snappy 3.0.3__cp38-cp38-macosx_11_0_arm64.whl → 3.2__cp38-cp38-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-38-darwin.so +0 -0
- snappy/SnapPy.cpython-38-darwin.so +0 -0
- snappy/SnapPyHP.cpython-38-darwin.so +0 -0
- snappy/__init__.py +373 -426
- snappy/app.py +240 -75
- snappy/app_menus.py +93 -78
- snappy/browser.py +87 -63
- snappy/cache.py +5 -8
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +11 -19
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +39 -54
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +40 -31
- snappy/db_utilities.py +13 -14
- snappy/decorated_isosig.py +377 -133
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +42 -9
- snappy/dev/extended_ptolemy/extended.py +32 -25
- snappy/dev/extended_ptolemy/giac_rur.py +23 -8
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +2 -1
- snappy/dev/vericlosed/gimbalLoopFinder.py +5 -5
- snappy/dev/vericlosed/hyperbolicStructure.py +3 -3
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +2 -2
- snappy/dev/vericlosed/truncatedComplex.py +3 -2
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +4 -3
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +1 -0
- snappy/doc/_sources/credits.rst.txt +6 -1
- snappy/doc/_sources/development.rst.txt +69 -50
- snappy/doc/_sources/index.rst.txt +101 -66
- snappy/doc/_sources/installing.rst.txt +148 -165
- snappy/doc/_sources/news.rst.txt +136 -32
- snappy/doc/_sources/ptolemy.rst.txt +1 -1
- snappy/doc/_sources/ptolemy_examples1.rst.txt +9 -8
- snappy/doc/_sources/ptolemy_examples2.rst.txt +3 -3
- snappy/doc/_sources/ptolemy_examples3.rst.txt +14 -14
- snappy/doc/_sources/ptolemy_prelim.rst.txt +1 -1
- snappy/doc/_sources/snap.rst.txt +2 -2
- snappy/doc/_sources/snappy.rst.txt +1 -1
- snappy/doc/_sources/triangulation.rst.txt +3 -2
- snappy/doc/_sources/verify.rst.txt +89 -29
- snappy/doc/_sources/verify_internals.rst.txt +5 -16
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +47 -27
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +107 -274
- snappy/doc/_static/documentation_options.js +6 -5
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -2
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +3 -101
- snappy/doc/_static/pygments.css +1 -0
- snappy/doc/_static/searchtools.js +489 -398
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +688 -263
- snappy/doc/bugs.html +107 -94
- snappy/doc/censuses.html +155 -127
- snappy/doc/credits.html +115 -104
- snappy/doc/development.html +184 -146
- snappy/doc/genindex.html +287 -204
- snappy/doc/index.html +189 -150
- snappy/doc/installing.html +259 -266
- snappy/doc/manifold.html +1626 -592
- snappy/doc/manifoldhp.html +119 -105
- snappy/doc/news.html +198 -104
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +117 -105
- snappy/doc/platonic_census.html +161 -114
- snappy/doc/plink.html +113 -105
- snappy/doc/ptolemy.html +131 -108
- snappy/doc/ptolemy_classes.html +242 -223
- snappy/doc/ptolemy_examples1.html +144 -130
- snappy/doc/ptolemy_examples2.html +141 -129
- snappy/doc/ptolemy_examples3.html +148 -132
- snappy/doc/ptolemy_examples4.html +131 -111
- snappy/doc/ptolemy_prelim.html +162 -138
- snappy/doc/py-modindex.html +104 -69
- snappy/doc/screenshots.html +117 -108
- snappy/doc/search.html +115 -84
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +109 -96
- snappy/doc/snappy.html +134 -97
- snappy/doc/spherogram.html +259 -187
- snappy/doc/todo.html +107 -94
- snappy/doc/triangulation.html +1380 -111
- snappy/doc/tutorial.html +107 -94
- snappy/doc/verify.html +194 -125
- snappy/doc/verify_internals.html +248 -686
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +23 -3
- snappy/export_stl.py +20 -14
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +36 -36
- snappy/horoviewer.py +50 -48
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/{infodialog.py → infowindow.py} +32 -33
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/__init__.py +1 -1
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +97 -21
- snappy/numeric_output_checker.py +37 -27
- snappy/pari.py +30 -69
- snappy/phone_home.py +25 -20
- snappy/polyviewer.py +39 -37
- snappy/ptolemy/__init__.py +4 -6
- snappy/ptolemy/component.py +14 -12
- snappy/ptolemy/coordinates.py +312 -295
- snappy/ptolemy/fieldExtensions.py +14 -12
- snappy/ptolemy/findLoops.py +43 -31
- snappy/ptolemy/geometricRep.py +24 -26
- snappy/ptolemy/homology.py +12 -7
- snappy/ptolemy/manifoldMethods.py +69 -70
- snappy/ptolemy/matrix.py +65 -26
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +18 -14
- snappy/ptolemy/polynomial.py +125 -119
- snappy/ptolemy/processComponents.py +36 -30
- snappy/ptolemy/processFileBase.py +79 -18
- snappy/ptolemy/processFileDispatch.py +13 -14
- snappy/ptolemy/processMagmaFile.py +44 -39
- snappy/ptolemy/processRurFile.py +18 -11
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +20 -17
- snappy/ptolemy/ptolemyObstructionClass.py +13 -17
- snappy/ptolemy/ptolemyVariety.py +190 -121
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +20 -19
- snappy/ptolemy/reginaWrapper.py +25 -29
- snappy/ptolemy/rur.py +6 -14
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +27 -22
- snappy/ptolemy/test.py +247 -188
- snappy/ptolemy/utilities.py +41 -43
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +10 -6
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +48 -38
- snappy/raytracing/finite_viewer.py +218 -210
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +152 -40
- snappy/raytracing/hyperboloid_navigation.py +102 -52
- snappy/raytracing/hyperboloid_utilities.py +114 -261
- snappy/raytracing/ideal_raytracing_data.py +256 -179
- snappy/raytracing/inside_viewer.py +522 -253
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +46 -34
- snappy/raytracing/raytracing_view.py +190 -109
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +60 -4
- snappy/raytracing/shaders/fragment.glsl +575 -148
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +32 -29
- snappy/raytracing/zoom_slider/test.py +2 -0
- snappy/sage_helper.py +69 -123
- snappy/{preferences.py → settings.py} +167 -145
- snappy/shell.py +4 -0
- snappy/snap/__init__.py +12 -8
- snappy/snap/character_varieties.py +24 -18
- snappy/snap/find_field.py +35 -34
- snappy/snap/fundamental_polyhedron.py +99 -85
- snappy/snap/generators.py +6 -8
- snappy/snap/interval_reps.py +18 -6
- snappy/snap/kernel_structures.py +8 -3
- snappy/snap/mcomplex_base.py +1 -2
- snappy/snap/nsagetools.py +107 -53
- snappy/snap/peripheral/__init__.py +1 -1
- snappy/snap/peripheral/dual_cellulation.py +15 -7
- snappy/snap/peripheral/link.py +20 -16
- snappy/snap/peripheral/peripheral.py +22 -14
- snappy/snap/peripheral/surface.py +47 -50
- snappy/snap/peripheral/test.py +8 -8
- snappy/snap/polished_reps.py +65 -40
- snappy/snap/shapes.py +41 -22
- snappy/snap/slice_obs_HKL.py +64 -25
- snappy/snap/t3mlite/arrow.py +88 -51
- snappy/snap/t3mlite/corner.py +5 -6
- snappy/snap/t3mlite/edge.py +32 -21
- snappy/snap/t3mlite/face.py +7 -9
- snappy/snap/t3mlite/files.py +31 -23
- snappy/snap/t3mlite/homology.py +14 -10
- snappy/snap/t3mlite/linalg.py +158 -56
- snappy/snap/t3mlite/mcomplex.py +739 -291
- snappy/snap/t3mlite/perm4.py +236 -84
- snappy/snap/t3mlite/setup.py +9 -10
- snappy/snap/t3mlite/simplex.py +65 -48
- snappy/snap/t3mlite/spun.py +42 -30
- snappy/snap/t3mlite/surface.py +45 -45
- snappy/snap/t3mlite/test.py +3 -0
- snappy/snap/t3mlite/test_vs_regina.py +17 -13
- snappy/snap/t3mlite/tetrahedron.py +25 -24
- snappy/snap/t3mlite/vertex.py +8 -13
- snappy/snap/test.py +45 -52
- snappy/snap/utilities.py +66 -65
- snappy/test.py +155 -158
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +313 -203
- snappy/twister/main.py +1 -8
- snappy/twister/twister_core.cpython-38-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +4 -8
- snappy/verify/{verifyCanonical.py → canonical.py} +114 -97
- snappy/verify/complex_volume/__init__.py +3 -2
- snappy/verify/complex_volume/adjust_torsion.py +13 -11
- snappy/verify/complex_volume/closed.py +29 -24
- snappy/verify/complex_volume/compute_ptolemys.py +8 -6
- snappy/verify/complex_volume/cusped.py +10 -9
- snappy/verify/complex_volume/extended_bloch.py +14 -12
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +15 -14
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +23 -56
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +19 -15
- snappy/verify/interval_newton_shapes_engine.py +51 -211
- snappy/verify/interval_tree.py +27 -25
- snappy/verify/krawczyk_shapes_engine.py +47 -50
- snappy/verify/maximal_cusp_area_matrix/__init__.py +17 -86
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +58 -48
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +53 -57
- snappy/verify/{realAlgebra.py → real_algebra.py} +26 -20
- snappy/verify/shapes.py +10 -7
- snappy/verify/short_slopes.py +41 -42
- snappy/verify/{squareExtensions.py → square_extensions.py} +96 -92
- snappy/verify/test.py +59 -57
- snappy/verify/upper_halfspace/extended_matrix.py +5 -5
- snappy/verify/upper_halfspace/finite_point.py +44 -31
- snappy/verify/upper_halfspace/ideal_point.py +69 -57
- snappy/verify/volume.py +15 -12
- snappy/version.py +2 -3
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/METADATA +14 -12
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/top_level.txt +10 -1
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/classic.css +0 -266
- snappy/doc/_static/jquery-3.5.1.js +0 -10872
- snappy/doc/_static/sidebar.js +0 -159
- snappy/doc/_static/underscore-1.13.1.js +0 -2042
- snappy/doc/_static/underscore.js +0 -6
- snappy/doc/verify_canon.html +0 -283
- snappy/ppm_to_png.py +0 -243
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/verify/cuspCrossSection.py +0 -1413
- snappy/verify/mathHelpers.py +0 -64
- snappy-3.0.3.dist-info/RECORD +0 -360
@@ -1,1413 +0,0 @@
|
|
1
|
-
# Original source:
|
2
|
-
# Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling
|
3
|
-
# Nathan M. Dunfield, Neil R. Hoffman, Joan E. Licata
|
4
|
-
# http://arxiv.org/abs/1407.7827
|
5
|
-
# This code is copyrighted by Nathan Dunfield, Neil Hoffman, and Joan Licata
|
6
|
-
# and released under the GNU GPL version 2 or (at your option) any later
|
7
|
-
# version.
|
8
|
-
#
|
9
|
-
# 02/22/15 Major rewrite and checked into SnapPy repository:
|
10
|
-
# handle any number of cusps,
|
11
|
-
# agnostic of type of numbers for shape,
|
12
|
-
# support non-orientable manifolds,
|
13
|
-
# refactoring and cleanup
|
14
|
-
# - Matthias Goerner
|
15
|
-
#
|
16
|
-
# 01/15/16 Split CuspCrossSectionClass into a base class and
|
17
|
-
# two subclasses for computing real and
|
18
|
-
# complex edge lengths. Added methods to ensure a cusp
|
19
|
-
# neighborhood is disjoint and methods to compute the
|
20
|
-
# complex edge length.
|
21
|
-
#
|
22
|
-
# 01/28/18 Fix an important bug: do not use built-in min for intervals.
|
23
|
-
|
24
|
-
from ..sage_helper import _within_sage
|
25
|
-
|
26
|
-
import math
|
27
|
-
|
28
|
-
if _within_sage:
|
29
|
-
# python's log and sqrt only work for floats
|
30
|
-
# They would fail or convert to float losing precision
|
31
|
-
from sage.functions.log import log
|
32
|
-
from sage.functions.other import sqrt
|
33
|
-
else:
|
34
|
-
# Otherwise, define our own log and sqrt which checks whether
|
35
|
-
# the given type defines a log/sqrt method and fallsback
|
36
|
-
# to python's log and sqrt which has the above drawback of
|
37
|
-
# potentially losing precision.
|
38
|
-
import cmath
|
39
|
-
|
40
|
-
def log(x):
|
41
|
-
if hasattr(x, 'log'):
|
42
|
-
return x.log()
|
43
|
-
return cmath.log(x)
|
44
|
-
|
45
|
-
def sqrt(x):
|
46
|
-
if hasattr(x, 'sqrt'):
|
47
|
-
return x.sqrt()
|
48
|
-
return math.sqrt(x)
|
49
|
-
|
50
|
-
from ..snap import t3mlite as t3m
|
51
|
-
from ..snap.kernel_structures import *
|
52
|
-
from ..snap.mcomplex_base import *
|
53
|
-
|
54
|
-
from .mathHelpers import interval_aware_min
|
55
|
-
from .exceptions import *
|
56
|
-
|
57
|
-
__all__ = [
|
58
|
-
'IncompleteCuspError',
|
59
|
-
'RealCuspCrossSection',
|
60
|
-
'ComplexCuspCrossSection']
|
61
|
-
|
62
|
-
class IncompleteCuspError(RuntimeError):
|
63
|
-
"""
|
64
|
-
Exception raised when trying to construct a CuspCrossSection
|
65
|
-
from a Manifold with Dehn-fillings.
|
66
|
-
"""
|
67
|
-
def __init__(self, manifold):
|
68
|
-
self.manifold = manifold
|
69
|
-
|
70
|
-
def __str__(self):
|
71
|
-
return (('Cannot construct CuspCrossSection from manifold with '
|
72
|
-
'Dehn-fillings: %s') % self.manifold)
|
73
|
-
|
74
|
-
class HoroTriangleBase:
|
75
|
-
@staticmethod
|
76
|
-
def _make_second(sides, x):
|
77
|
-
"""
|
78
|
-
Cyclically rotate sides = (a,b,c) so that x is the second entry"
|
79
|
-
"""
|
80
|
-
i = (sides.index(x) + 2) % len(sides)
|
81
|
-
return sides[i:]+sides[:i]
|
82
|
-
|
83
|
-
@staticmethod
|
84
|
-
def _sides_and_cross_ratios(tet, vertex, side):
|
85
|
-
sides = t3m.simplex.FacesAroundVertexCounterclockwise[vertex]
|
86
|
-
left_side, center_side, right_side = (
|
87
|
-
HoroTriangleBase._make_second(sides, side))
|
88
|
-
z_left = tet.ShapeParameters[left_side & center_side ]
|
89
|
-
z_right = tet.ShapeParameters[center_side & right_side ]
|
90
|
-
return left_side, center_side, right_side, z_left, z_right
|
91
|
-
|
92
|
-
class RealHoroTriangle:
|
93
|
-
"""
|
94
|
-
A horosphere cross section in the corner of an ideal tetrahedron.
|
95
|
-
The sides of the triangle correspond to faces of the tetrahedron.
|
96
|
-
The lengths stored for the triangle are real.
|
97
|
-
"""
|
98
|
-
def __init__(self, tet, vertex, known_side, length_of_side):
|
99
|
-
left_side, center_side, right_side, z_left, z_right = (
|
100
|
-
HoroTriangleBase._sides_and_cross_ratios(tet, vertex, known_side))
|
101
|
-
|
102
|
-
L = length_of_side
|
103
|
-
self.lengths = { center_side : L,
|
104
|
-
left_side : abs(z_left) * L,
|
105
|
-
right_side : L / abs(z_right) }
|
106
|
-
a, b, c = self.lengths.values()
|
107
|
-
self.area = L * L * z_left.imag() / 2
|
108
|
-
|
109
|
-
# Below is the usual formula for circumradius
|
110
|
-
self.circumradius = a * b * c / (4 * self.area)
|
111
|
-
|
112
|
-
def rescale(self, t):
|
113
|
-
"Rescales the triangle by a Euclidean dilation"
|
114
|
-
for face in self.lengths:
|
115
|
-
self.lengths[face] *= t
|
116
|
-
self.circumradius *= t
|
117
|
-
self.area *= t * t
|
118
|
-
|
119
|
-
@staticmethod
|
120
|
-
def direction_sign():
|
121
|
-
return +1
|
122
|
-
|
123
|
-
# Given a vertex, cyclically order the three adjacent faces in
|
124
|
-
# clockwise fashion. For each face, return the triple (face, edge, next face)
|
125
|
-
# where edge is adjacent to both faces.
|
126
|
-
_face_edge_face_triples_for_vertex_link = {
|
127
|
-
vertex : [ (faces[i], faces[i] & faces[(i+1) % 3], faces[(i+1) % 3])
|
128
|
-
for i in range(3) ]
|
129
|
-
for vertex, faces in t3m.simplex.FacesAroundVertexCounterclockwise.items()
|
130
|
-
}
|
131
|
-
|
132
|
-
# For each vertex, return an edge connected to it
|
133
|
-
_pick_an_edge_for_vertex = {
|
134
|
-
vertex : [ edge
|
135
|
-
for edge in t3m.simplex.OneSubsimplices
|
136
|
-
if t3m.simplex.is_subset(vertex, edge) ][0]
|
137
|
-
for vertex in t3m.simplex.ZeroSubsimplices
|
138
|
-
}
|
139
|
-
|
140
|
-
# For each (vertex, face) pair, pick one of the two edges adjacent
|
141
|
-
# to both the vertex and face
|
142
|
-
_pick_an_edge_for_vertex_and_face = {
|
143
|
-
(vertex, face): [ edge
|
144
|
-
for edge in t3m.simplex.OneSubsimplices
|
145
|
-
if (t3m.simplex.is_subset(vertex, edge) and
|
146
|
-
t3m.simplex.is_subset(edge, face)) ][0]
|
147
|
-
for vertex in t3m.simplex.ZeroSubsimplices
|
148
|
-
for face in t3m.simplex.TwoSubsimplices
|
149
|
-
if t3m.simplex.is_subset(vertex, face)
|
150
|
-
}
|
151
|
-
|
152
|
-
class ComplexHoroTriangle:
|
153
|
-
"""
|
154
|
-
A horosphere cross section in the corner of an ideal tetrahedron.
|
155
|
-
The sides of the triangle correspond to faces of the tetrahedron.
|
156
|
-
The lengths stored for the triangle are complex.
|
157
|
-
"""
|
158
|
-
def __init__(self, tet, vertex, known_side, length_of_side):
|
159
|
-
left_side, center_side, right_side, z_left, z_right = (
|
160
|
-
HoroTriangleBase._sides_and_cross_ratios(tet, vertex, known_side))
|
161
|
-
|
162
|
-
L = length_of_side
|
163
|
-
self.lengths = { center_side : L,
|
164
|
-
left_side : - z_left * L,
|
165
|
-
right_side : - L / z_right }
|
166
|
-
absL = abs(L)
|
167
|
-
self.area = absL * absL * z_left.imag() / 2
|
168
|
-
|
169
|
-
self._real_lengths_cache = None
|
170
|
-
|
171
|
-
def get_real_lengths(self):
|
172
|
-
if not self._real_lengths_cache:
|
173
|
-
self._real_lengths_cache = {
|
174
|
-
side : abs(length)
|
175
|
-
for side, length in self.lengths.items() }
|
176
|
-
return self._real_lengths_cache
|
177
|
-
|
178
|
-
def rescale(self, t):
|
179
|
-
"Rescales the triangle by a Euclidean dilation"
|
180
|
-
for face in self.lengths:
|
181
|
-
self.lengths[face] *= t
|
182
|
-
self.area *= t * t
|
183
|
-
|
184
|
-
@staticmethod
|
185
|
-
def direction_sign():
|
186
|
-
return -1
|
187
|
-
|
188
|
-
def add_vertex_positions(self, vertex, edge, position):
|
189
|
-
"""
|
190
|
-
Adds a dictionary vertex_positions mapping
|
191
|
-
an edge (such as t3m.simplex.E01) to complex position
|
192
|
-
for the vertex of the horotriangle obtained by
|
193
|
-
intersecting the edge with the horosphere.
|
194
|
-
|
195
|
-
Two of these positions are computed from the one given
|
196
|
-
using the complex edge lengths. The given vertex and
|
197
|
-
edge are t3m-style.
|
198
|
-
"""
|
199
|
-
|
200
|
-
self.vertex_positions = {}
|
201
|
-
|
202
|
-
# The three triples
|
203
|
-
# (face, edge adjacent to face and next face, next face)
|
204
|
-
# when going around the vertex counter clockwise
|
205
|
-
vertex_link = _face_edge_face_triples_for_vertex_link[vertex]
|
206
|
-
|
207
|
-
# Find for which of these triples the position is for
|
208
|
-
for i in range(3):
|
209
|
-
if edge == vertex_link[i][1]:
|
210
|
-
break
|
211
|
-
|
212
|
-
# Now go through the triples starting with the one for
|
213
|
-
# which we have given the vertex position
|
214
|
-
for j in range(3):
|
215
|
-
face0, edge, face1 = vertex_link[(i + j) % 3]
|
216
|
-
# Assign vertex position
|
217
|
-
self.vertex_positions[edge] = position
|
218
|
-
# Update vertex position to be for the next
|
219
|
-
# edge using complex edge length
|
220
|
-
position += self.lengths[face1]
|
221
|
-
|
222
|
-
def lift_vertex_positions(self, lifted_position):
|
223
|
-
"""
|
224
|
-
Lift the vertex positions of this triangle. lifted_position is
|
225
|
-
used as a guide what branch of the logarithm to use.
|
226
|
-
|
227
|
-
The lifted position is computed as the log of the vertex
|
228
|
-
position where it is assumed that the fixed point of the
|
229
|
-
holonomy is at the origin. The branch of the logarithm
|
230
|
-
closest to lifted_position is used.
|
231
|
-
"""
|
232
|
-
|
233
|
-
NumericalField = lifted_position.parent()
|
234
|
-
twoPi = 2 * NumericalField.pi()
|
235
|
-
I = NumericalField(1j)
|
236
|
-
|
237
|
-
def adjust_log(z):
|
238
|
-
# Compute log and adjust
|
239
|
-
logZ = log(z)
|
240
|
-
# Add multiplies of 2 * pi * I so that it is close
|
241
|
-
# to lifted_position
|
242
|
-
return logZ + ((lifted_position - logZ) / twoPi).imag().round() * twoPi * I
|
243
|
-
|
244
|
-
self.lifted_vertex_positions = {
|
245
|
-
# Take log of vertex position (assuming fixed point
|
246
|
-
# is at origin).
|
247
|
-
edge : adjust_log(position)
|
248
|
-
for edge, position in self.vertex_positions.items()
|
249
|
-
}
|
250
|
-
|
251
|
-
class CuspCrossSectionBase(McomplexEngine):
|
252
|
-
"""
|
253
|
-
Base class for RealCuspCrossSection and ComplexCuspCrossSection.
|
254
|
-
"""
|
255
|
-
|
256
|
-
def add_structures(self, one_cocycle = None):
|
257
|
-
self._add_edge_dict()
|
258
|
-
self._add_cusp_cross_sections(one_cocycle)
|
259
|
-
|
260
|
-
def _add_edge_dict(self):
|
261
|
-
"""
|
262
|
-
Adds a dictionary that maps a pair of vertices to all edges
|
263
|
-
of the triangulation connecting these vertices.
|
264
|
-
The key is a pair (v0, v1) of integers with v0 < v1 that are the
|
265
|
-
indices of the two vertices.
|
266
|
-
"""
|
267
|
-
|
268
|
-
self._edge_dict = {}
|
269
|
-
for edge in self.mcomplex.Edges:
|
270
|
-
vert0, vert1 = edge.Vertices
|
271
|
-
key = tuple(sorted([vert0.Index, vert1.Index]))
|
272
|
-
self._edge_dict.setdefault(key, []).append(edge)
|
273
|
-
|
274
|
-
def _add_cusp_cross_sections(self, one_cocycle):
|
275
|
-
for T in self.mcomplex.Tetrahedra:
|
276
|
-
T.horotriangles = {
|
277
|
-
t3m.simplex.V0 : None,
|
278
|
-
t3m.simplex.V1 : None,
|
279
|
-
t3m.simplex.V2 : None,
|
280
|
-
t3m.simplex.V3 : None
|
281
|
-
}
|
282
|
-
for cusp in self.mcomplex.Vertices:
|
283
|
-
self._add_one_cusp_cross_section(cusp, one_cocycle)
|
284
|
-
|
285
|
-
def _add_one_cusp_cross_section(self, cusp, one_cocycle):
|
286
|
-
"""
|
287
|
-
Build a cusp cross section as described in Section 3.6 of the paper
|
288
|
-
|
289
|
-
Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling
|
290
|
-
Nathan M. Dunfield, Neil R. Hoffman, Joan E. Licata
|
291
|
-
http://arxiv.org/abs/1407.7827
|
292
|
-
"""
|
293
|
-
corner0 = cusp.Corners[0]
|
294
|
-
tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
|
295
|
-
face0 = t3m.simplex.FacesAroundVertexCounterclockwise[vert0][0]
|
296
|
-
tet0.horotriangles[vert0] = self.HoroTriangle(tet0, vert0, face0, 1)
|
297
|
-
active = [(tet0, vert0)]
|
298
|
-
while active:
|
299
|
-
tet0, vert0 = active.pop()
|
300
|
-
for face0 in t3m.simplex.FacesAroundVertexCounterclockwise[vert0]:
|
301
|
-
tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
|
302
|
-
tet0, face0, vert0)
|
303
|
-
if tet1.horotriangles[vert1] is None:
|
304
|
-
known_side = (self.HoroTriangle.direction_sign() *
|
305
|
-
tet0.horotriangles[vert0].lengths[face0])
|
306
|
-
if one_cocycle:
|
307
|
-
known_side *= one_cocycle[tet0.Index, face0, vert0]
|
308
|
-
|
309
|
-
tet1.horotriangles[vert1] = self.HoroTriangle(
|
310
|
-
tet1, vert1, face1, known_side)
|
311
|
-
active.append( (tet1, vert1) )
|
312
|
-
|
313
|
-
@staticmethod
|
314
|
-
def _glued_to(tetrahedron, face, vertex):
|
315
|
-
"""
|
316
|
-
Returns (other tet, other face, other vertex).
|
317
|
-
"""
|
318
|
-
gluing = tetrahedron.Gluing[face]
|
319
|
-
return tetrahedron.Neighbor[face], gluing.image(face), gluing.image(vertex)
|
320
|
-
|
321
|
-
@staticmethod
|
322
|
-
def _cusp_area(cusp):
|
323
|
-
area = 0
|
324
|
-
for corner in cusp.Corners:
|
325
|
-
subsimplex = corner.Subsimplex
|
326
|
-
area += corner.Tetrahedron.horotriangles[subsimplex].area
|
327
|
-
return area
|
328
|
-
|
329
|
-
def cusp_areas(self):
|
330
|
-
"""
|
331
|
-
List of all cusp areas.
|
332
|
-
"""
|
333
|
-
return [ CuspCrossSectionBase._cusp_area(cusp) for cusp in self.mcomplex.Vertices ]
|
334
|
-
|
335
|
-
@staticmethod
|
336
|
-
def _scale_cusp(cusp, scale):
|
337
|
-
for corner in cusp.Corners:
|
338
|
-
subsimplex = corner.Subsimplex
|
339
|
-
corner.Tetrahedron.horotriangles[subsimplex].rescale(scale)
|
340
|
-
|
341
|
-
def scale_cusps(self, scales):
|
342
|
-
"""
|
343
|
-
Scale each cusp by Euclidean dilation by values in given array.
|
344
|
-
"""
|
345
|
-
for cusp, scale in zip(self.mcomplex.Vertices, scales):
|
346
|
-
CuspCrossSectionBase._scale_cusp(cusp, scale)
|
347
|
-
|
348
|
-
def normalize_cusps(self, areas = None):
|
349
|
-
"""
|
350
|
-
Scale cusp so that they have the given target area.
|
351
|
-
Without argument, each cusp is scaled to have area 1.
|
352
|
-
If the argument is a number, scale each cusp to have that area.
|
353
|
-
If the argument is an array, scale each cusp by the respective
|
354
|
-
entry in the array.
|
355
|
-
"""
|
356
|
-
current_areas = self.cusp_areas()
|
357
|
-
if not areas:
|
358
|
-
areas = [ 1 for area in current_areas ]
|
359
|
-
elif not isinstance(areas, list):
|
360
|
-
areas = [ areas for area in current_areas ]
|
361
|
-
scales = [ sqrt(area / current_area)
|
362
|
-
for area, current_area in zip(areas, current_areas) ]
|
363
|
-
self.scale_cusps(scales)
|
364
|
-
|
365
|
-
def check_cusp_development_exactly(self):
|
366
|
-
"""
|
367
|
-
Check that all side lengths of horo triangles are consistent.
|
368
|
-
If the logarithmic edge equations are fulfilled, this implices
|
369
|
-
that the all cusps are complete and thus the manifold is complete.
|
370
|
-
"""
|
371
|
-
|
372
|
-
for tet0 in self.mcomplex.Tetrahedra:
|
373
|
-
for vert0 in t3m.simplex.ZeroSubsimplices:
|
374
|
-
for face0 in t3m.simplex.FacesAroundVertexCounterclockwise[vert0]:
|
375
|
-
tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
|
376
|
-
tet0, face0, vert0)
|
377
|
-
side0 = tet0.horotriangles[vert0].lengths[face0]
|
378
|
-
side1 = tet1.horotriangles[vert1].lengths[face1]
|
379
|
-
if not side0 == side1 * self.HoroTriangle.direction_sign():
|
380
|
-
raise CuspDevelopmentExactVerifyError(side0, side1)
|
381
|
-
|
382
|
-
@staticmethod
|
383
|
-
def _shape_for_edge_embedding(tet, perm):
|
384
|
-
"""
|
385
|
-
Given an edge embedding, find the shape assignment for it.
|
386
|
-
If the edge embedding flips orientation, apply conjugate inverse.
|
387
|
-
"""
|
388
|
-
|
389
|
-
# Get the shape for this edge embedding
|
390
|
-
subsimplex = perm.image(3)
|
391
|
-
|
392
|
-
# Figure out the orientation of this tetrahedron
|
393
|
-
# with respect to the edge, apply conjugate inverse
|
394
|
-
# if differ
|
395
|
-
if perm.sign():
|
396
|
-
return 1 / tet.ShapeParameters[subsimplex].conjugate()
|
397
|
-
else:
|
398
|
-
return tet.ShapeParameters[subsimplex]
|
399
|
-
|
400
|
-
def check_polynomial_edge_equations_exactly(self):
|
401
|
-
"""
|
402
|
-
Check that the polynomial edge equations are fulfilled exactly.
|
403
|
-
|
404
|
-
We use the conjugate inverse to support non-orientable manifolds.
|
405
|
-
"""
|
406
|
-
|
407
|
-
# For each edge
|
408
|
-
for edge in self.mcomplex.Edges:
|
409
|
-
# The exact value when evaluating the edge equation
|
410
|
-
val = 1
|
411
|
-
|
412
|
-
# Iterate through edge embeddings
|
413
|
-
for tet, perm in edge.embeddings():
|
414
|
-
# Accumulate shapes of the edge exactly
|
415
|
-
val *= CuspCrossSectionBase._shape_for_edge_embedding(
|
416
|
-
tet, perm)
|
417
|
-
|
418
|
-
if not val == 1:
|
419
|
-
raise EdgeEquationExactVerifyError(val)
|
420
|
-
|
421
|
-
def check_logarithmic_edge_equations_and_positivity(self, NumericalField):
|
422
|
-
"""
|
423
|
-
Check that the shapes have positive imaginary part and that the
|
424
|
-
logarithmic gluing equations have small error.
|
425
|
-
|
426
|
-
The shapes are coerced into the field given as argument before the
|
427
|
-
logarithm is computed. It can be, e.g., a ComplexIntervalField.
|
428
|
-
"""
|
429
|
-
|
430
|
-
# For each edge
|
431
|
-
for edge in self.mcomplex.Edges:
|
432
|
-
|
433
|
-
# The complex interval arithmetic value of the logarithmic
|
434
|
-
# version of the edge equation.
|
435
|
-
log_sum = 0
|
436
|
-
|
437
|
-
# Iterate through edge embeddings
|
438
|
-
for tet, perm in edge.embeddings():
|
439
|
-
|
440
|
-
shape = CuspCrossSectionBase._shape_for_edge_embedding(
|
441
|
-
tet, perm)
|
442
|
-
|
443
|
-
numerical_shape = NumericalField(shape)
|
444
|
-
|
445
|
-
log_shape = log(numerical_shape)
|
446
|
-
|
447
|
-
# Note that this is true for z in R, R < 0 as well,
|
448
|
-
# but then it would fail for 1 - 1/z or 1 / (1-z)
|
449
|
-
|
450
|
-
if not (log_shape.imag() > 0):
|
451
|
-
raise ShapePositiveImaginaryPartNumericalVerifyError(
|
452
|
-
numerical_shape)
|
453
|
-
|
454
|
-
# Take logarithm and accumulate
|
455
|
-
log_sum += log_shape
|
456
|
-
|
457
|
-
twoPiI = NumericalField.pi() * NumericalField(2j)
|
458
|
-
|
459
|
-
if not abs(log_sum - twoPiI) < NumericalField(1e-7):
|
460
|
-
raise EdgeEquationLogLiftNumericalVerifyError(log_sum)
|
461
|
-
|
462
|
-
def _testing_check_against_snappea(self, epsilon):
|
463
|
-
# Short-hand
|
464
|
-
ZeroSubs = t3m.simplex.ZeroSubsimplices
|
465
|
-
|
466
|
-
# SnapPea kernel results
|
467
|
-
snappea_tilts, snappea_edges = self.manifold._cusp_cross_section_info()
|
468
|
-
|
469
|
-
# Check edge lengths
|
470
|
-
# Iterate through tet
|
471
|
-
for tet, snappea_tet_edges in zip(self.mcomplex.Tetrahedra, snappea_edges):
|
472
|
-
# Iterate through vertices of tet
|
473
|
-
for v, snappea_triangle_edges in zip(ZeroSubs, snappea_tet_edges):
|
474
|
-
# Iterate through faces touching that vertex
|
475
|
-
for f, snappea_triangle_edge in zip(ZeroSubs,
|
476
|
-
snappea_triangle_edges):
|
477
|
-
if v != f:
|
478
|
-
F = t3m.simplex.comp(f)
|
479
|
-
length = abs(tet.horotriangles[v].lengths[F])
|
480
|
-
if not abs(length - snappea_triangle_edge) < epsilon:
|
481
|
-
raise ConsistencyWithSnapPeaNumericalVerifyError(
|
482
|
-
snappea_triangle_edge, length)
|
483
|
-
|
484
|
-
@staticmethod
|
485
|
-
def _lower_bound_max_area_triangle_for_std_form(z):
|
486
|
-
"""
|
487
|
-
Imagine an ideal tetrahedron in the upper half space model with
|
488
|
-
vertices at 0, 1, z, and infinity. Pick the lowest (horizontal)
|
489
|
-
horosphere about infinity that intersects the tetrahedron in a
|
490
|
-
triangle, i.e, just touches the face opposite to infinity.
|
491
|
-
This method will return the hyperbolic area of that triangle.
|
492
|
-
|
493
|
-
The result is the same for z, 1/(1-z), and 1 - 1/z.
|
494
|
-
"""
|
495
|
-
|
496
|
-
# First, we check whether the center of the circumcenter of the
|
497
|
-
# triangle containing 0, 1, and z is contained within the triangle.
|
498
|
-
|
499
|
-
# If the center is outside of the triangle, the Euclidean height of the
|
500
|
-
# horosphere is that of the highest point of the three arcs between
|
501
|
-
# 0, 1, and z.
|
502
|
-
# The height is half of the length e of the longest edge of the
|
503
|
-
# triangle.
|
504
|
-
# Given that the Euclidean area of the triangle is given by
|
505
|
-
# A = Im(z) / 2, its hyperbolic area is
|
506
|
-
# A / (e/2)^2 = Im(z) / 2 / (e^2/4) = 2 * Im(z) / e^2
|
507
|
-
#
|
508
|
-
# This is similar to fef_gen.py except that it had a bug in version 1.3
|
509
|
-
# and implemented the last inequality the other way around!
|
510
|
-
#
|
511
|
-
# The center is outside if one of the angles is > pi/2, cover each case
|
512
|
-
#
|
513
|
-
|
514
|
-
# Angle at 0 is > pi/2
|
515
|
-
if z.real() < 0:
|
516
|
-
# So longest edge of the triangle must be opposite of 0
|
517
|
-
return 2 * z.imag() / (abs(z - 1) ** 2)
|
518
|
-
# Angle at 1 is > pi/2
|
519
|
-
if z.real() > 1:
|
520
|
-
# So longest edge of the triangle must be opposite of 1
|
521
|
-
return 2 * z.imag() / (abs(z) ** 2)
|
522
|
-
# Angle at z is > pi/2
|
523
|
-
if abs(2 * z - 1) < 1:
|
524
|
-
# So longest edge of the triangle must be opposite of z
|
525
|
-
return 2 * z.imag()
|
526
|
-
|
527
|
-
# An interval note: the circumcenter might still be in the triangle,
|
528
|
-
# we just were not able to prove it. The area we compute is a lower
|
529
|
-
# bound in any case. Thus, the function is not guaranteed to compute
|
530
|
-
# the maximal area, just a lower bound for it.
|
531
|
-
|
532
|
-
# Now cover the case that the center of the triangle is within the
|
533
|
-
# triangle.
|
534
|
-
|
535
|
-
# The Euclidean area of the above triangle is given by
|
536
|
-
# A = Im(z) / 2
|
537
|
-
# and its Euclidean side lengths are given by
|
538
|
-
# a = 1, b = abs(z), and c = abs(z - 1).
|
539
|
-
#
|
540
|
-
# The Euclidean circumradius r of the triangle is given by the usual
|
541
|
-
# formula
|
542
|
-
# r = a * b * c / (4 * A)
|
543
|
-
#
|
544
|
-
# This is also the Euclidean radius of the circle containing 0, 1, and
|
545
|
-
# z and of the halfsphere above that circle that contains the face
|
546
|
-
# opposite to infinity.
|
547
|
-
# Therefore, r is also the Euclidean height of the above horosphere and
|
548
|
-
# hence, the hyperbolic metric at that height is 1/r.
|
549
|
-
# So the hyperbolic area of the triangle becomes
|
550
|
-
#
|
551
|
-
# A / r^2 = A / (a * b * c / (4 * A))^2 = 16 * A^3 / (a * b * c)^2
|
552
|
-
# = 2 * Im(z)^3 / (abs(z) * abs(z-1)) ^ 2
|
553
|
-
|
554
|
-
return 2 * z.imag() ** 3 / (abs(z) * abs(z - 1)) ** 2
|
555
|
-
|
556
|
-
def ensure_std_form(self, allow_scaling_up = False):
|
557
|
-
"""
|
558
|
-
Makes sure that the cusp neighborhoods intersect each tetrahedron
|
559
|
-
in standard form by scaling the cusp neighborhoods down if necessary.
|
560
|
-
"""
|
561
|
-
|
562
|
-
# For each cusp, save the scaling factors for all triangles so that
|
563
|
-
# we can later take the minimum to scale each cusp.
|
564
|
-
if allow_scaling_up:
|
565
|
-
area_scales = [ [] for v in self.mcomplex.Vertices ]
|
566
|
-
else:
|
567
|
-
# Add 1 so that we never scale the cusp area up, just down.
|
568
|
-
area_scales = [ [1] for v in self.mcomplex.Vertices ]
|
569
|
-
|
570
|
-
for tet in self.mcomplex.Tetrahedra:
|
571
|
-
# Compute maximal area of a triangle for standard form
|
572
|
-
z = tet.ShapeParameters[t3m.simplex.E01]
|
573
|
-
max_area = ComplexCuspCrossSection._lower_bound_max_area_triangle_for_std_form(z)
|
574
|
-
|
575
|
-
# For all four triangles corresponding to the four vertices of the
|
576
|
-
# tetrahedron
|
577
|
-
for zeroSubsimplex, triangle in tet.horotriangles.items():
|
578
|
-
# Compute the area scaling factor
|
579
|
-
area_scale = max_area / triangle.area
|
580
|
-
# Get the cusp we need to scale
|
581
|
-
vertex = tet.Class[zeroSubsimplex]
|
582
|
-
# Remember it
|
583
|
-
area_scales[vertex.Index].append(area_scale)
|
584
|
-
|
585
|
-
# Compute scale per cusp as sqrt of the minimum of all area scales
|
586
|
-
# of all triangles in that cusp
|
587
|
-
scales = [ sqrt(interval_aware_min(s)) for s in area_scales ]
|
588
|
-
|
589
|
-
self.scale_cusps(scales)
|
590
|
-
|
591
|
-
@staticmethod
|
592
|
-
def _exp_distance_edge(edge):
|
593
|
-
"""
|
594
|
-
Given an edge, returns the exp of the (hyperbolic) distance of the
|
595
|
-
two cusp neighborhoods at the ends of the edge measured along that
|
596
|
-
edge.
|
597
|
-
"""
|
598
|
-
|
599
|
-
# Get one embedding of the edge, tet is adjacent to that edge
|
600
|
-
tet, perm = next(edge.embeddings())
|
601
|
-
# Get a face of the tetrahedron adjacent to that edge
|
602
|
-
face = 15 - (1 << perm[3])
|
603
|
-
# At each end of the edge, this tetrahedron gives us one
|
604
|
-
# triangle of a cusp cross-section and the intersection of the
|
605
|
-
# face with the cusp cross-section gives us one edge of the
|
606
|
-
# triangle.
|
607
|
-
# Multiply the two edge lengths. If these are complex edge
|
608
|
-
# lengths, the result is actually the square of a Ptolemy
|
609
|
-
# coordinate (see C. Zickert, The volume and Chern-Simons
|
610
|
-
# invariant of a representation).
|
611
|
-
ptolemy_sqr = (tet.horotriangles[1 << perm[0]].lengths[face] *
|
612
|
-
tet.horotriangles[1 << perm[1]].lengths[face])
|
613
|
-
# Take abs value in case we have complex edge lengths.
|
614
|
-
return abs(1 / ptolemy_sqr)
|
615
|
-
|
616
|
-
@staticmethod
|
617
|
-
def _exp_distance_of_edges(edges):
|
618
|
-
"""
|
619
|
-
Given edges between two (not necessarily distinct) cusps,
|
620
|
-
compute the exp of the smallest (hyperbolic) distance of the
|
621
|
-
two cusp neighborhoods measured along all the given edges.
|
622
|
-
"""
|
623
|
-
return interval_aware_min(
|
624
|
-
[ ComplexCuspCrossSection._exp_distance_edge(edge)
|
625
|
-
for edge in edges])
|
626
|
-
|
627
|
-
def ensure_disjoint_on_edges(self):
|
628
|
-
"""
|
629
|
-
Scales the cusp neighborhoods down until they are disjoint when
|
630
|
-
intersected with the edges of the triangulations.
|
631
|
-
|
632
|
-
Given an edge of a triangulation, we can easily compute the signed
|
633
|
-
distance between the two cusp neighborhoods at the ends of the edge
|
634
|
-
measured along that edge. Thus, we can easily check that all the
|
635
|
-
distances measured along all the edges are positive and scale the
|
636
|
-
cusps down if necessary.
|
637
|
-
|
638
|
-
Unfortunately, this is not sufficient to ensure that two cusp
|
639
|
-
neighborhoods are disjoint since there might be a geodesic between
|
640
|
-
the two cusps such that the distance between the two cusps measured
|
641
|
-
along the geodesic is shorter than measured along any edge of the
|
642
|
-
triangulation.
|
643
|
-
|
644
|
-
Thus, it is necessary to call ensure_std_form as well:
|
645
|
-
it will make sure that the cusp neighborhoods are small enough so
|
646
|
-
that they intersect the tetrahedra in "standard" form.
|
647
|
-
Here, "standard" form means that the corresponding horoball about a
|
648
|
-
vertex of a tetrahedron intersects the three faces of the tetrahedron
|
649
|
-
adjacent to the vertex but not the one opposite to the vertex.
|
650
|
-
|
651
|
-
For any geometric triangulation, standard form and positive distance
|
652
|
-
measured along all edges of the triangulation is sufficient for
|
653
|
-
disjoint neighborhoods.
|
654
|
-
|
655
|
-
The SnapPea kernel uses the proto-canonical triangulation associated
|
656
|
-
to the cusp neighborhood to get around this when computing the
|
657
|
-
"reach" and the "stoppers" for the cusps.
|
658
|
-
|
659
|
-
**Remark:** This means that the cusp neighborhoods might be scaled down
|
660
|
-
more than necessary. Related open questions are: given maximal disjoint
|
661
|
-
cusp neighborhoods (maximal in the sense that no neighborhood can be
|
662
|
-
expanded without bumping into another or itself), is there always a
|
663
|
-
geometric triangulation intersecting the cusp neighborhoods in standard
|
664
|
-
form? Is there an easy algorithm to find this triangulation, e.g., by
|
665
|
-
applying a 2-3 move whenever we see a non-standard intersection?
|
666
|
-
"""
|
667
|
-
|
668
|
-
num_cusps = len(self.mcomplex.Vertices)
|
669
|
-
|
670
|
-
# First check for every cusp that its cusp neighborhood does not bump
|
671
|
-
# into itself - at least when measured along the edges of the
|
672
|
-
# triangulation
|
673
|
-
for i in range(num_cusps):
|
674
|
-
# Get all edges
|
675
|
-
if (i,i) in self._edge_dict:
|
676
|
-
dist = ComplexCuspCrossSection._exp_distance_of_edges(
|
677
|
-
self._edge_dict[(i,i)])
|
678
|
-
# For verified computations, do not use the seemingly
|
679
|
-
# equivalent dist <= 1. We want to scale down every time
|
680
|
-
# we cannot ensure they are disjoint.
|
681
|
-
if not (dist > 1):
|
682
|
-
scale = sqrt(dist)
|
683
|
-
# Scale the one cusp
|
684
|
-
ComplexCuspCrossSection._scale_cusp(self.mcomplex.Vertices[i],
|
685
|
-
scale)
|
686
|
-
|
687
|
-
# Now check for the pairs of two distinct cusps that the corresponding
|
688
|
-
# neighborhoods do not bump into each other - at least when measured
|
689
|
-
# along the edges of the triangulation
|
690
|
-
for i in range(num_cusps):
|
691
|
-
for j in range(i):
|
692
|
-
# Get all edges
|
693
|
-
if (j,i) in self._edge_dict:
|
694
|
-
dist = ComplexCuspCrossSection._exp_distance_of_edges(
|
695
|
-
self._edge_dict[(j,i)])
|
696
|
-
# Above comment applies
|
697
|
-
if not (dist > 1):
|
698
|
-
# Scale the two cusps by the same amount
|
699
|
-
# We have choices here, for example, we could only
|
700
|
-
# scale one cusp by dist.
|
701
|
-
scale = sqrt(dist)
|
702
|
-
ComplexCuspCrossSection._scale_cusp(self.mcomplex.Vertices[i],
|
703
|
-
scale)
|
704
|
-
ComplexCuspCrossSection._scale_cusp(self.mcomplex.Vertices[j],
|
705
|
-
scale)
|
706
|
-
|
707
|
-
class RealCuspCrossSection(CuspCrossSectionBase):
|
708
|
-
"""
|
709
|
-
A t3m triangulation with real edge lengths of cusp cross sections built
|
710
|
-
from a cusped (possibly non-orientable) SnapPy manifold M with a hyperbolic
|
711
|
-
structure specified by shapes. It can scale the cusps to areas that can be
|
712
|
-
specified or scale them such that they are disjoint.
|
713
|
-
It can also compute the "tilts" used in the Tilt Theorem, see
|
714
|
-
``canonize_part_1.c``.
|
715
|
-
|
716
|
-
The computations are agnostic about the type of numbers provided as shapes
|
717
|
-
as long as they provide ``+``, ``-``, ``*``, ``/``, ``conjugate()``,
|
718
|
-
``im()``, ``abs()``, ``sqrt()``.
|
719
|
-
Shapes can be a numerical type such as ComplexIntervalField or an exact
|
720
|
-
type (supporting sqrt) such as QQbar.
|
721
|
-
|
722
|
-
The resulting edge lengths and tilts will be of the type returned by
|
723
|
-
applying the above operations to the shapes. For example, if the shapes
|
724
|
-
are in ComplexIntervalField, the edge lengths and tilts are elements in
|
725
|
-
RealIntervalField.
|
726
|
-
|
727
|
-
**Remark:** The real edge lengths could also be obtained from the complex
|
728
|
-
edge lengths computed by ``ComplexCuspCrossSection``, but this has two
|
729
|
-
drawbacks. The times at which we apply ``abs`` or ``sqrt`` during the
|
730
|
-
development and rescaling of the cusps would be different. Though this
|
731
|
-
gives the same values, the resulting representation of these values by an
|
732
|
-
exact number type (such as the ones in ``squareExtension.py``) might be
|
733
|
-
prohibitively more complicated. Furthermore, ``ComplexCuspCrossSection``
|
734
|
-
does not work for non-orientable manifolds (it does not implement working
|
735
|
-
in a cusp's double-cover like the SnapPea kernel does).
|
736
|
-
"""
|
737
|
-
|
738
|
-
HoroTriangle = RealHoroTriangle
|
739
|
-
|
740
|
-
@staticmethod
|
741
|
-
def fromManifoldAndShapes(manifold, shapes):
|
742
|
-
"""
|
743
|
-
**Examples:**
|
744
|
-
|
745
|
-
Initialize from shapes provided from the floats returned by
|
746
|
-
tetrahedra_shapes. The tilts appear to be negative but are not
|
747
|
-
verified by interval arithmetics::
|
748
|
-
|
749
|
-
>>> from snappy import Manifold
|
750
|
-
>>> M = Manifold("m004")
|
751
|
-
>>> M.canonize()
|
752
|
-
>>> shapes = M.tetrahedra_shapes('rect')
|
753
|
-
>>> e = RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
|
754
|
-
>>> e.normalize_cusps()
|
755
|
-
>>> e.compute_tilts()
|
756
|
-
>>> tilts = e.read_tilts()
|
757
|
-
>>> for tilt in tilts:
|
758
|
-
... print('%.8f' % tilt)
|
759
|
-
-0.31020162
|
760
|
-
-0.31020162
|
761
|
-
-0.31020162
|
762
|
-
-0.31020162
|
763
|
-
-0.31020162
|
764
|
-
-0.31020162
|
765
|
-
-0.31020162
|
766
|
-
-0.31020162
|
767
|
-
|
768
|
-
Use verified intervals:
|
769
|
-
|
770
|
-
sage: from snappy.verify import *
|
771
|
-
sage: M = Manifold("m004")
|
772
|
-
sage: M.canonize()
|
773
|
-
sage: shapes = M.tetrahedra_shapes('rect', intervals=True)
|
774
|
-
|
775
|
-
Verify that the tetrahedra shapes form a complete manifold:
|
776
|
-
|
777
|
-
sage: check_logarithmic_gluing_equations_and_positively_oriented_tets(M,shapes)
|
778
|
-
sage: e = RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
|
779
|
-
sage: e.normalize_cusps()
|
780
|
-
sage: e.compute_tilts()
|
781
|
-
|
782
|
-
|
783
|
-
Tilts are verified to be negative:
|
784
|
-
|
785
|
-
sage: [tilt < 0 for tilt in e.read_tilts()]
|
786
|
-
[True, True, True, True, True, True, True, True]
|
787
|
-
|
788
|
-
Setup necessary things in Sage:
|
789
|
-
|
790
|
-
sage: from sage.rings.qqbar import QQbar
|
791
|
-
sage: from sage.rings.rational_field import RationalField
|
792
|
-
sage: from sage.rings.polynomial.polynomial_ring import polygen
|
793
|
-
sage: from sage.rings.real_mpfi import RealIntervalField
|
794
|
-
sage: from sage.rings.complex_interval_field import ComplexIntervalField
|
795
|
-
sage: x = polygen(RationalField())
|
796
|
-
sage: RIF = RealIntervalField()
|
797
|
-
sage: CIF = ComplexIntervalField()
|
798
|
-
|
799
|
-
sage: M = Manifold("m412")
|
800
|
-
sage: M.canonize()
|
801
|
-
|
802
|
-
Make our own exact shapes using Sage. They are the root of the given
|
803
|
-
polynomial isolated by the given interval.
|
804
|
-
|
805
|
-
sage: r=QQbar.polynomial_root(x**2-x+1,CIF(RIF(0.49,0.51),RIF(0.86,0.87)))
|
806
|
-
sage: shapes = 5 * [r]
|
807
|
-
sage: e=RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
|
808
|
-
sage: e.normalize_cusps()
|
809
|
-
|
810
|
-
The following three lines verify that we have shapes giving a complete
|
811
|
-
hyperbolic structure. The last one uses complex interval arithmetics.
|
812
|
-
|
813
|
-
sage: e.check_polynomial_edge_equations_exactly()
|
814
|
-
sage: e.check_cusp_development_exactly()
|
815
|
-
sage: e.check_logarithmic_edge_equations_and_positivity(CIF)
|
816
|
-
|
817
|
-
Because we use exact types, we can verify that each tilt is either
|
818
|
-
negative or exactly zero.
|
819
|
-
|
820
|
-
sage: e.compute_tilts()
|
821
|
-
sage: [(tilt < 0, tilt == 0) for tilt in e.read_tilts()]
|
822
|
-
[(True, False), (True, False), (False, True), (True, False), (True, False), (True, False), (True, False), (False, True), (True, False), (True, False), (True, False), (False, True), (False, True), (False, True), (False, True), (False, True), (True, False), (True, False), (False, True), (True, False)]
|
823
|
-
|
824
|
-
Some are exactly zero, so the canonical cell decomposition has
|
825
|
-
non-tetrahedral cells. In fact, the one cell is a cube. We can obtain
|
826
|
-
the retriangulation of the canonical cell decomposition as follows:
|
827
|
-
|
828
|
-
sage: e.compute_tilts()
|
829
|
-
sage: opacities = [tilt < 0 for tilt in e.read_tilts()]
|
830
|
-
sage: N = M._canonical_retriangulation()
|
831
|
-
sage: N.num_tetrahedra()
|
832
|
-
12
|
833
|
-
|
834
|
-
The manifold m412 has 8 isometries, the above code certified that using
|
835
|
-
exact arithmetic:
|
836
|
-
sage: len(N.isomorphisms_to(N))
|
837
|
-
8
|
838
|
-
"""
|
839
|
-
for cusp_info in manifold.cusp_info():
|
840
|
-
if not cusp_info['complete?']:
|
841
|
-
raise IncompleteCuspError(manifold)
|
842
|
-
|
843
|
-
m = t3m.Mcomplex(manifold)
|
844
|
-
|
845
|
-
t = TransferKernelStructuresEngine(m, manifold)
|
846
|
-
t.reindex_cusps_and_transfer_peripheral_curves()
|
847
|
-
t.add_shapes(shapes)
|
848
|
-
|
849
|
-
c = RealCuspCrossSection(m)
|
850
|
-
c.add_structures()
|
851
|
-
|
852
|
-
# For testing against SnapPea kernel data
|
853
|
-
c.manifold = manifold
|
854
|
-
|
855
|
-
return c
|
856
|
-
|
857
|
-
@staticmethod
|
858
|
-
def _tet_tilt(tet, face):
|
859
|
-
"The tilt of the face of the tetrahedron."
|
860
|
-
|
861
|
-
v = t3m.simplex.comp(face)
|
862
|
-
|
863
|
-
ans = 0
|
864
|
-
for w in t3m.simplex.ZeroSubsimplices:
|
865
|
-
if v == w:
|
866
|
-
c_w = 1
|
867
|
-
else:
|
868
|
-
z = tet.ShapeParameters[v | w]
|
869
|
-
c_w = -z.real() / abs(z)
|
870
|
-
R_w = tet.horotriangles[w].circumradius
|
871
|
-
ans += c_w * R_w
|
872
|
-
return ans
|
873
|
-
|
874
|
-
@staticmethod
|
875
|
-
def _face_tilt(face):
|
876
|
-
"""
|
877
|
-
Tilt of a face in the trinagulation: this is the sum of
|
878
|
-
the two tilts of the two faces of the two tetrahedra that are
|
879
|
-
glued. The argument is a t3m.simplex.Face.
|
880
|
-
"""
|
881
|
-
|
882
|
-
return sum([ RealCuspCrossSection._tet_tilt(corner.Tetrahedron,
|
883
|
-
corner.Subsimplex)
|
884
|
-
for corner in face.Corners ])
|
885
|
-
|
886
|
-
def compute_tilts(self):
|
887
|
-
"""
|
888
|
-
Computes all tilts. They are written to the instances of
|
889
|
-
t3m.simplex.Face and can be accessed as
|
890
|
-
[ face.Tilt for face in crossSection.Faces].
|
891
|
-
"""
|
892
|
-
|
893
|
-
for face in self.mcomplex.Faces:
|
894
|
-
face.Tilt = RealCuspCrossSection._face_tilt(face)
|
895
|
-
|
896
|
-
def read_tilts(self):
|
897
|
-
"""
|
898
|
-
After compute_tilts() has been called, put the tilt values into an
|
899
|
-
array containing the tilt of face 0, 1, 2, 3 of the first tetrahedron,
|
900
|
-
... of the second tetrahedron, ....
|
901
|
-
"""
|
902
|
-
|
903
|
-
def index_of_face_corner(corner):
|
904
|
-
face_index = t3m.simplex.comp(corner.Subsimplex).bit_length() - 1
|
905
|
-
return 4 * corner.Tetrahedron.Index + face_index
|
906
|
-
|
907
|
-
tilts = (4 * len(self.mcomplex.Tetrahedra)) * [ None ]
|
908
|
-
|
909
|
-
# For each face of the triangulation
|
910
|
-
for face in self.mcomplex.Faces:
|
911
|
-
for corner in face.Corners:
|
912
|
-
tilts[index_of_face_corner(corner)] = face.Tilt
|
913
|
-
|
914
|
-
return tilts
|
915
|
-
|
916
|
-
def _testing_check_against_snappea(self, epsilon):
|
917
|
-
"""
|
918
|
-
Compare the computed edge lengths and tilts against the one computed by
|
919
|
-
the SnapPea kernel.
|
920
|
-
|
921
|
-
>>> from snappy import Manifold
|
922
|
-
|
923
|
-
Convention of the kernel is to use (3/8) sqrt(3) as area (ensuring that
|
924
|
-
cusp neighborhoods are disjoint).
|
925
|
-
|
926
|
-
>>> cusp_area = 0.649519052838329
|
927
|
-
|
928
|
-
>>> for name in ['m009', 'm015', 't02333']:
|
929
|
-
... M = Manifold(name)
|
930
|
-
... e = RealCuspCrossSection.fromManifoldAndShapes(M, M.tetrahedra_shapes('rect'))
|
931
|
-
... e.normalize_cusps(cusp_area)
|
932
|
-
... e._testing_check_against_snappea(1e-10)
|
933
|
-
|
934
|
-
"""
|
935
|
-
|
936
|
-
CuspCrossSectionBase._testing_check_against_snappea(self, epsilon)
|
937
|
-
|
938
|
-
# Short-hand
|
939
|
-
TwoSubs = t3m.simplex.TwoSubsimplices
|
940
|
-
|
941
|
-
# SnapPea kernel results
|
942
|
-
snappea_tilts, snappea_edges = self.manifold._cusp_cross_section_info()
|
943
|
-
|
944
|
-
# Check tilts
|
945
|
-
# Iterate through tet
|
946
|
-
for tet, snappea_tet_tilts in zip(self.mcomplex.Tetrahedra, snappea_tilts):
|
947
|
-
# Iterate through vertices of tet
|
948
|
-
for f, snappea_tet_tilt in zip(TwoSubs, snappea_tet_tilts):
|
949
|
-
tilt = RealCuspCrossSection._tet_tilt(tet, f)
|
950
|
-
if not abs(snappea_tet_tilt - tilt) < epsilon:
|
951
|
-
raise ConsistencyWithSnapPeaNumericalVerifyError(
|
952
|
-
snappea_tet_tilt, tilt)
|
953
|
-
|
954
|
-
class ComplexCuspCrossSection(CuspCrossSectionBase):
|
955
|
-
"""
|
956
|
-
Similarly to RealCuspCrossSection with the following differences: it
|
957
|
-
computes the complex edge lengths and the cusp translations (instead
|
958
|
-
of the tilts) and it only works for orientable manifolds.
|
959
|
-
|
960
|
-
The same comment applies about the type of the shapes. The resulting
|
961
|
-
edge lengths and translations will be of the same type as the shapes.
|
962
|
-
|
963
|
-
For shapes corresponding to a non-boundary unipotent representation
|
964
|
-
(in other words, a manifold having an incomplete cusp), a cusp can
|
965
|
-
be developed if an appropriate 1-cocycle is given. The 1-cocycle
|
966
|
-
is a cellular cocycle in the dual of the cusp triangulations and
|
967
|
-
represents an element in H^1(boundary M; C^*) that must match the
|
968
|
-
PSL(2,C) boundary holonomy of the representation.
|
969
|
-
It is encoded as dictionary with key (tet index, t3m face, t3m vertex).
|
970
|
-
"""
|
971
|
-
|
972
|
-
HoroTriangle = ComplexHoroTriangle
|
973
|
-
|
974
|
-
@staticmethod
|
975
|
-
def fromManifoldAndShapes(manifold, shapes, one_cocycle = None):
|
976
|
-
if not one_cocycle:
|
977
|
-
for cusp_info in manifold.cusp_info():
|
978
|
-
if not cusp_info['complete?']:
|
979
|
-
raise IncompleteCuspError(manifold)
|
980
|
-
|
981
|
-
if not manifold.is_orientable():
|
982
|
-
raise RuntimeError("Non-orientable")
|
983
|
-
|
984
|
-
m = t3m.Mcomplex(manifold)
|
985
|
-
|
986
|
-
t = TransferKernelStructuresEngine(m, manifold)
|
987
|
-
t.reindex_cusps_and_transfer_peripheral_curves()
|
988
|
-
t.add_shapes(shapes)
|
989
|
-
|
990
|
-
if one_cocycle == 'develop':
|
991
|
-
resolved_one_cocycle = None
|
992
|
-
else:
|
993
|
-
resolved_one_cocycle = one_cocycle
|
994
|
-
|
995
|
-
c = ComplexCuspCrossSection(m)
|
996
|
-
c.add_structures(resolved_one_cocycle)
|
997
|
-
|
998
|
-
# For testing against SnapPea kernel data
|
999
|
-
c.manifold = manifold
|
1000
|
-
|
1001
|
-
return c
|
1002
|
-
|
1003
|
-
def _dummy_for_testing(self):
|
1004
|
-
"""
|
1005
|
-
Compare the computed edge lengths and tilts against the one computed by
|
1006
|
-
the SnapPea kernel.
|
1007
|
-
|
1008
|
-
>>> from snappy import Manifold
|
1009
|
-
|
1010
|
-
Convention of the kernel is to use (3/8) sqrt(3) as area (ensuring that
|
1011
|
-
cusp neighborhoods are disjoint).
|
1012
|
-
|
1013
|
-
>>> cusp_area = 0.649519052838329
|
1014
|
-
|
1015
|
-
>>> for name in ['m009', 'm015', 't02333']:
|
1016
|
-
... M = Manifold(name)
|
1017
|
-
... e = ComplexCuspCrossSection.fromManifoldAndShapes(M, M.tetrahedra_shapes('rect'))
|
1018
|
-
... e.normalize_cusps(cusp_area)
|
1019
|
-
... e._testing_check_against_snappea(1e-10)
|
1020
|
-
|
1021
|
-
"""
|
1022
|
-
|
1023
|
-
@staticmethod
|
1024
|
-
def _get_translation(vertex, ml):
|
1025
|
-
"""
|
1026
|
-
Compute the translation corresponding to the meridian (ml = 0) or
|
1027
|
-
longitude (ml = 1) of the given cusp.
|
1028
|
-
"""
|
1029
|
-
|
1030
|
-
# Accumulate result
|
1031
|
-
result = 0
|
1032
|
-
|
1033
|
-
# For each triangle of this cusp's cross-section
|
1034
|
-
for corner in vertex.Corners:
|
1035
|
-
# Get the corresponding tetrahedron
|
1036
|
-
tet = corner.Tetrahedron
|
1037
|
-
# Get the corresponding vertex of this tetrahedron
|
1038
|
-
subsimplex = corner.Subsimplex
|
1039
|
-
# Get the three faces of the tetrahedron adjacent to that vertex
|
1040
|
-
# Each one intersects the cusp cross-section in an edge of
|
1041
|
-
# the triangle.
|
1042
|
-
faces = t3m.simplex.FacesAroundVertexCounterclockwise[subsimplex]
|
1043
|
-
# Get the data for this triangle
|
1044
|
-
triangle = tet.horotriangles[subsimplex]
|
1045
|
-
|
1046
|
-
# Restrict the peripheral curve data to this triangle.
|
1047
|
-
# The result consists of four integers, but the one at
|
1048
|
-
# subsimplex will always be zero, so effectively, it
|
1049
|
-
# is three integers corresponding to the three sides of the
|
1050
|
-
# triangle.
|
1051
|
-
# Each of these integers tells us how often the peripheral curve
|
1052
|
-
# "enters" the triangle from the corresponding side of the
|
1053
|
-
# triangle.
|
1054
|
-
# Each time the peripheral curve "enters" the triangle through a
|
1055
|
-
# side, its contribution to the translation is the vector from the
|
1056
|
-
# center of the side to the center of the triangle.
|
1057
|
-
curves = tet.PeripheralCurves[ml][0][subsimplex]
|
1058
|
-
|
1059
|
-
# We know need to compute this contribution to the translation.
|
1060
|
-
# Imagine a triangle with complex edge lengths e_0, e_1, e_2 and,
|
1061
|
-
# without loss of generality, move it such that its vertices are
|
1062
|
-
# at v_0 = 0, v_1 = e_0, v_2 = e_0 + e_1.
|
1063
|
-
# The center of the triangle is at
|
1064
|
-
# c = (v_0 + v_1 + v_2) / 3 = 2 * e_0 / 3 + e_1 / 3.
|
1065
|
-
# The vector from the center of the side corresponding to e_0
|
1066
|
-
# to the center of the triangle is given by
|
1067
|
-
# c - e_0 / 2 = e_0 / 6 + e_1 / 3
|
1068
|
-
#
|
1069
|
-
# If the peripheral curves enters the side of the triangle
|
1070
|
-
# corresponding to e_i n_i-times, then the total contribution
|
1071
|
-
# with respect to that triangle is given by
|
1072
|
-
# n_0 * (e_0 / 6 + e_1 / 3)
|
1073
|
-
# + n_1 * (e_1 / 6 + e_2 / 3)
|
1074
|
-
# + n_2 * (e_2 / 6 + e_0 / 3)
|
1075
|
-
# = ( (n_0 + 2 * n_2) * e_0
|
1076
|
-
# + (n_1 + 2 * n_0) * e_1
|
1077
|
-
# + (n_2 + 2 * n_1) * e_2) / 6
|
1078
|
-
#
|
1079
|
-
# = (sum_{i=0,1,2} (n_i + 2 * n_{i+2}) * e_i) / 6
|
1080
|
-
|
1081
|
-
# Implement this sum
|
1082
|
-
for i in range(3):
|
1083
|
-
# Find the t3m faces corresponding to two edges of this
|
1084
|
-
# triangle
|
1085
|
-
this_face = faces[ i ]
|
1086
|
-
prev_face = faces[(i+2) % 3]
|
1087
|
-
|
1088
|
-
# n_i + 2 * n_{i+2} in above notation
|
1089
|
-
f = curves[this_face] + 2 * curves[prev_face]
|
1090
|
-
|
1091
|
-
# (n_i + 2 * n_{i+2}) * e_i in above notation
|
1092
|
-
result += f * triangle.lengths[this_face]
|
1093
|
-
|
1094
|
-
return result / 6
|
1095
|
-
|
1096
|
-
@staticmethod
|
1097
|
-
def _compute_translations(vertex):
|
1098
|
-
vertex.Translations = [
|
1099
|
-
ComplexCuspCrossSection._get_translation(vertex, i)
|
1100
|
-
for i in range(2) ]
|
1101
|
-
|
1102
|
-
def compute_translations(self):
|
1103
|
-
for vertex in self.mcomplex.Vertices:
|
1104
|
-
ComplexCuspCrossSection._compute_translations(vertex)
|
1105
|
-
|
1106
|
-
@staticmethod
|
1107
|
-
def _get_normalized_translations(vertex):
|
1108
|
-
"""
|
1109
|
-
Compute the translations corresponding to the merdian and longitude of
|
1110
|
-
the given cusp.
|
1111
|
-
"""
|
1112
|
-
|
1113
|
-
m, l = vertex.Translations
|
1114
|
-
return m / l * abs(l), abs(l)
|
1115
|
-
|
1116
|
-
def all_normalized_translations(self):
|
1117
|
-
"""
|
1118
|
-
Compute the translations corresponding to the meridian and longitude
|
1119
|
-
for each cusp.
|
1120
|
-
"""
|
1121
|
-
|
1122
|
-
self.compute_translations()
|
1123
|
-
return [ ComplexCuspCrossSection._get_normalized_translations(vertex)
|
1124
|
-
for vertex in self.mcomplex.Vertices ]
|
1125
|
-
|
1126
|
-
@staticmethod
|
1127
|
-
def _compute_cusp_shape(vertex):
|
1128
|
-
m, l = vertex.Translations
|
1129
|
-
return (l / m).conjugate()
|
1130
|
-
|
1131
|
-
def cusp_shapes(self):
|
1132
|
-
"""
|
1133
|
-
Compute the cusp shapes as conjugate of the quotient of the translations
|
1134
|
-
corresponding to the longitude and meridian for each cusp (SnapPea
|
1135
|
-
kernel convention).
|
1136
|
-
"""
|
1137
|
-
self.compute_translations()
|
1138
|
-
return [ ComplexCuspCrossSection._compute_cusp_shape(vertex)
|
1139
|
-
for vertex in self.mcomplex.Vertices ]
|
1140
|
-
|
1141
|
-
def add_vertex_positions_to_horotriangles(self):
|
1142
|
-
"""
|
1143
|
-
Develops cusp to assign to each horotriangle the positions of its three
|
1144
|
-
vertices in the Euclidean plane.
|
1145
|
-
|
1146
|
-
Note: For a complete cusp, this is defined only up to translating the
|
1147
|
-
entire triangle by translations generated by meridian and longitude.
|
1148
|
-
|
1149
|
-
For an incomplete cusp, this is defined only up to
|
1150
|
-
similarities generated by the meridian and longitude. The
|
1151
|
-
positions can be moved such that the fixed point of these
|
1152
|
-
similarities is at the origin by calling
|
1153
|
-
move_fixed_point_to_zero after
|
1154
|
-
add_vertex_positions_to_horotriangles.
|
1155
|
-
|
1156
|
-
Note: This is not working when one_cocycle is passed during the
|
1157
|
-
construction of the cusp cross section.
|
1158
|
-
"""
|
1159
|
-
for cusp in self.mcomplex.Vertices:
|
1160
|
-
self._add_one_cusp_vertex_positions(cusp)
|
1161
|
-
|
1162
|
-
def _add_one_cusp_vertex_positions(self, cusp):
|
1163
|
-
"""
|
1164
|
-
Procedure is similar to _add_one_cusp_cross_section
|
1165
|
-
"""
|
1166
|
-
|
1167
|
-
corner0 = cusp.Corners[0]
|
1168
|
-
tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
|
1169
|
-
zero = tet0.ShapeParameters[t3m.simplex.E01].parent()(0)
|
1170
|
-
tet0.horotriangles[vert0].add_vertex_positions(
|
1171
|
-
vert0, _pick_an_edge_for_vertex[vert0], zero)
|
1172
|
-
|
1173
|
-
active = [(tet0, vert0)]
|
1174
|
-
|
1175
|
-
# Pairs (tet index, vertex) indicating what has already been
|
1176
|
-
# visited
|
1177
|
-
visited = set()
|
1178
|
-
|
1179
|
-
while active:
|
1180
|
-
tet0, vert0 = active.pop()
|
1181
|
-
for face0 in t3m.simplex.FacesAroundVertexCounterclockwise[vert0]:
|
1182
|
-
tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
|
1183
|
-
tet0, face0, vert0)
|
1184
|
-
if not (tet1.Index, vert1) in visited:
|
1185
|
-
edge0 = _pick_an_edge_for_vertex_and_face[vert0, face0]
|
1186
|
-
edge1 = tet0.Gluing[face0].image(edge0)
|
1187
|
-
|
1188
|
-
tet1.horotriangles[vert1].add_vertex_positions(
|
1189
|
-
vert1,
|
1190
|
-
edge1,
|
1191
|
-
tet0.horotriangles[vert0].vertex_positions[edge0])
|
1192
|
-
|
1193
|
-
active.append( (tet1, vert1) )
|
1194
|
-
visited.add((tet1.Index, vert1))
|
1195
|
-
|
1196
|
-
def _debug_show_horotriangles(self, cusp = 0):
|
1197
|
-
from sage.all import line, real, imag
|
1198
|
-
|
1199
|
-
self.add_vertex_positions_to_horotriangles()
|
1200
|
-
|
1201
|
-
return sum(
|
1202
|
-
[ line( [ (real(z0), imag(z0)),
|
1203
|
-
(real(z1), imag(z1)) ] )
|
1204
|
-
for tet in self.mcomplex.Tetrahedra
|
1205
|
-
for V, h in tet.horotriangles.items()
|
1206
|
-
for z0 in h.vertex_positions.values()
|
1207
|
-
for z1 in h.vertex_positions.values()
|
1208
|
-
if tet.Class[V].Index == cusp ])
|
1209
|
-
|
1210
|
-
def _debug_show_lifted_horotriangles(self, cusp = 0):
|
1211
|
-
from sage.all import line, real, imag
|
1212
|
-
|
1213
|
-
self.add_vertex_positions_to_horotriangles()
|
1214
|
-
|
1215
|
-
return sum(
|
1216
|
-
[ line( [ (real(z0), imag(z0)),
|
1217
|
-
(real(z1), imag(z1)) ] )
|
1218
|
-
for tet in self.mcomplex.Tetrahedra
|
1219
|
-
for V, h in tet.horotriangles.items()
|
1220
|
-
for z0 in h.lifted_vertex_positions.values()
|
1221
|
-
for z1 in h.lifted_vertex_positions.values()
|
1222
|
-
if tet.Class[V].Index == cusp ])
|
1223
|
-
|
1224
|
-
def move_fixed_point_to_zero(self):
|
1225
|
-
"""
|
1226
|
-
Determines the fixed point of the holonomies for all
|
1227
|
-
incomplete cusps. Then moves the vertex positions of the
|
1228
|
-
corresponding cusp triangles so that the fixed point is at the
|
1229
|
-
origin.
|
1230
|
-
|
1231
|
-
It also add the boolean v.is_complete to all vertices of the
|
1232
|
-
triangulation to mark whether the corresponding cusp is
|
1233
|
-
complete or not.
|
1234
|
-
"""
|
1235
|
-
|
1236
|
-
# For each cusp
|
1237
|
-
for cusp, cusp_info in zip(self.mcomplex.Vertices,
|
1238
|
-
self.manifold.cusp_info()):
|
1239
|
-
|
1240
|
-
cusp.is_complete = cusp_info['complete?']
|
1241
|
-
if not cusp.is_complete:
|
1242
|
-
# For an incomplete cusp, compute fixed point
|
1243
|
-
fixed_pt = self._compute_cusp_fixed_point(cusp)
|
1244
|
-
for corner in cusp.Corners:
|
1245
|
-
tet, vert = corner.Tetrahedron, corner.Subsimplex
|
1246
|
-
trig = tet.horotriangles[vert]
|
1247
|
-
# Move all vertex positions so that fixed point
|
1248
|
-
# is at origin
|
1249
|
-
trig.vertex_positions = {
|
1250
|
-
edge : position - fixed_pt
|
1251
|
-
for edge, position in trig.vertex_positions.items() }
|
1252
|
-
|
1253
|
-
def _compute_cusp_fixed_point(self, cusp):
|
1254
|
-
"""
|
1255
|
-
Compute fixed point for an incomplete cusp.
|
1256
|
-
"""
|
1257
|
-
|
1258
|
-
# Given a horotriangle trig0 with a vertex and edge, let
|
1259
|
-
# l0 be the complex position of the vertex and p0 the complex
|
1260
|
-
# edge length.
|
1261
|
-
# Let trig1 be the horotriangle glued to trig0 along the edge
|
1262
|
-
# and the l1 and p1 be the corresponding position and edge length
|
1263
|
-
# (traversed the opposite direction) in the other horotriangle.
|
1264
|
-
#
|
1265
|
-
# Then the similarity is described the complex number z = -l1 / l0
|
1266
|
-
# which is one or the holonomy of meridian or longitude (depending
|
1267
|
-
# on whether the common edge is inside or on the boundary of a
|
1268
|
-
# fundamental domain implicitly chosen when developing the cusp).
|
1269
|
-
#
|
1270
|
-
# Furthermore, we can compute the fixed point p of the similarity
|
1271
|
-
# using p1 - p = z * (p0 - p).
|
1272
|
-
|
1273
|
-
# Compute z, p0, p1 for each horotriangle, vertex and edge and pick
|
1274
|
-
# the one where z is furthest away from one.
|
1275
|
-
dummy, z, p0, p1 = max(self._compute_cusp_fixed_point_data(cusp),
|
1276
|
-
key = lambda d: d[0])
|
1277
|
-
|
1278
|
-
# Compute fixed point
|
1279
|
-
return (p1 - z * p0) / (1 - z)
|
1280
|
-
|
1281
|
-
def _compute_cusp_fixed_point_data(self, cusp):
|
1282
|
-
"""
|
1283
|
-
Compute abs(z-1), z, p0, p1 for each horotriangle, vertex and edge
|
1284
|
-
as described in _compute_cusp_fixed_point.
|
1285
|
-
"""
|
1286
|
-
|
1287
|
-
# For each horotriangle
|
1288
|
-
for corner in cusp.Corners:
|
1289
|
-
tet0, vert0 = corner.Tetrahedron, corner.Subsimplex
|
1290
|
-
vertex_link = _face_edge_face_triples_for_vertex_link[vert0]
|
1291
|
-
|
1292
|
-
# A flag of a horotriangle corresponds to a face and edge
|
1293
|
-
# of the tetrahedron.
|
1294
|
-
for face0, edge0, other_face in vertex_link:
|
1295
|
-
# How that horotriangle is glued to the neighboring one
|
1296
|
-
tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
|
1297
|
-
tet0, face0, vert0)
|
1298
|
-
edge1 = tet0.Gluing[face0].image(edge0)
|
1299
|
-
|
1300
|
-
# Get horotriangle and the complex vertex position and
|
1301
|
-
# edge length
|
1302
|
-
trig0 = tet0.horotriangles[vert0]
|
1303
|
-
l0 = trig0.lengths[face0]
|
1304
|
-
p0 = trig0.vertex_positions[edge0]
|
1305
|
-
|
1306
|
-
# And for neighbor
|
1307
|
-
trig1 = tet1.horotriangles[vert1]
|
1308
|
-
l1 = trig1.lengths[face1]
|
1309
|
-
p1 = trig1.vertex_positions[edge1]
|
1310
|
-
|
1311
|
-
# Parameter for similarity
|
1312
|
-
z = - l1 / l0
|
1313
|
-
yield (abs(z - 1), z, p0, p1)
|
1314
|
-
|
1315
|
-
def lift_vertex_positions_of_horotriangles(self):
|
1316
|
-
"""
|
1317
|
-
After developing an incomplete cusp with
|
1318
|
-
add_vertex_positions_to_horotriangles, this function moves the
|
1319
|
-
vertex positions first to zero the fixed point (see
|
1320
|
-
move_ffixed_point_to_zero) and computes logarithms for all the
|
1321
|
-
vertex positions of the horotriangles in the Euclidean plane
|
1322
|
-
in a consistent manner. These logarithms are written to a
|
1323
|
-
dictionary lifted_vertex_positions on the HoroTriangle's.
|
1324
|
-
|
1325
|
-
For an incomplete cusp, the respective value in lifted_vertex_positions
|
1326
|
-
will be None.
|
1327
|
-
|
1328
|
-
The three logarithms of the vertex positions of a triangle are only
|
1329
|
-
defined up to adding mu Z + lambda Z where mu and lambda are the
|
1330
|
-
logarithmic holonomies of the meridian and longitude.
|
1331
|
-
"""
|
1332
|
-
|
1333
|
-
self.move_fixed_point_to_zero()
|
1334
|
-
|
1335
|
-
for cusp in self.mcomplex.Vertices:
|
1336
|
-
self._lift_one_cusp_vertex_positions(cusp)
|
1337
|
-
|
1338
|
-
def _lift_one_cusp_vertex_positions(self, cusp):
|
1339
|
-
# Pick first triangle to develop
|
1340
|
-
corner0 = cusp.Corners[0]
|
1341
|
-
tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
|
1342
|
-
trig0 = tet0.horotriangles[vert0]
|
1343
|
-
edge0 = _pick_an_edge_for_vertex[vert0]
|
1344
|
-
|
1345
|
-
if cusp.is_complete:
|
1346
|
-
# If cusp is complete, we store None for the logarithms
|
1347
|
-
for corner in cusp.Corners:
|
1348
|
-
tet0, vert0 = corner.Tetrahedron, corner.Subsimplex
|
1349
|
-
tet0.horotriangles[vert0].lifted_vertex_positions = {
|
1350
|
-
vert0 | vert1 : None
|
1351
|
-
for vert1 in t3m.ZeroSubsimplices
|
1352
|
-
if vert0 != vert1 }
|
1353
|
-
return
|
1354
|
-
|
1355
|
-
# Lift first triangle, picking main branch of logarithm for
|
1356
|
-
# the first vertex
|
1357
|
-
trig0.lift_vertex_positions(log(trig0.vertex_positions[edge0]))
|
1358
|
-
|
1359
|
-
# Procedure similar to _add_one_cusp_cross_section
|
1360
|
-
active = [(tet0, vert0)]
|
1361
|
-
|
1362
|
-
# Pairs (tet index, vertex) indicating what has already been
|
1363
|
-
# visited
|
1364
|
-
visited = set()
|
1365
|
-
|
1366
|
-
while active:
|
1367
|
-
tet0, vert0 = active.pop()
|
1368
|
-
for face0 in t3m.simplex.FacesAroundVertexCounterclockwise[vert0]:
|
1369
|
-
tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
|
1370
|
-
tet0, face0, vert0)
|
1371
|
-
if not (tet1.Index, vert1) in visited:
|
1372
|
-
edge0 = _pick_an_edge_for_vertex_and_face[vert0, face0]
|
1373
|
-
|
1374
|
-
# Lift triangle using lifted vertex position of
|
1375
|
-
# neighboring triangle as guide (when determining what
|
1376
|
-
# branch of logarithm to take).
|
1377
|
-
tet1.horotriangles[vert1].lift_vertex_positions(
|
1378
|
-
tet0.horotriangles[vert0].lifted_vertex_positions[edge0])
|
1379
|
-
|
1380
|
-
active.append( (tet1, vert1) )
|
1381
|
-
visited.add( (tet1.Index, vert1) )
|
1382
|
-
|
1383
|
-
def move_lifted_vertex_positions_to_zero_first(self):
|
1384
|
-
"""
|
1385
|
-
Shift the lifted vertex positions such that the one associated
|
1386
|
-
to the first vertex when developing the incomplete cusp is
|
1387
|
-
zero. This makes the values we obtain more stable when
|
1388
|
-
changing the Dehn-surgery parameters.
|
1389
|
-
"""
|
1390
|
-
|
1391
|
-
for cusp in self.mcomplex.Vertices:
|
1392
|
-
if not cusp.is_complete:
|
1393
|
-
ComplexCuspCrossSection._move_lifted_vertex_positions_cusp(cusp)
|
1394
|
-
|
1395
|
-
@staticmethod
|
1396
|
-
def _move_lifted_vertex_positions_cusp(cusp):
|
1397
|
-
corner0 = cusp.Corners[0]
|
1398
|
-
tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
|
1399
|
-
trig0 = tet0.horotriangles[vert0]
|
1400
|
-
edge0 = _pick_an_edge_for_vertex[vert0]
|
1401
|
-
|
1402
|
-
log0 = trig0.lifted_vertex_positions[edge0]
|
1403
|
-
|
1404
|
-
for corner in cusp.Corners:
|
1405
|
-
tet, vert = corner.Tetrahedron, corner.Subsimplex
|
1406
|
-
trig = tet.horotriangles[vert]
|
1407
|
-
|
1408
|
-
trig.lifted_vertex_positions = {
|
1409
|
-
edge : position - log0
|
1410
|
-
for edge, position in trig.lifted_vertex_positions.items()
|
1411
|
-
}
|
1412
|
-
|
1413
|
-
|