 18, 21, 23, 25, 28], "howev": [6, 7, 8, 15, 17, 25, 28], "howpublish": 3, "htlinkexterior": [0, 2, 6, 9, 22], "http": [3, 4, 6, 7, 14, 15, 17, 19, 23, 25], "hue": 0, "hyperbol": [0, 2, 5, 7, 8, 9, 11, 13, 19, 22, 23, 25, 26, 27], "hyperbolic_adjoint_tors": 7, "hyperbolic_sln_tors": [7, 21], "hyperbolic_tors": [7, 21], "hyperbolicli": 21, "hyperlink": 24, "i": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28], "icebbgiafhcedb": 11, "icerm": 26, "icon": 6, "icosahedr": 11, "icosahedra": 11, "icosahedralnonorientableclosedcensu": [0, 11], "icosahedralorientableclosedcensu": [0, 11], "id": [2, 23, 28], "idea": 17, "ideal": [0, 2, 7, 9, 11, 14, 15, 18, 19, 22, 25], "ident": [14, 15, 17], "identif": [2, 9], "identifi": [0, 2, 7, 11, 14, 21, 23, 25], "identitybraid": [0, 23], "ignor": [7, 25], "ignore_curv": [5, 7, 9, 25], "ignore_curve_orient": [5, 7, 9, 25], "ignore_cusp_ord": [7, 25], "ignore_exception_detail": [7, 28], "ignore_filling_orient": [5, 7, 9, 25], "ignore_orient": [5, 7, 9, 25], "ignore_solution_typ": 7, "ii": [23, 26], "iii": 23, "ij": [7, 14], "ijl": 14, "illustr": [7, 23, 27], "ilya": 3, "im": [7, 28], "imag": [0, 4, 6, 7, 9, 13, 14, 15, 19, 23, 25, 28], "imaginari": [14, 28], "immut": [7, 25], "implement": [5, 7, 9, 17, 19, 23, 25, 27, 28], "impli": 16, "implicit": [7, 25], "implicitli": 16, "import": [0, 7, 14, 15, 19, 21, 23, 25, 27, 28], "improv": [3, 4, 9, 27], "in_radiu": 0, "includ": [1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 15, 17, 23, 25, 26, 27, 28], "include_word": [0, 5, 7, 9], "incom": 12, "incomplet": 7, "incompress": 7, "incorpor": [6, 9, 10], "incorrect": [7, 27], "incorrectli": [5, 9], "increas": [7, 13, 23, 25, 27, 28], "inde": [7, 17, 28], "independ": [19, 28], "index": [0, 2, 7, 12, 14, 16, 23, 25, 28], "indexerror": 0, "indic": [0, 2, 7, 12, 14, 16, 25, 27, 28], "individu": 2, "induc": [0, 14], "induced_represent": 14, "inequ": [14, 28], "inequalitynumericalverifyerror": 28, "inevit": 8, "infimum": 0, "infin": [0, 7, 23], "infinit": 0, "infinitytangl": 0, "info": [0, 7, 12, 24, 25], "inform": [7, 12, 14, 19, 25, 28], "infrastructur": 9, "infti": 19, "initi": [2, 3, 7, 9, 23, 25, 28], "initial_map_gives_link": 23, "initial_shap": 28, "inject": [0, 7], "inner": 16, "inno": 4, "input": [0, 2, 7, 12, 14, 25, 28], "inscrib": 0, "insert": 16, "insid": [0, 3, 7, 9, 17, 21, 23, 27], "inside_view": [5, 7, 9], "insist": 2, "inspir": [19, 28], "instal": [1, 2, 4, 5, 7, 9, 17, 25], "installsnappi": 6, "instanc": [2, 4, 7, 23], "instanti": 0, "instead": [0, 5, 7, 9, 14, 16, 17, 23, 25, 27, 28], "institut": 5, "instruct": [0, 4, 6, 9, 26], "insuffici": 7, "insufficientprecisionerror": [0, 7, 27], "int": [7, 25], "integ": [0, 7, 14, 23, 25, 28], "integr": [7, 14, 25], "intend": [7, 25], "interact": [4, 6, 7, 22, 25], "interest": [0, 28], "interfac": [4, 5, 6, 7, 22], "interior": [0, 7, 9, 22, 25], "intermedi": [7, 23, 25, 28], "intern": [7, 25, 27], "internet": [13, 15], "interoper": 28, "intersect": [5, 7, 17, 27], "interv": [0, 7, 14, 15, 16, 27], "interval_bits_prec": 7, "interval_checked_canonical_triangul": 28, "interval_value_at_point": 28, "interval_vector_is_contained_in": 28, "interval_vector_mid_point": 28, "interval_vector_union": 28, "intervalnewtonshapesengin": 28, "intrins": [5, 7, 9, 19, 25, 27], "intro": 26, "introduc": [7, 25], "introduct": 14, "introspect": [21, 26], "invalid": 0, "invari": [5, 7, 9, 16, 19, 24, 25, 27], "invariant_trace_field_gen": [7, 21], "invention": 23, "invers": [0, 23, 28], "invok": [7, 12, 28], "involv": [7, 25, 28], "ipython": [4, 9, 15], "irreduc": [7, 15, 25], "irregular": 25, "is_abelian": 0, "is_altern": 23, "is_amphicheir": 0, "is_bridg": 23, "is_certifi": 28, "is_complet": [7, 25], "is_dihedr": 0, "is_direct_product": 0, "is_full_group": 0, "is_geometr": 14, "is_induced_from_psl2": 14, "is_invertible_knot": 0, "is_isometric_to": [0, 7, 23, 25], "is_numer": [14, 15, 16, 17, 18], "is_orient": [7, 25], "is_planar": 23, "is_polyhedr": 0, "is_pu_2_1_represent": 14, "is_real": 14, "is_s5": 0, "is_two_bridg": 7, "isaugktg": 11, "isinst": [7, 23], "isn": [7, 23], "isol": [7, 25], "isom": [0, 7, 25], "isometr": [2, 5, 7, 9, 25, 27], "isometri": [0, 2, 5, 7, 9, 25, 27], "isometry_signatur": [5, 7, 9, 25, 27], "isomorph": [7, 9, 25], "isomorphisms_to": [7, 25, 27], "isosig": [3, 7, 25], "isotop": 23, "isotopi": [7, 23, 25], "issu": [1, 7, 23, 24], "iszeroexactverifyerror": 28, "item": [0, 12, 14], "iter": [2, 7, 11, 15, 16, 17, 25, 28], "itervalu": 16, "ith": 23, "its": [0, 4, 5, 6, 7, 15, 17, 23, 24, 27, 28], "itself": [0, 4, 7, 16, 17, 23], "j": [0, 3, 7, 23, 28], "jacobian": 28, "januari": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "jean": [3, 9], "jeff": [0, 3, 5], "jeffrei": 3, "jennet": [3, 9], "jettison": 18, "ji": 14, "jim": [2, 3], "joe": 2, "join": [12, 23], "jold": 23, "jone": 23, "jones_polynomi": [9, 23], "jose": [3, 9], "jth": 23, "juli": 9, "june": [5, 9], "just": [4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19, 23, 25, 28], "jvlalqqdeefgihihiokcmmwwswg": 7, "k": [2, 7, 19, 21, 23, 25, 27, 28], "k1": 23, "k10n1": 23, "k10n11": 23, "k11n11": 23, "k11n34": 23, "k11n42": [7, 21], "k12a123": 23, "k12a456": 25, "k12n123": [7, 25], "k12n813": [7, 25], "k13n123": 23, "k13n4587": 7, "k14n2345": 23, "k14n26039": 7, "k2": 23, "k3_1": [7, 25], "k3a1": 23, "k4_3": 2, "k5_1": 2, "k5_19": 23, "k5_2": 2, "k5_3": 2, "k5a1": 23, "k6_21": 7, "k6a2": 23, "k7_1": 0, "k8n1": [2, 23], "k9a1": 23, "k_1": 28, "k_2": 28, "k_i": 28, "k_n": 28, "kabaya": [7, 25], "kde": 6, "keep": 1, "kei": [0, 2, 7, 12, 14, 15, 16, 25, 26], "kernel": [0, 4, 5, 7, 8, 24], "kernel_cod": [7, 25], "key_z": 14, "keyword": [2, 7, 25], "kill": [7, 25], "kind": [7, 16, 25, 28], "kirk": [7, 9, 25], "klein": [0, 7, 25], "klpproject": 23, "knot": [2, 3, 6, 7, 8, 9, 11, 16, 23, 25], "knot_floer_homologi": [9, 23], "knot_group": 23, "knots_vs_link": 2, "knotscap": [7, 25], "knottheori": 23, "know": [3, 6, 7, 28], "known": [7, 16, 25, 28], "kofman": [2, 3, 7], "koseleff": 14, "krawczyk": [9, 28], "krawczyk_interv": 28, "krawczykshapesengin": 28, "kwarg": [7, 23, 25], "l": [2, 7, 8, 23, 25, 27], "l0": 23, "l1": 23, "l104001": [7, 25], "l10n111": 7, "l11a127": 23, "l11n138": 2, "l12n1097": 2, "l12n123": 23, "l13n11308": 23, "l13n579": 25, "l13n5885": 7, "l14a5150": 23, "l14a7689": 23, "l14n1000": 23, "l14n12345": 23, "l14n13364": 2, "l14n13513": 2, "l14n15042": 2, "l14n24425": 2, "l14n24777": 2, "l14n26042": 2, "l14n467": 23, "l14n64110": 23, "l2": 23, "l20935": [7, 25], "l5a1": [7, 25, 27], "l6a5": 7, "l7a2": [7, 25], "l7n1": 23, "l7n2": 7, "l8n2": 23, "l9a21": [7, 25], "l_copi": 23, "l_space_knot": 23, "la": 7, "label": [12, 14, 23, 27], "lack": [13, 22], "lackenbi": 27, "lambda": [14, 28], "languag": 5, "larg": [0, 2, 7, 14, 22, 23, 25, 27], "larger": [2, 6, 7, 11, 14, 16], "largest": [0, 23], "last": [0, 4, 6, 7, 12, 15, 23, 25, 28], "later": [0, 5, 6, 7, 15, 16, 25], "latest": 4, "latin": 9, "latter": [6, 7, 12, 15, 16, 23, 25], "lbar": 23, "lcgbcikhlbjecgafd": 11, "lead": 14, "leaf": 16, "leap": 6, "learn": [5, 26], "least": [0, 4, 7, 8, 17, 23, 25], "left": [0, 7, 12, 14, 25, 28], "legaci": 14, "legal": 28, "lemma": 14, "len": [0, 2, 7, 11, 15, 17, 23, 25, 27], "length": [0, 5, 7, 8, 9, 23, 27, 28], "length_spectrum": [5, 7, 9], "length_spectrum_alt": [5, 7, 9], "length_spectrum_alt_gen": [5, 7, 9, 27], "length_spectrum_dict": 0, "lengthi": 7, "lengthspectrumgeodesicinfo": 7, "leq": 7, "less": [7, 14, 21, 23, 27, 28], "let": [3, 6, 7, 15, 17, 25, 28], "letter": [0, 23], "level": [16, 23], "lexicograph": [7, 16, 18, 25], "lh": [14, 28], "lhss": 28, "libglu": 4, "libglu1": 4, "librari": [2, 3, 4, 22], "licata": 27, "licens": 5, "lie": 7, "lift": [0, 7, 15, 16, 18, 19, 25], "lift_to_sl": 7, "lift_to_sl2": 7, "like": [4, 6, 7, 8, 9, 22], "limit": [2, 17, 18], "line": [0, 4, 5, 12, 13, 16, 17], "linear": [7, 12, 28], "linearli": 23, "link": [0, 2, 3, 4, 5, 7, 9, 11, 25, 27], "link_compon": 23, "linkexterior": [0, 2, 22], "linking_matrix": 23, "linking_numb": 23, "lint": 3, "linux": [5, 9], "lipschitz": [3, 9], "list": [0, 2, 5, 7, 11, 13, 14, 15, 17, 19, 23, 25, 26, 28], "listofapproximatealgebraicnumb": 7, "listofshapeinterv": 7, "listofshapesinterv": 7, "litherland": 23, "live": 14, "livingston": [7, 9, 25], "ll": 4, "lll": [7, 21, 27, 28], "llr": [0, 7, 25], "lm": 26, "ln": 6, "load": [0, 7, 25], "local": [0, 6, 7, 9], "locat": [12, 14], "log": [0, 7, 14, 25, 28], "log_gluing_lhs_deriv": 28, "log_gluing_lhs_derivatives_spars": 28, "log_gluing_lhss": 28, "logarithm": [7, 14, 28], "logliftnumericalverifyerror": 28, "long": [0, 6, 7, 14, 23, 25, 26], "long_edg": [14, 16], "longer": [7, 19, 25, 27], "longest": 23, "longitud": [0, 7, 12, 17, 19, 25], "longitude_0_0": [7, 25], "longitude_1_0": [7, 25], "look": [0, 2, 5, 7, 9, 17, 19, 25], "lookup": [0, 2], "loop": [7, 16, 17], "loos": 16, "lose": 14, "lost": 16, "lot": 0, "low": [6, 7, 14], "low_index": [4, 5, 7, 9, 25], "low_precis": 8, "lower": 7, "lowindexsubgroupsfpgroup": 7, "lrlr": [7, 25], "m": [0, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27, 28], "m000": 0, "m003": [0, 7, 13, 15, 17, 18, 25, 27], "m003__sl2_c0": 15, "m003__sl2_c1": 15, "m004": [0, 7, 8, 11, 13, 15, 21, 25, 26, 27], "m004_drill": [7, 27], "m006": 7, "m007": [2, 7], "m009": [2, 14, 15, 17], "m010": [2, 14], "m011": [7, 13, 14, 15, 17, 25], "m011__sl2_c0": 17, "m011__sl2_c1": 17, "m015": [0, 7, 25, 27, 28], "m016": [7, 23, 25], "m018": 2, "m019": [7, 28], "m069": 18, "m1": [7, 9, 25], "m113": [7, 25], "m123": [7, 25], "m124": 2, "m125": [0, 2, 7, 25], "m128": 2, "m129": [2, 7], "m131": 2, "m137": 28, "m153": 2, "m159": 17, "m177": 2, "m2": [7, 9], "m202": [2, 7], "m203": 27, "m217": 2, "m218": 2, "m289": 23, "m292": 7, "m371": [16, 17], "m410": 17, "m412": [7, 27, 28], "mac": [4, 5, 9], "mac_osx_app": 4, "maco": 9, "made": [0, 7, 23], "magma": [0, 5, 7, 9, 13, 14, 18, 25], "magma_out": [15, 17], "magma_str": 0, "magma_templ": 14, "mai": [1, 5, 6, 7, 9, 12, 23, 25], "main": [6, 22, 25], "maintain": 23, "mainten": 3, "major": [4, 9], "make": [0, 4, 6, 7, 9, 12, 13, 23, 24, 25, 27], "malik": [3, 9], "mamba": 6, "manag": 6, "mani": [1, 5, 6, 7, 8, 9, 15, 16, 23, 25, 27], "manifold": [0, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 25, 26, 27, 28], "manifold_thunk": 14, "manifoldap": 8, "manifoldhp": [0, 7, 9, 22], "manifoldt": [2, 22], "manjaro": 6, "manner": 6, "mantissa": 8, "manual": [4, 23], "map": [2, 7, 10, 14, 19, 25], "marc": [3, 5, 10, 15], "march": 9, "mark": [0, 3, 7, 25], "mash": 23, "maslov": 23, "massiv": [27, 28], "mat_entri": 7, "mat_solv": 28, "match": [2, 7, 25], "match_kernel": 7, "materi": 26, "math": [7, 14, 23, 25, 28], "mathbb": [0, 7], "mathemat": [5, 6, 10, 13], "mathew": [7, 25], "matric": [0, 7, 13, 14, 19, 25, 28], "matrix": [0, 5, 7, 9, 14, 15, 17, 19, 23, 25, 27, 28], "matrix_times_spars": 28, "matrix_trac": 15, "matter": [14, 23], "matthia": [3, 5, 7, 9, 10, 19, 25, 27], "max": 7, "max_len": 7, "max_reach": 0, "max_seg": 7, "max_tri": 23, "maxim": [0, 5, 7, 9, 14, 27, 28], "maxima": 23, "maxima_method": 0, "maxima_wrapp": 0, "maximawrapp": 0, "maximize_injectivity_radiu": [0, 7], "maximum": [0, 7], "mayb": 7, "mca": 23, "mdbcecejamhblckgdfi": 11, "me": 12, "mean": [7, 14, 16, 17, 18, 19, 23, 25, 28], "meaningless": [7, 23], "meant": 7, "measur": [0, 7, 27], "mechan": 15, "meet": [7, 23, 25], "meld": 12, "member": 0, "memori": [0, 14, 26], "memory_limit": 14, "mention": [7, 19, 25], "menu": [6, 12], "merdian": [7, 25], "mere": 9, "merg": [7, 24], "meridian": [0, 2, 7, 12, 17, 25], "meridian_0_0": [7, 25], "meridian_1_0": [7, 25], "mesa": 4, "messag": [1, 6, 15, 17], "method": [0, 2, 5, 7, 9, 14, 15, 16, 17, 18, 21, 23, 24, 25, 26, 27, 28], "methodmappinglist": 16, "meyerhoff": 7, "mfld": 2, "mfld_hash": 2, "mhat": 14, "microsoft": 4, "middl": [12, 14], "middle_edg": 14, "midpoint": [7, 28], "might": [0, 7, 14, 15, 16, 17, 18, 19, 25, 27], "min": 23, "min_strand_index": 23, "mingw": 4, "mingw64": 4, "miniforge3": 6, "minim": [7, 23, 25], "minimize_number_of_gener": [7, 17, 25], "minimum": 23, "minkowski": 0, "minor": 24, "mint": 6, "minu": 23, "minut": [7, 26], "mirror": [0, 23], "misc": [0, 3], "miss": 19, "mistak": 7, "mkdir": 6, "mklink": 4, "mkstemp": 14, "mm": 3, "mod": [5, 7, 9, 14, 15, 16, 17, 18, 23, 25], "mode": [7, 9, 23, 25], "model": [0, 23], "modern": [5, 9], "modifi": [0, 6, 7, 14, 19, 23], "modul": [0, 2, 4, 5, 7, 9, 14, 15, 16, 17, 18, 19, 23, 25, 28], "modulo": [7, 27], "modulu": [7, 23], "mojav": 9, "monterei": 9, "more": [0, 2, 5, 6, 7, 8, 9, 12, 14, 15, 16, 21, 23, 24, 25, 27, 28], "mors": 23, "morse_diagram": 23, "morse_numb": 23, "morselink": 23, "morselinkdiagram": 23, "morwen": [2, 3], "most": [0, 1, 2, 4, 6, 7, 9, 16, 19, 25, 27, 28], "mostli": 9, "mous": 12, "move": [7, 9, 12, 23, 25], "msvc": 4, "msys2": 4, "msys64": 4, "much": [0, 1, 4, 5, 7, 9, 16, 24, 25], "mult": 7, "multi": 23, "multifacet": 6, "multigraph": 23, "multipl": [0, 5, 7, 8, 9, 14, 17, 19, 23, 25, 28], "multipli": [8, 14, 28], "multiply_and_simplify_term": 14, "multiply_and_simplify_terms_in_rur": 14, "multiply_el": 0, "multiply_term": 14, "multiply_terms_in_rur": 14, "multivar": 23, "multivari": [0, 7, 14, 25], "must": [0, 4, 7, 9, 14, 25, 27], "mv": [6, 23], "mvvlalqqqhfghjjlilkjklaaaaaffffffff": 27, "mx": 6, "mydict": 14, "myideal": [7, 14, 25], "mylist": 2, "mys2": 4, "mysolut": 14, "n": [0, 2, 3, 5, 7, 9, 10, 13, 14, 16, 17, 21, 23, 25, 27, 28], "n0": [7, 25], "n1": 7, "n2": 7, "n3": 7, "n4": 7, "naiv": 23, "name": [0, 2, 4, 6, 7, 14, 15, 16, 23, 25], "namedtemporaryfil": 0, "nano": 4, "natan": [9, 23], "nathan": [3, 4, 5], "nation": 5, "nativ": [9, 18, 28], "natur": [7, 14, 23], "ncube05_30945": 11, "ncube05_30946": 11, "ncube05_30947": 11, "nearest": 0, "necessari": [7, 13, 15, 27], "necessarili": [5, 7, 27], "need": [0, 1, 4, 6, 7, 14, 17, 21, 23, 25, 28], "neg": [7, 8, 9, 14, 23, 28], "neighbor": 7, "neighborhood": [0, 5, 7, 9, 27], "nest": [7, 13, 25], "neumann": [7, 14, 25], "neumannzagiertypeequ": [7, 25], "never": 27, "nevertheless": 0, "new": [6, 7, 12, 17, 23, 24, 25, 26], "new_convent": 23, "new_curv": 7, "new_displac": 0, "new_nam": [7, 25], "new_ti": 0, "newer": [4, 6, 9], "newobj": 0, "newton": 28, "newton_iter": 28, "next": [6, 7, 23, 25, 27], "nf": 28, "nice": 28, "nicocld02_00000": 11, "noct03_00007": 11, "noct03_00029": 11, "noct03_00047": 11, "noct03_00048": 11, "nois": 14, "non": [0, 2, 7, 9, 11, 12, 13, 14, 15, 19, 23, 25, 27, 28], "non_peripher": [7, 25], "non_trivial_generalized_obstruction_class": 14, "nonabelian": 0, "nonaltern": 2, "nonalternatingknotexterior": [0, 2, 22], "none": [0, 2, 5, 7, 9, 14, 21, 23, 25, 28], "nonempti": [7, 25], "nongeometric_solut": 7, "nonneg": 7, "nonorient": [2, 7, 25], "nonorientableclosedcensu": [0, 2, 22], "nonorientablecuspedcensu": [0, 2, 22], "nonplanar": 23, "nontrivi": [0, 7, 25], "nonzero": [7, 23, 25], "nonzerodimensionalcompon": [13, 16, 17], "nor": 7, "norm": 23, "normal": [7, 9, 14, 24, 25, 28], "normal_boundary_slop": [7, 25], "normal_surfac": [7, 25], "normalize_whitespac": [7, 14, 28], "notar": 9, "notat": [2, 14], "note": [0, 3, 6, 7, 14, 16, 19, 23, 25, 26, 27, 28], "noth": 16, "notic": 9, "notimplementederror": 0, "notion": 19, "nov": 9, "novemb": 9, "now": [2, 4, 5, 6, 7, 9, 14, 15, 16, 17, 19, 25, 26], "ntet01_00000": 11, "nu": 23, "num_compon": 23, "num_cusp": [0, 2, 7, 23, 25], "num_edg": 0, "num_fac": 0, "num_finite_vertic": 0, "num_gener": 0, "num_ideal_vertic": 0, "num_original_gener": 0, "num_rel": 0, "num_subdivis": 0, "num_tet": 2, "num_tetrahedra": [2, 7, 14, 25, 28], "num_vertic": 0, "number": [0, 2, 5, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 28], "number_field": [14, 15, 28], "numberfield": [15, 18, 28], "numberfieldel": 18, "numer": [2, 7, 12, 13, 14, 15, 17, 23, 27, 28], "numerator_closur": 23, "numeric12": [7, 28], "numeric15": 28, "numeric21": 7, "numeric24": 7, "numeric3": [7, 28], "numeric30": 0, "numeric6": [7, 28], "numeric9": [0, 7], "numerical_sol": 16, "numerical_solut": 14, "numericalverifyerror": 28, "nval": 7, "o": [0, 4, 5, 9, 14], "o31": 0, "o31_gener": 0, "o31matric": 0, "o9_00639": 7, "o9_44241": 2, "o9_44242": 2, "o9_44243": 2, "obei": 23, "obeidin": [3, 5, 7, 9, 25], "obj": 14, "object": [0, 2, 7, 14, 15, 16, 17, 18, 25, 26, 28], "object2r": 0, "obscur": 0, "obsolet": 14, "obstruct": [7, 9, 13, 14, 15, 16, 17, 18, 25], "obstruction_class": [7, 14, 15, 16, 25], "obtain": [0, 7, 14, 15, 17, 19, 25, 28], "obviou": 23, "octahedr": 11, "octahedra": 11, "octahedralnonorientablecuspedcensu": [0, 11], "octahedralorientablecuspedcensu": [0, 11], "ocube01_00002": 11, "odd": [7, 14, 25], "odode02_00913": 11, "of_link": [7, 27], "off": [7, 28], "offer": [6, 19], "offici": 6, "offset": 2, "often": [0, 6, 7, 25, 27], "oicocld01_00000": 11, "old": [5, 6, 7, 9, 12, 23, 24], "old_precis": 14, "older": [6, 7], "ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo": [7, 25], "ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo_ab": [7, 25], "ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo_ba": [7, 25], "ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo_bababbbbbc": [7, 25], "ollvzqllqqccdhifihnlmkmlnnpvuvbvouggbggoo_bbbcbabb": [7, 25], "ollzlpwzqqccdeghjiiklmnmnnuvuvvavovvffffo": [7, 25], "omit": 6, "onc": [7, 12, 17, 25], "one": [0, 2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 28], "one_dim_sol": 17, "ones": [0, 14, 15, 17, 19, 23], "onli": [0, 1, 2, 7, 8, 9, 11, 12, 14, 15, 16, 17, 19, 23, 25, 27, 28], "onto": [5, 9], "ooct01_00000": 7, "ooct01_00001": [7, 11], "ooct02_00001": 11, "ooct02_00002": 11, "ooct02_00003": 11, "ooct02_00005": 11, "ooct04_00027": 11, "ooct04_00034": 11, "opcod": 0, "open": [1, 7, 12, 23, 25], "opengl": 4, "openssh": 4, "opensus": 6, "oper": [0, 12, 18, 28], "opinion": 5, "oppos": 23, "opposit": [0, 7, 23], "optim": [7, 21], "optimize_overcross": 23, "option": [0, 2, 5, 7, 9, 12, 14, 17, 23, 25, 28], "orbifold": [0, 7, 22, 25], "order": [0, 2, 4, 7, 12, 23, 25], "order_bi": 2, "ordinari": [7, 8], "org": [3, 4, 6, 7, 13, 14, 15, 17, 19, 23, 25], "orient": [0, 2, 7, 9, 11, 12, 13, 16, 23, 25, 27, 28], "orientableclosedcensu": [0, 2, 22], "orientablecuspedcensu": [0, 2, 15, 17, 22, 27], "orientation_cov": [7, 25], "origin": [0, 2, 7, 23, 25], "original_gener": 0, "original_index": 0, "orthogon": 0, "oscil": [7, 25], "otet02_00001": 11, "otet05_00000": 11, "otet05_00001": 11, "otet20_00022": 7, "other": [0, 2, 3, 5, 6, 7, 12, 13, 16, 17, 19, 21, 23, 25, 28], "other_knot": 23, "otherwis": [0, 7, 14, 16, 23, 25, 28], "our": [6, 15, 23, 24], "ourselv": 17, "out": [0, 7, 14, 15, 17, 19, 21, 28], "out_radiu": 0, "output": [7, 14, 15, 17, 21, 25, 27, 28], "outsid": [0, 18], "over": [0, 7, 8, 9, 12, 14, 15, 16, 23, 25], "overcross": 23, "overflatten": 16, "overstrand": 23, "overview": [16, 18], "overwrit": 28, "own": [4, 6, 7, 14], "p": [0, 3, 6, 7, 14, 15, 16, 17, 19, 23, 25], "p_comp": 0, "p_max": [7, 25], "p_min": [7, 25], "p_uncomp": 0, "pace": 0, "pacher": [7, 25], "pachner": [7, 25], "pachner_search_tri": [7, 25], "pack": 0, "packag": [4, 6, 7, 14, 23, 25], "pacman": [4, 6], "page": [2, 6, 26], "pair": [0, 7, 14, 23, 25, 28], "pairing_matric": 0, "pairing_word": [0, 7], "pairwis": 0, "paper": [5, 7, 9, 14, 23, 25, 28], "parabol": [7, 25], "parallel": [7, 14], "paramet": [2, 7, 13, 14, 16, 23, 25, 27, 28], "parametr": [7, 19, 25], "parent": [0, 7, 23], "pari": [0, 3, 7, 14, 15, 16, 18], "pariti": [0, 7], "pars": [7, 14, 15, 17, 25], "parse_solut": 14, "parse_solutions_from_fil": 14, "part": [4, 7, 8, 10, 13, 14, 25, 26, 27, 28], "partial": [5, 7, 19], "particular": [5, 7, 9, 13, 16, 18, 23, 25, 27, 28], "particularli": 6, "pass": [0, 2, 7, 12, 23, 25, 28], "passes_at_four": [7, 25], "past": 12, "path": [4, 6, 7, 17, 23, 25], "path_to_fil": 15, "patterson": [2, 7], "pd": 23, "pd_code": 23, "pdf": [9, 23], "pdf_doc": 23, "peer_cod": 23, "pencil": 12, "penner": 7, "pentagon": [7, 25], "penultimateshap": 28, "peopl": 13, "per": [7, 19, 25], "perform": [6, 7, 9, 23, 25, 28], "period": [7, 25], "peripher": [7, 9, 13, 14, 19, 25, 27], "peripheral_curv": [0, 7, 17, 25], "peripheral_data": [7, 25], "perl": 4, "perman": [7, 25], "permut": [7, 24, 25], "permutation_rep": [7, 25], "permutationgroupel": [7, 25], "persist": 0, "perspect": 23, "pgl": [7, 9, 14, 19, 25], "pgl2": [15, 17], "phi": [7, 21], "philipp": [3, 9], "pi": [0, 7, 14, 25, 27, 28], "pick": [7, 14, 15, 16, 17, 19, 23, 25, 28], "pickl": 0, "pickletool": 0, "pickup": 23, "pictur": [0, 4, 7], "piec": [7, 23], "piecewis": 12, "pin": [4, 6], "pioneer": [21, 27], "pip": [4, 6], "pip_instal": 4, "pitfal": 7, "pl": [7, 12, 25], "place": [8, 12, 23], "plain": 14, "plan": [6, 15], "planar": [5, 7, 9, 12, 25], "planarmap": 23, "plane": [0, 5, 7, 9, 12, 23], "platform": [1, 6, 9], "platon": [2, 9, 22], "pleas": [3, 5, 6, 13, 15, 23], "plink": [4, 7, 11, 12, 23, 25], "pm": 19, "poincar": 0, "point": [0, 7, 8, 12, 13, 14, 16, 19, 23, 25, 27, 28], "point_in_interv": 28, "poldmod": 18, "poli": [0, 28], "polici": [7, 27], "polish": 7, "polished_holonomi": [7, 21], "polmod": [15, 18], "polyhedr": 0, "polyhedral_descript": 0, "polyhedron": 0, "polynomi": [0, 7, 9, 14, 15, 16, 18, 19, 21, 23, 25, 28], "polynomialr": [0, 7, 14, 25], "polyview": 4, "pop": [4, 16], "popular": 6, "posit": [0, 5, 7, 9, 13, 14, 16, 19, 23, 24, 28], "possibl": [0, 7, 23], "possibli": [0, 7, 16, 23, 25, 28], "postfix": 16, "potenti": [0, 7, 16, 27], "power": [5, 7, 13, 23], "pquotient": 7, "practic": 26, "prec": [21, 28], "precis": [0, 7, 9, 13, 14, 16, 21, 22, 24, 25, 27, 28], "precomput": [7, 25], "precomputed_solut": [7, 25], "prefer": [7, 14, 15, 18, 25], "preinstal": 6, "preliminari": [9, 10, 13], "prepackag": 6, "present": [0, 7, 13, 14, 15, 23, 24, 25], "preserv": [0, 7, 23, 25], "presum": [7, 25], "pretti": 4, "pretzel": 23, "previou": [16, 23, 27], "previous": 6, "primari": [3, 7, 25], "prime": [7, 18, 23, 25], "prime_decomposit": 23, "primes_spec": [7, 25], "print": [0, 2, 3, 7, 9, 11, 12, 14, 15, 17, 25, 28], "prior": [7, 25], "privat": 6, "privileg": 6, "prob_type_1": 23, "prob_type_2": 23, "probabl": [6, 7, 27], "problem": [5, 6, 19, 26, 27], "procedur": 28, "process": [4, 7, 14, 17, 18, 23, 25], "processfiledispatch": 14, "processmagmafil": [7, 14, 25], "processor": [5, 9], "produc": [0, 7, 9, 14, 19, 23, 25, 28], "product": [0, 14, 27], "program": [3, 4, 5, 6, 8, 9, 23], "programmat": 23, "progress": [7, 25], "project": [0, 7, 12, 19, 23, 24, 25], "prompt": [4, 6], "proof": [7, 16], "proper": 0, "properti": [7, 23, 28], "proposit": [14, 19], "proto": [0, 28], "protocol": 0, "provabl": [7, 27, 28], "prove": [7, 16, 28], "proven": [7, 16, 28], "provid": [0, 2, 6, 7, 9, 12, 13, 14, 16, 23, 25, 28], "pseudo": [7, 25], "psl": [7, 9, 10, 13, 14, 16, 25], "pt": 14, "ptolemi": [7, 9, 14, 18, 25], "ptolemtycoordin": 14, "ptolemy_generalized_obstruction_class": [7, 25], "ptolemy_obstruction_class": [7, 25], "ptolemy_varieti": [7, 13, 14, 15, 16, 17, 18, 25], "ptolemycoordin": [13, 15, 16, 17, 18], "ptolemygeneralizedobstructionclass": [7, 25], "ptolemyobstructionclass": [7, 25], "ptolemyvarieti": [13, 15, 16], "ptolmei": 19, "pu": 14, "public": [0, 5], "publish": [14, 19], "pull": [4, 12], "punctur": [7, 23, 25], "purcel": [7, 25], "pure": [7, 27], "purpos": 4, "push": 12, "put": [0, 5, 9, 23], "pxi": 4, "py": 4, "py2app": 4, "py_eval_sect": [14, 15], "py_eval_variable_dict": [14, 15], "pyinstal": 4, "pypi": 9, "pyreadlin": 4, "python": [0, 2, 4, 5, 7, 9, 14, 15, 16, 18, 22], "python3": [4, 6], "python312": 6, "python313": 4, "pyx": [0, 4], "pz": [7, 25], "q": [0, 7, 14, 23, 25], "q_max": [7, 25], "q_min": [7, 25], "qd": 3, "qq": 0, "quad": [3, 7, 8, 9, 25], "quadrupl": 14, "quadruples_with_fixed_sum_iter": 14, "quantiti": [15, 28], "quarter": 7, "querri": 17, "question": 17, "quick": [7, 25], "quickstart": 26, "quotient": 19, "r": [3, 7, 14, 23, 25], "r_": 28, "r_1": 28, "r_2": 28, "r_i": 28, "r_n": 28, "radic": 14, "radicaldecomposit": [14, 18], "radii": 0, "radiu": [0, 7, 24], "rai": [7, 25], "rais": [0, 7, 23, 25, 27, 28], "random": [7, 9, 17, 25], "random_link": [0, 23], "rang": [0, 6, 7, 14, 25, 28], "rank": [0, 23], "rare": 19, "rather": [0, 5, 6, 7, 9, 28], "ratio": [7, 13, 14, 17, 18, 19, 25], "ratio_coordin": 14, "ration": [0, 7, 13, 14, 23, 25, 28], "rationalfield": [7, 14, 25], "rationaltangl": [0, 23], "raw_form": 0, "raytrac": [3, 7, 9], "re": [6, 7, 22, 25, 27, 28], "reach": 0, "read": [0, 4, 7, 12, 14, 25], "readabl": 15, "reader": [7, 19], "real": [0, 4, 7, 14, 15, 27, 28], "real_mpfi": 28, "real_mpfr": [0, 28], "realfield": [7, 28], "realintervalfield": [0, 7, 27, 28], "realiz": [0, 7, 23], "realli": [4, 8, 14, 23, 24], "realliter": [0, 28], "reason": [0, 7, 17, 19, 28], "recal": [15, 16], "recent": [0, 4, 6, 7, 25, 27, 28], "recip": 6, "recogn": 0, "recognit": 9, "recommend": [5, 6, 9, 15, 28], "recomput": 7, "reconnect": 12, "reconstitut": 0, "reconstruct": 23, "record": [23, 26], "recov": [7, 14, 19, 23, 25], "recreat": [7, 25], "rect": [7, 16, 21, 25, 27, 28], "rectangular": [7, 27, 28], "recurs": [13, 23, 28], "recycl": 12, "red": [6, 12], "redesign": 9, "redo": 24, "reduc": [7, 13, 14, 15, 23, 25, 28], "refer": [7, 13, 26], "refin": [7, 28], "reflect": [5, 12], "regard": [0, 23], "regina": [6, 7, 25], "region": 23, "regist": 6, "regula": 11, "regular": [11, 15], "reidemeist": 23, "reimplement": 27, "reindex": 7, "reinstal": 7, "reject": [7, 25], "rel": 27, "relabel": 7, "relat": [0, 7, 9, 11, 14, 15, 17, 18, 19, 23, 24, 25, 28], "relationship": 14, "releas": [1, 4, 5, 6, 9, 12], "relev": [7, 25], "remain": [7, 12], "remark": [0, 7, 13, 14, 15, 16, 17, 18, 27], "rememb": [12, 26], "remov": [0, 7, 12, 14, 16, 23, 25], "remove_finite_vertic": 23, "renam": 0, "reorgan": 9, "repeat": [7, 23, 25], "replac": [3, 6, 7, 25], "report": [5, 7, 13, 14, 16, 17], "repositori": [4, 6, 9], "repres": [0, 7, 14, 18, 19, 23, 25, 28], "represent": [0, 7, 9, 10, 13, 14, 16, 21, 23, 25, 27, 28], "request": [4, 7, 23], "requir": [0, 2, 6, 7, 8, 9, 12, 15, 25, 27], "resampl": 23, "rescal": 0, "research": [5, 26], "reset": 14, "reset_nam": 0, "resiz": 12, "resolv": 23, "respect": [0, 7, 15, 16, 19, 25, 28], "restart": 12, "restor": [7, 25], "restrict": [2, 7], "result": [0, 2, 7, 14, 15, 16, 17, 19, 23, 24, 25, 27, 28], "retriangl": 28, "retriangul": [7, 27, 28], "retriev": [7, 13, 16, 25], "retrieve_decomposit": 15, "retrieve_solut": [7, 13, 15, 16, 17, 18, 25], "return": [0, 2, 5, 6, 7, 9, 14, 15, 16, 17, 23, 25, 26, 27, 28], "return_all_piec": 23, "return_graph": 23, "return_isometri": 7, "return_matric": [7, 25], "revers": [0, 7, 16, 25], "reverse_orient": [7, 25], "revisit": [15, 17], "rewritten": 9, "rh": 14, "rho": 7, "rho0": 7, "riemann": 14, "rif": [27, 28], "right": [0, 4, 7, 14, 28], "right_kernel": 23, "rightarrow": 19, "rigor": [7, 9, 25], "ring": [0, 7, 14, 23, 25, 28], "rise": [7, 25], "robert": [3, 9], "robust": [5, 9], "rocki": 6, "rolfsen": [2, 7, 23, 25], "room": 12, "root": [15, 18, 19, 28], "roughli": 8, "rouillier": 14, "round": [7, 14, 25], "roundoff": 0, "row": [7, 25, 28], "rrl": [7, 25], "rubinstein": 11, "rudd": [3, 5, 7, 9, 25], "run": [1, 4, 5, 6, 7, 9, 17, 25, 28], "runtimeerror": [7, 28], "rur": 14, "s0": [14, 23], "s000": [0, 7], "s00209": [7, 25], "s1": [14, 23], "s123": [7, 25], "s2": 14, "s2009": 19, "s3": 14, "s345": 0, "s3knot": 24, "s3link": 24, "s776": 7, "s862": 2, "s959": 0, "s960": 0, "s_": [7, 25], "s_0_0": [7, 15, 25], "s_0_1": [7, 15, 25], "s_1_0": [7, 15, 25], "s_1_1": [7, 15, 25], "s_2_0": [7, 15, 25], "s_2_1": [7, 15, 25], "s_3_0": [7, 15, 25], "s_3_1": [7, 15, 16, 25], "s_3_2": 17, "s_3_4": [16, 17], "safe": [5, 9], "safer": 7, "sage": [0, 6, 7, 9, 13, 14, 15, 18, 21, 23, 24, 25, 27, 28], "sage_link": 23, "sage_object": 0, "sagemath": [0, 5, 7, 9, 23, 26, 27], "sagemathcloud": 6, "sageobject": 0, "sai": [0, 7, 15, 18, 19, 25], "same": [0, 2, 7, 12, 13, 14, 16, 19, 21, 23, 25, 27, 28], "sampl": [14, 16, 23], "sanchez": [3, 9], "satellit": 7, "satisfi": 2, "saul": [3, 10], "save": [0, 7, 12, 25], "saw": 17, "scari": 6, "schaeffer": 23, "schema": 2, "scheme": 12, "schleimer": [3, 10], "school": 26, "scienc": 5, "screen": 12, "screencast": [24, 26], "screenshot": 5, "script": [4, 6], "sdk": 4, "search": [6, 7, 25], "second": [0, 7, 9, 12, 16, 23, 25, 27, 28], "section": [6, 7, 14, 19, 25], "see": [0, 2, 4, 5, 6, 7, 9, 11, 13, 14, 15, 16, 17, 19, 23, 24, 25, 27, 28], "seed": [7, 25], "seem": 6, "seen": 15, "segerman": [3, 19], "segment": [0, 12], "seifert": [9, 11, 23], "seifert_genu": 23, "seifert_matrix": 23, "select": [4, 7, 12], "self": [0, 5, 6, 7, 9, 15, 23, 28], "semant": 28, "semifib": [7, 25], "send": [2, 4, 12], "sens": [7, 25, 28], "sent": [7, 25], "separ": 0, "septemb": 9, "sequenc": [0, 2, 7, 23, 25], "session": [7, 25], "set": [0, 2, 4, 7, 15, 16, 17, 19, 23, 25, 27, 28], "set_displac": 0, "set_nam": [7, 25], "set_peripheral_curv": [7, 25], "set_real_precis": [14, 15], "set_target_holonomi": 7, "set_tetrahedra_shap": 7, "set_ti": 0, "setofaan": 7, "setup": [4, 6, 14], "setuptool": 4, "sever": [2, 7, 9, 19, 25, 27, 28], "shape": [0, 7, 9, 13, 14, 16, 17, 21, 24, 27], "shape1": 28, "shape2": 28, "shape_accuraci": 7, "shape_interv": 28, "shapepositiveimaginarypartnumericalverifyerror": 28, "shapetyp": 28, "share": [0, 6], "sheet": 26, "shell": [4, 7, 22, 25, 26], "short": [0, 7, 13, 14, 17, 25, 27], "short_edg": 14, "short_slop": [5, 7, 9, 27], "shortcut": [0, 4, 7, 25], "shorter": [7, 15, 16], "shortest": 7, "shortest_longitud": 7, "shortest_meridian": 7, "should": [3, 4, 6, 7, 12, 15, 23, 24, 28], "show": [5, 7, 9, 14, 25], "show_crossing_label": 23, "shown": [0, 7, 23], "shrink_factor": 0, "sibl": 2, "side": [4, 7, 12, 14], "sierra": 9, "sigma": [7, 25], "sigma_1": 23, "sigma_2_invers": 23, "sign": [7, 9, 14, 23, 28], "sign_with_interv": 28, "signatur": [5, 7, 9, 23, 25, 27], "signific": [1, 8], "significand": 8, "significantli": [5, 7, 9, 25], "silent": [5, 9, 23], "silicon": 9, "silli": 23, "sim": [7, 25], "similar": [7, 14, 15, 17, 23, 27, 28], "similarli": [7, 15, 19, 25], "simon": [7, 9, 13, 14, 17, 27], "simpl": [5, 7, 9, 25, 28], "simplequoti": 7, "simpler": 22, "simplex": [7, 14, 17, 25], "simplfic": [7, 25], "simpli": [6, 7, 17, 28], "simplic": [7, 14, 19, 27], "simplif": [0, 7, 9, 23, 25], "simplifi": [0, 7, 9, 14, 23, 25, 28], "simplified_solut": 14, "simplify_link": [7, 25], "simplify_present": [7, 15, 17, 25], "simultan": 7, "sinc": [0, 7, 15, 16, 17, 25, 28], "singl": [0, 7, 23, 25], "singular": [7, 25], "site": [5, 6], "situat": 23, "six": 7, "size": [2, 7, 12, 19, 25, 27, 28], "skein": 23, "skeleton": 7, "skip": [2, 6, 7, 14, 23], "skipvertic": 14, "sl": [0, 3, 7, 9, 10, 13, 14, 16, 17, 25], "sl2c": [0, 7, 21, 27], "slice": [0, 2, 7, 9, 25], "slice_obstruction_hkl": [5, 7, 9, 25], "slide": [12, 15], "slightli": 7, "slope": [7, 25, 27], "slow": 27, "slower": [0, 7, 8, 28], "small": 0, "smaller": [0, 2, 7, 16, 23, 25], "smallest": [0, 16, 28], "smooth": 9, "smoothli": 1, "snap": [3, 6, 7, 8, 21, 24, 28], "snappea": [0, 2, 4, 5, 7, 8, 12, 22, 25], "snappea_manifold_directori": [7, 25], "snappeafatalerror": 0, "snappeapython": 24, "snappi": [0, 1, 2, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28], "snappy_15_knot": [2, 6], "snappy_env": 6, "snappy_venv": 6, "snappycor": 4, "snappynumb": 7, "so": [0, 1, 2, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 21, 23, 25, 26, 27, 28], "sobj": 0, "softwar": 6, "sol": [7, 15, 16, 17, 18, 25], "solid": 11, "solut": [7, 13, 14, 19, 25, 27, 28], "solution_typ": 7, "solutions_from_magma": [7, 14, 25], "solutions_from_magma_fil": 14, "solv": [7, 17, 25, 28], "solver": 23, "some": [0, 4, 5, 6, 7, 8, 9, 14, 16, 17, 18, 19, 22, 23, 25, 27, 28], "someth": [4, 7, 25, 28], "sometim": [0, 6, 7], "somewhat": [0, 28], "sort": [0, 7, 16, 23, 25], "sourc": [0, 4, 7, 9, 25], "space": [0, 6, 7, 11, 14, 22, 25, 27], "span": 14, "spars": [0, 23, 28], "sparse_m": 28, "spec": [7, 25, 27], "special": [6, 16, 28], "specif": [0, 4, 7, 9, 16, 25], "specifi": [0, 2, 7, 8, 14, 17, 22, 23, 25, 27, 28], "spectrum": [5, 8, 9], "speed": [27, 28], "sphere": [0, 7, 25], "spherogram": [3, 4, 7, 23, 25], "sphinx": 4, "spine": 0, "spine_radiu": 0, "split": [7, 9, 10, 14, 23, 25, 28], "split_link_diagram": 23, "splitting_surfac": 7, "spun": [7, 9, 25], "sqlite3": [2, 4], "sqrt": [0, 27, 28], "sqrtlincombin": 28, "squar": [16, 28], "square_extens": 28, "sr": 0, "stabil": 15, "stabl": 28, "stai": 16, "stand": [4, 5, 9], "standard": [7, 23, 25], "start": [0, 4, 6, 7, 12, 14, 17, 23, 28], "startswith": 7, "state": 12, "statement": 14, "static": [14, 28], "statist": 7, "stavro": [7, 19, 25], "step": [6, 10, 13, 23], "still": [7, 13, 14, 16, 17, 18, 25], "stl": [0, 9], "stop": [0, 7, 12, 23], "stopper": 0, "stopping_displac": 0, "store": [0, 2, 7, 25, 28], "str": [0, 7, 25], "straight": 4, "strand": [0, 23], "strategi": 23, "strengthen": 27, "strict": [7, 25], "strictli": 7, "string": [0, 7, 12, 14, 25], "strip": [7, 14, 25], "strongli": 6, "structur": [0, 5, 7, 8, 9, 13, 14, 22, 23, 25, 27], "studi": [3, 5, 9, 10], "studio": 4, "stupid": 4, "style": [5, 9, 15, 25], "su": 4, "sub": 24, "subclass": [2, 15, 16, 18, 23, 25, 27, 28], "subcompon": 4, "subdirectori": 6, "subdivid": [0, 7], "subdivis": 7, "subgraph": 23, "subgroup": [0, 7, 19, 25], "sublink": 23, "subpackag": 4, "subrang": 2, "subsequ": [6, 23, 27], "subset": [7, 25, 28], "subsidiari": 8, "subsimplex": [7, 25], "subsimplic": 15, "subtl": [5, 9], "succe": 7, "succeed": [7, 23, 28], "success": [7, 27], "successfulli": [23, 28], "sudo": 6, "suffer": [19, 28], "suffici": [7, 28], "suffix": 0, "suggest": [6, 13, 15], "suit": 18, "suitabl": [0, 7, 25], "sum": [7, 23, 28], "summand": [23, 28], "summar": 23, "summari": 7, "super": [9, 23], "superus": 6, "suppli": [11, 14, 17, 27], "support": [0, 1, 2, 4, 5, 6, 7, 9, 12, 14, 16, 17, 18, 19, 21, 25, 28], "suppos": 28, "suppress": [7, 15, 25], "sur": 9, "sure": [4, 6], "surfac": [7, 9, 10, 14, 24, 25], "surgeri": [7, 25, 27], "suspens": [7, 25], "svg": 9, "switch": [6, 7, 9, 23], "sy": [4, 6], "sym": 14, "symbol": [0, 4, 7, 25], "symmetr": 0, "symmetri": [0, 7], "symmetric_triangul": 7, "symmetry_group": [0, 7], "symmetrygroup": [7, 22, 24], "symplect": [7, 25], "symplectic_basi": [7, 25], "syntax": 2, "system": [6, 9, 17, 19], "systol": 7, "syu": 4, "szab\u00f3": [3, 9, 23], "t": [0, 2, 6, 7, 8, 21, 23, 25], "t02333": 7, "t02774": 28, "t1": 23, "t12047": 7, "t12047_drill": 7, "t2": 23, "t3m": [4, 24], "t_complex": 7, "t_frac": 7, "t_int": 7, "t_real": 7, "ta": 0, "tab": [0, 9, 13, 15, 26], "tabl": [2, 7, 13, 17, 23, 25], "tabul": [2, 11, 25], "tail_vertex_index": 0, "take": [0, 7, 14, 15, 19, 23, 25, 27, 28], "taken": [2, 5, 9, 19], "tamassia": 23, "tangl": [0, 9, 23], "tar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "target": 7, "task": 6, "taskbar": 4, "tau": [7, 21, 23], "tb": 0, "technic": [7, 25], "techniqu": 27, "tell": [16, 27], "tempfil": [0, 14], "templat": 14, "template_path": 14, "temporari": [14, 17], "ten": 7, "tend": [0, 23], "term": [0, 5, 7, 14, 25, 28], "termin": [6, 28], "tessel": 11, "test": [0, 1, 4, 6, 7, 9, 14, 25, 28], "tet": [7, 14], "tetrahedr": [7, 9, 11, 27, 28], "tetrahedra": [0, 2, 7, 9, 11, 14, 15, 17, 21, 25, 28], "tetrahedra_field_gen": [7, 21], "tetrahedra_shap": [7, 14, 16, 21, 27, 28], "tetrahedralnonorientablecuspedcensu": [0, 11], "tetrahedralorientablecuspedcensu": [0, 11], "tetrahedron": [7, 14, 15, 22, 24, 25, 27], "tetrahehdra_shap": 14, "text": [0, 2, 4, 7, 25], "th": [7, 15, 19, 23], "than": [0, 2, 5, 7, 9, 14, 15, 16, 21, 23, 27, 28], "thank": 9, "thei": [0, 2, 7, 12, 15, 16, 17, 23, 25, 27, 28], "them": [0, 4, 5, 6, 7, 14, 17, 23, 27, 28], "theorem": [7, 16, 25, 27, 28], "theori": [5, 9, 16], "thereof": [7, 25], "thi": [0, 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28], "thin": [0, 12], "thing": [0, 1, 4, 8, 12, 19, 22, 26], "think": [7, 14], "third": 7, "thistlethwait": [2, 3, 7, 12, 23, 25], "those": [4, 5, 7, 9, 15, 18, 19, 23, 25, 28], "though": [0, 4, 7, 14, 25, 27], "thought": [7, 19, 25], "three": [0, 1, 7, 14, 23, 25], "through": [2, 7, 14, 16, 17, 25, 27], "throughout": 8, "throw": 27, "thrown": 23, "thu": [0, 7, 9, 14, 15, 16, 17, 19, 25, 27, 28], "thurston": [7, 14, 19, 25, 26], "ti": [0, 7], "ticket": 1, "tikz": 9, "tilt": [7, 28], "tiltinequalitynumericalverifyerror": [7, 28], "tiltiszeroexactverifyerror": 28, "tiltprovenpositivenumericalverifyerror": 28, "tilttyp": 28, "time": [0, 4, 6, 7, 8, 13, 14, 23, 25, 28], "tip": 4, "tip_vertex_index": 0, "titl": 3, "tk": [4, 6], "tkinter": [4, 6], "tmp": 17, "tmppnsc8": 17, "to_magma": [7, 14, 15, 25], "to_magma_fil": [14, 15], "to_pur": 14, "todo": 13, "togeth": [7, 12, 14, 16, 22, 23, 25], "too": [6, 7, 12, 16, 23, 25, 27], "took": 17, "tool": [4, 6, 12, 13], "toolchain": 4, "top": 12, "topic": 18, "topolog": [0, 7, 9, 25], "topologi": [0, 3, 5, 6, 7, 25], "tori": 7, "torsion": [7, 14, 21], "toru": [7, 22, 23, 25], "total": [7, 25], "total_rank": 23, "touch": 7, "tower": 28, "trace": [0, 7, 13, 16, 19, 24, 27], "trace_field_gen": [7, 21], "traceback": [0, 7, 25, 28], "traci": [3, 10], "tradit": 23, "transcendent": 16, "transform": [7, 25], "transit": [7, 25], "translat": [0, 7, 9], "transpos": 23, "trefoil": 7, "tri": [7, 13, 16, 17, 23, 25], "triangl": 7, "triangul": [0, 2, 5, 7, 9, 15, 16, 17, 19, 22, 23, 28], "triangular": 19, "triangulation3": [7, 25], "triangulation_isosig": [2, 5, 7, 9, 25], "triangulationhp": [7, 25], "trigdepend": 7, "trigdependenttrycanon": 7, "trigdependenytrycanon": 7, "tripl": 14, "trival": 11, "trivial": [7, 15, 16, 17, 18, 19, 23, 25, 28], "true": [0, 2, 5, 7, 9, 11, 14, 16, 17, 21, 23, 25, 27, 28], "truli": [14, 28], "truncat": [14, 17], "try": [6, 7, 15, 17, 21, 23, 25, 28], "try_hard_to_shorten_rel": [7, 25], "tube": 5, "tumblewe": 6, "tupl": [7, 25], "turn": [7, 14, 16, 23, 25], "tutori": [5, 6, 24], "tw": 0, "twice": [0, 4, 12, 15, 17], "twist": [7, 21, 23, 25], "twisted_chain": 23, "twister": [0, 3, 7, 9, 25], "two": [0, 2, 7, 8, 12, 15, 16, 17, 18, 19, 23, 25, 27, 28], "type": [0, 4, 6, 7, 8, 9, 13, 15, 18, 21, 23, 25, 27, 28], "type_iii_limit": 23, "typic": [0, 5, 7, 8, 9, 23, 25, 27, 28], "u": [0, 4, 6, 7, 8, 15, 16, 17, 19, 23, 25], "u1": 14, "u2": 14, "u4": 23, "u5": 23, "ubuntu": [4, 6], "ucrt": 4, "ui_callback": 0, "ulimit": 17, "unbias": [7, 27], "unbound": 23, "unchang": 7, "unclear": 14, "undecor": [7, 25], "under": [0, 4, 5, 7, 9, 13, 15, 17, 18, 19, 25, 28], "undercross": 23, "underli": [7, 23, 25, 28], "understand": [17, 28], "undo": 23, "undril": 7, "unfil": [7, 25], "unfortun": [16, 28], "unhyperbol": [7, 13, 15, 17, 25], "unicod": 4, "uniform": 23, "union": [23, 28], "unipot": [7, 13, 14, 15, 16, 25], "uniqu": [7, 15, 19, 23], "unit": [7, 19, 23, 25], "uniti": [15, 19], "univari": [0, 7, 13, 14], "univers": 6, "unix": 4, "unknot": 23, "unknown": 14, "unless": 7, "unlik": 7, "unlink": [0, 23], "unnorm": 7, "unori": [7, 25], "unpublish": 19, "unrecogn": 7, "unsimplifi": [0, 7, 14, 15], "until": [7, 23, 28], "unzip": 4, "up": [0, 2, 4, 6, 7, 9, 11, 14, 15, 17, 23, 25, 27, 28], "upcom": 7, "updat": [4, 7, 9, 12, 17, 25], "upgrad": [2, 4, 6], "upper": [0, 19], "url": 3, "us": [0, 1, 2, 4, 5, 6, 7, 8, 9, 13, 14, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28], "usabl": 9, "usag": [7, 14, 25], "use_field_convers": 7, "user": [0, 4, 5, 6, 7, 8, 9, 14, 28], "user_radiu": 0, "usual": [0, 4, 16, 25, 27, 28], "util": 14, "uv": 23, "v": [4, 7, 13, 23, 25], "v0": 14, "v0000": 0, "v0v1v2": 14, "v1": 14, "v123": [7, 25], "v142": 4, "v1539": [2, 7, 25], "v2": 14, "v2000": 7, "v2986": 7, "v3000": 7, "v3227": [0, 7, 25], "v3227_fill": [7, 25], "v3379": 0, "v3539": 5, "valenc": [7, 25], "valent": 23, "valid": [7, 14, 23], "valu": [0, 2, 7, 14, 15, 16, 17, 18, 21, 23, 25, 27, 28], "valueerror": [7, 23, 25], "var": [0, 28], "vari": [0, 7], "variabl": [0, 7, 14, 15, 17, 23, 25], "variable_dict": 14, "variables_with_non_zero_condit": 15, "variant": [9, 22], "varieti": [0, 3, 6, 7, 9, 13, 14, 16, 18, 25], "variou": [4, 7, 12, 21, 23, 25], "ve": [3, 12], "vec": 28, "veca": 28, "vecb": 28, "vector": [7, 14, 28], "venv": 6, "verbatim": 1, "verbos": [7, 14, 15, 16, 17, 25, 28], "verbose_form": 0, "veri": [1, 4, 7, 14, 23, 25, 27, 28], "verif": [7, 9, 27], "verifi": [0, 5, 7, 9, 25], "verificatin": 28, "verified_modulo_2_tors": [7, 27], "verify_hyperbol": [7, 27], "verify_hyperbolicti": 27, "verifyerrorbas": 28, "version": [2, 4, 5, 6, 7, 9, 15, 25, 28], "versu": 8, "vert": 23, "vertex": [0, 7, 12, 14, 23, 25], "vertex_class": 0, "vertex_data_list": 0, "vertex_epsilon": [0, 7], "vertex_image_indic": 0, "vertex_index": 0, "vertex_indic": 0, "vertex_list": 0, "vertic": [0, 7, 12, 14, 23, 25], "via": [0, 4, 6, 7, 9, 21, 23, 28], "video": [7, 9, 26], "view": [0, 3, 5, 7, 9, 11, 23, 25], "viewer": [9, 23], "violat": 14, "virtual": 6, "virtualenv": 4, "visual": 4, "vogel": 23, "vol": 7, "volum": [0, 2, 7, 8, 9, 11, 13, 14, 16, 19, 23, 25, 27], "volume_numer": [13, 14, 15, 16, 17], "w": [0, 7, 14, 25], "w0": 14, "w1": 14, "w2": 14, "w64": 4, "wa": [0, 5, 6, 7, 12, 13, 14, 16, 19, 25, 27], "wada_convent": [7, 21], "wai": [4, 6, 7, 9, 14, 16, 19, 23, 25, 26, 27, 28], "walsh": [7, 25], "walter": 14, "want": [4, 6, 7, 12, 16, 17, 19, 23, 25, 28], "warn": [7, 16, 23, 25, 27], "warwick": 26, "wast": 0, "watch": [5, 6, 26], "we": [0, 1, 3, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28], "weak": 14, "weber": 11, "webpag": [2, 4], "week": [0, 2, 3, 5, 7, 13, 25], "weight": 7, "welcom": 1, "well": [1, 4, 12, 15, 16, 19], "were": [0, 2, 5, 7, 9, 11], "wget": 4, "what": [7, 8, 10, 14, 17, 22, 26, 28], "whatev": 8, "wheel": 4, "when": [0, 3, 5, 6, 7, 9, 12, 14, 15, 16, 17, 18, 19, 23, 25, 26, 27, 28], "whenev": 23, "where": [0, 2, 3, 5, 7, 8, 9, 12, 14, 17, 18, 19, 22, 23, 25, 28], "wherea": [4, 6], "whether": [0, 2, 5, 7, 9, 14, 16, 17, 23, 25, 28], "which": [0, 2, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 19, 22, 23, 25, 27, 28], "which_curv": 7, "which_cusp": [0, 7, 25], "which_surfac": 7, "while": [0, 1, 7, 12, 21, 23, 25], "white": 23, "white_graph": 23, "whitehead": [7, 25], "who": [13, 28], "whole": 23, "whose": [7, 14, 16, 19, 23, 25, 27], "why": [15, 21], "window": [5, 7, 9, 12, 17, 22, 23, 25, 26], "windows_ex": 4, "winpti": 4, "wirefram": 0, "wirt": 23, "wirting": 23, "wish": 6, "wit": [13, 14, 16], "with_hyperbolic_structur": [0, 7, 23, 25], "with_modulo": 14, "within": [0, 6, 7, 23, 25], "without": [2, 5, 7, 9, 11, 13, 23, 25, 28], "without_hyperbolic_structur": 7, "word": [0, 5, 7, 9, 13, 14, 15, 17, 19, 23], "work": [0, 4, 5, 6, 7, 9, 13, 14, 15, 17, 23, 25], "would": [0, 4, 16, 18, 19], "wrap": [0, 24], "wrapper": 7, "write": [1, 6, 14, 15, 16, 17, 28], "writh": 23, "written": [5, 7], "wrong": [7, 14], "x": [0, 4, 5, 6, 7, 9, 14, 15, 16, 17, 18, 21, 23, 25, 28], "x101": 7, "x103": 7, "x11": 6, "x123": [7, 25], "x124": [7, 25], "x80": 0, "x81": 0, "x86": 4, "x86_64": [4, 6], "x_coordin": 14, "xxxx": [7, 25], "xy": [0, 12], "y": [3, 7, 23, 25], "yamagachi": 21, "yamaguichi": 7, "yang": 12, "ye": 8, "year": 6, "yet": [14, 16, 17, 19], "yield": [7, 15, 17, 19, 25], "yin": 12, "yosemit": 9, "you": [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 17, 21, 22, 23, 24, 25, 26], "your": [1, 3, 4, 5, 6, 7, 12, 13, 15, 17, 25], "yourself": 17, "youtub": 26, "yyyi": 3, "z": [0, 2, 7, 11, 14, 16, 19, 21, 25, 28], "z0": [7, 25, 28], "z1": [7, 25, 28], "z2014": 19, "z_": [7, 25], "z_0000_0": [7, 16, 17, 25], "z_0000_1": [7, 16, 17, 25], "z_0000_2": 17, "z_0001_0": 14, "z_0010_0": 14, "z_center": 28, "z_xxxx_y": [7, 14, 25], "zagier": [7, 25], "zdpecbbujvtiwzslqpxyreadhokcmfgn": 11, "zeit": [7, 25], "zero": [7, 13, 14, 15, 19, 25, 28], "zerotangl": 0, "zgliczynski": [27, 28], "zickert": [7, 14, 19, 25], "zj": 28, "zolt\u00e1n": [3, 9, 23], "zp": [7, 14, 25], "zp_0000_0": [7, 16, 17, 25], "zp_0000_1": [7, 16, 25], "zp_0010_0": 14, "zp_xxxx_y": 14, "zpp": [7, 14, 25], "zpp_0000_0": [7, 16, 25], "zpp_0000_1": [7, 16, 25], "zpp_0010_0": 14, "zpp_xxxx_y": 14, "zypper": 6}, "titles": ["Additional Classes", "Reporting bugs and other problems", "Census manifolds", "Credits", "Development Basics", "SnapPy", "Installing SnapPy", "Manifold: the main class", "ManifoldHP: High-precision variant", "News", "Other components", "Censuses of Platonic manifolds", "Using SnapPy\u2019s link editor", "The ptolemy module", "Classes", "Step-by-step examples: Part 1", "Step-by-step examples: Part 2", "Step-by-step examples: Part 3", "Step-by-step examples: Part 4", "Mathematical preliminaries", "Screenshots: SnapPy in action", "Number theory of hyperbolic 3-manifolds", "The snappy module and its classes", "Links: planar diagrams and invariants", "To Do List", "Triangulation", "Tutorial", "Verified computations", "Internals of verified computations"], "titleterms": {"": 12, "1": 15, "10": 20, "13": 20, "2": [15, 16, 17], "3": [17, 21], "4": 18, "7": 20, "A": [15, 16], "The": [13, 15, 16, 18, 22, 23], "To": 24, "abeliangroup": 0, "action": 20, "addit": 0, "an": 18, "app": 6, "ar": 17, "auto": 15, "autocomplet": 16, "basic": [4, 12], "boundari": [17, 19], "bug": 1, "c": [15, 17, 19], "canon": 28, "cell": 28, "censu": 2, "census": 11, "certifi": 28, "cite": 3, "class": [0, 7, 14, 19, 22, 23], "closedbraid": 23, "code": 6, "comparison": 16, "complet": 15, "complex": 17, "compon": [10, 16, 17], "comput": [15, 16, 17, 27, 28], "conda": 6, "convert": 16, "coordin": 16, "credit": [3, 5], "cross": [16, 28], "crossratio": 14, "curv": 17, "cusp": 28, "cuspneighborhood": 0, "cut": 15, "databas": 15, "decomposit": 28, "decor": 19, "develop": 4, "diagram": 23, "differ": 17, "dimens": 16, "dimension": 17, "directli": 16, "dirichletdomain": 0, "do": 24, "document": [5, 13], "draw": 12, "editor": 12, "exact": [15, 16, 18, 28], "exampl": [15, 16, 17, 18], "except": 28, "famili": 17, "faq": 8, "featur": 12, "field": 15, "find": 17, "flatten": [14, 16], "from": [15, 16], "function": 14, "fundamentalgroup": 0, "futur": 19, "gener": [19, 28], "high": 8, "hyperbol": [16, 21, 28], "i": [5, 13], "imag": 17, "increas": 15, "instal": 6, "intern": 28, "interv": 28, "introduct": 27, "invari": 23, "its": 22, "kitchen": 6, "lack": 16, "link": [12, 23], "linux": [4, 6, 20], "list": [16, 24], "m003": 16, "m004": 16, "mac": 20, "maco": [4, 6], "magma": 17, "main": 7, "manifold": [2, 7, 11, 21], "manifoldhp": 8, "mathemat": 19, "matric": [15, 17], "miscellan": 12, "modul": [6, 10, 13, 22], "n": [15, 19], "name": 28, "nest": 16, "new": [5, 9], "non": [16, 17], "nonzerodimensionalcompon": 14, "number": 21, "numer": 16, "o": 20, "obstruct": 19, "other": [1, 10, 14], "overview": 27, "part": [15, 16, 17, 18], "patch": 4, "peripher": 17, "planar": 23, "platon": 11, "point": 17, "posit": 17, "precis": [8, 15], "preliminari": 19, "present": 17, "problem": 1, "psl": [15, 17, 19], "ptolemi": [10, 13, 15, 16, 17, 19], "ptolemycoordin": 14, "ptolemyvarieti": 14, "python": 6, "random": 23, "ratio": 16, "ration": 18, "recurs": 16, "reduc": 19, "refer": 19, "report": 1, "represent": [15, 17, 18, 19], "retriev": [15, 17], "sage": 17, "sagemath": 6, "same": 17, "screenshot": 20, "section": 28, "shape": 28, "short": 15, "sink": 6, "sl": [15, 19], "snappi": [3, 5, 6, 12, 20, 22], "solut": [15, 16, 17, 18], "sourc": 6, "step": [15, 16, 17, 18], "structur": [16, 18], "submit": 4, "symmetrygroup": 0, "tab": 16, "theori": 21, "todo": 18, "topic": 27, "trace": 15, "triangul": 25, "tutori": [23, 26], "twister": 10, "type": 16, "ubuntu": 20, "unipot": [17, 19], "univari": 18, "us": [12, 15, 16], "v": [16, 17, 19], "variant": 8, "varieti": [15, 17, 19], "verif": 28, "verifi": [27, 28], "volum": [15, 17], "what": [5, 13], "window": [4, 6, 20], "wit": 17, "work": [16, 19], "x": 20, "zero": 17}})