snappy 3.0.3__cp38-cp38-macosx_11_0_arm64.whl → 3.2__cp38-cp38-macosx_11_0_arm64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (401) hide show
  1. snappy/CyOpenGL.cpython-38-darwin.so +0 -0
  2. snappy/SnapPy.cpython-38-darwin.so +0 -0
  3. snappy/SnapPyHP.cpython-38-darwin.so +0 -0
  4. snappy/__init__.py +373 -426
  5. snappy/app.py +240 -75
  6. snappy/app_menus.py +93 -78
  7. snappy/browser.py +87 -63
  8. snappy/cache.py +5 -8
  9. snappy/canonical.py +249 -0
  10. snappy/{verify/cusp_shapes.py → cusps/__init__.py} +11 -19
  11. snappy/cusps/cusp_area_matrix.py +101 -0
  12. snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +39 -54
  13. snappy/cusps/maximal_cusp_area_matrix.py +136 -0
  14. snappy/cusps/test.py +21 -0
  15. snappy/cusps/trig_cusp_area_matrix.py +63 -0
  16. snappy/database.py +40 -31
  17. snappy/db_utilities.py +13 -14
  18. snappy/decorated_isosig.py +377 -133
  19. snappy/dev/extended_ptolemy/complexVolumesClosed.py +42 -9
  20. snappy/dev/extended_ptolemy/extended.py +32 -25
  21. snappy/dev/extended_ptolemy/giac_rur.py +23 -8
  22. snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
  23. snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +2 -1
  24. snappy/dev/vericlosed/gimbalLoopFinder.py +5 -5
  25. snappy/dev/vericlosed/hyperbolicStructure.py +3 -3
  26. snappy/dev/vericlosed/oneVertexTruncatedComplex.py +2 -2
  27. snappy/dev/vericlosed/truncatedComplex.py +3 -2
  28. snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +4 -3
  29. snappy/doc/_images/geodesics.jpg +0 -0
  30. snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
  31. snappy/doc/_images/m125_paper_plane.jpg +0 -0
  32. snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
  33. snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
  34. snappy/doc/_sources/additional_classes.rst.txt +1 -0
  35. snappy/doc/_sources/credits.rst.txt +6 -1
  36. snappy/doc/_sources/development.rst.txt +69 -50
  37. snappy/doc/_sources/index.rst.txt +101 -66
  38. snappy/doc/_sources/installing.rst.txt +148 -165
  39. snappy/doc/_sources/news.rst.txt +136 -32
  40. snappy/doc/_sources/ptolemy.rst.txt +1 -1
  41. snappy/doc/_sources/ptolemy_examples1.rst.txt +9 -8
  42. snappy/doc/_sources/ptolemy_examples2.rst.txt +3 -3
  43. snappy/doc/_sources/ptolemy_examples3.rst.txt +14 -14
  44. snappy/doc/_sources/ptolemy_prelim.rst.txt +1 -1
  45. snappy/doc/_sources/snap.rst.txt +2 -2
  46. snappy/doc/_sources/snappy.rst.txt +1 -1
  47. snappy/doc/_sources/triangulation.rst.txt +3 -2
  48. snappy/doc/_sources/verify.rst.txt +89 -29
  49. snappy/doc/_sources/verify_internals.rst.txt +5 -16
  50. snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
  51. snappy/doc/_static/SnapPy.ico +0 -0
  52. snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
  53. snappy/doc/_static/basic.css +47 -27
  54. snappy/doc/_static/css/badge_only.css +1 -0
  55. snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
  56. snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
  57. snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
  58. snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
  59. snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
  60. snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
  61. snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
  62. snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
  63. snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
  64. snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
  65. snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
  66. snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
  67. snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
  68. snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
  69. snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
  70. snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
  71. snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
  72. snappy/doc/_static/css/theme.css +4 -0
  73. snappy/doc/_static/doctools.js +107 -274
  74. snappy/doc/_static/documentation_options.js +6 -5
  75. snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
  76. snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
  77. snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
  78. snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
  79. snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
  80. snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
  81. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
  82. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
  83. snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
  84. snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
  85. snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
  86. snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
  87. snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
  88. snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
  89. snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
  90. snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
  91. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
  92. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
  93. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
  94. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
  95. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
  96. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
  97. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
  98. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
  99. snappy/doc/_static/jquery.js +2 -2
  100. snappy/doc/_static/js/badge_only.js +1 -0
  101. snappy/doc/_static/js/theme.js +1 -0
  102. snappy/doc/_static/js/versions.js +228 -0
  103. snappy/doc/_static/language_data.js +3 -101
  104. snappy/doc/_static/pygments.css +1 -0
  105. snappy/doc/_static/searchtools.js +489 -398
  106. snappy/doc/_static/snappy_furo.css +33 -0
  107. snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
  108. snappy/doc/_static/sphinx_highlight.js +154 -0
  109. snappy/doc/additional_classes.html +688 -263
  110. snappy/doc/bugs.html +107 -94
  111. snappy/doc/censuses.html +155 -127
  112. snappy/doc/credits.html +115 -104
  113. snappy/doc/development.html +184 -146
  114. snappy/doc/genindex.html +287 -204
  115. snappy/doc/index.html +189 -150
  116. snappy/doc/installing.html +259 -266
  117. snappy/doc/manifold.html +1626 -592
  118. snappy/doc/manifoldhp.html +119 -105
  119. snappy/doc/news.html +198 -104
  120. snappy/doc/objects.inv +0 -0
  121. snappy/doc/other.html +117 -105
  122. snappy/doc/platonic_census.html +161 -114
  123. snappy/doc/plink.html +113 -105
  124. snappy/doc/ptolemy.html +131 -108
  125. snappy/doc/ptolemy_classes.html +242 -223
  126. snappy/doc/ptolemy_examples1.html +144 -130
  127. snappy/doc/ptolemy_examples2.html +141 -129
  128. snappy/doc/ptolemy_examples3.html +148 -132
  129. snappy/doc/ptolemy_examples4.html +131 -111
  130. snappy/doc/ptolemy_prelim.html +162 -138
  131. snappy/doc/py-modindex.html +104 -69
  132. snappy/doc/screenshots.html +117 -108
  133. snappy/doc/search.html +115 -84
  134. snappy/doc/searchindex.js +1 -1
  135. snappy/doc/snap.html +109 -96
  136. snappy/doc/snappy.html +134 -97
  137. snappy/doc/spherogram.html +259 -187
  138. snappy/doc/todo.html +107 -94
  139. snappy/doc/triangulation.html +1380 -111
  140. snappy/doc/tutorial.html +107 -94
  141. snappy/doc/verify.html +194 -125
  142. snappy/doc/verify_internals.html +248 -686
  143. snappy/drilling/__init__.py +456 -0
  144. snappy/drilling/barycentric.py +103 -0
  145. snappy/drilling/constants.py +5 -0
  146. snappy/drilling/crush.py +270 -0
  147. snappy/drilling/cusps.py +125 -0
  148. snappy/drilling/debug.py +242 -0
  149. snappy/drilling/epsilons.py +6 -0
  150. snappy/drilling/exceptions.py +55 -0
  151. snappy/drilling/moves.py +620 -0
  152. snappy/drilling/peripheral_curves.py +210 -0
  153. snappy/drilling/perturb.py +188 -0
  154. snappy/drilling/shorten.py +36 -0
  155. snappy/drilling/subdivide.py +274 -0
  156. snappy/drilling/test.py +23 -0
  157. snappy/drilling/test_cases.py +126 -0
  158. snappy/drilling/tracing.py +351 -0
  159. snappy/exceptions.py +23 -3
  160. snappy/export_stl.py +20 -14
  161. snappy/exterior_to_link/__init__.py +2 -0
  162. snappy/exterior_to_link/barycentric_geometry.py +463 -0
  163. snappy/exterior_to_link/exceptions.py +6 -0
  164. snappy/exterior_to_link/geodesic_map.json +14408 -0
  165. snappy/exterior_to_link/hyp_utils.py +112 -0
  166. snappy/exterior_to_link/link_projection.py +323 -0
  167. snappy/exterior_to_link/main.py +197 -0
  168. snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
  169. snappy/exterior_to_link/mcomplex_with_link.py +687 -0
  170. snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
  171. snappy/exterior_to_link/pl_utils.py +491 -0
  172. snappy/exterior_to_link/put_in_S3.py +156 -0
  173. snappy/exterior_to_link/rational_linear_algebra.py +123 -0
  174. snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
  175. snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
  176. snappy/exterior_to_link/stored_moves.py +475 -0
  177. snappy/exterior_to_link/test.py +31 -0
  178. snappy/geometric_structure/__init__.py +212 -0
  179. snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
  180. snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
  181. snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
  182. snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
  183. snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
  184. snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
  185. snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
  186. snappy/geometric_structure/geodesic/__init__.py +0 -0
  187. snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
  188. snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
  189. snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
  190. snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
  191. snappy/geometric_structure/geodesic/constants.py +6 -0
  192. snappy/geometric_structure/geodesic/exceptions.py +22 -0
  193. snappy/geometric_structure/geodesic/fixed_points.py +93 -0
  194. snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
  195. snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
  196. snappy/geometric_structure/geodesic/line.py +30 -0
  197. snappy/geometric_structure/geodesic/multiplicity.py +127 -0
  198. snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
  199. snappy/geometric_structure/test.py +22 -0
  200. snappy/gui.py +36 -36
  201. snappy/horoviewer.py +50 -48
  202. snappy/hyperboloid/__init__.py +212 -0
  203. snappy/hyperboloid/distances.py +245 -0
  204. snappy/hyperboloid/horoball.py +19 -0
  205. snappy/hyperboloid/line.py +35 -0
  206. snappy/hyperboloid/point.py +9 -0
  207. snappy/hyperboloid/triangle.py +29 -0
  208. snappy/{infodialog.py → infowindow.py} +32 -33
  209. snappy/isometry_signature.py +382 -0
  210. snappy/len_spec/__init__.py +596 -0
  211. snappy/len_spec/geodesic_info.py +110 -0
  212. snappy/len_spec/geodesic_key_info_dict.py +117 -0
  213. snappy/len_spec/geodesic_piece.py +143 -0
  214. snappy/len_spec/geometric_structure.py +182 -0
  215. snappy/len_spec/geometry.py +80 -0
  216. snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
  217. snappy/len_spec/spine.py +206 -0
  218. snappy/len_spec/test.py +24 -0
  219. snappy/len_spec/test_cases.py +69 -0
  220. snappy/len_spec/tile.py +275 -0
  221. snappy/len_spec/word.py +86 -0
  222. snappy/manifolds/__init__.py +1 -1
  223. snappy/math_basics.py +176 -0
  224. snappy/matrix.py +525 -0
  225. snappy/number.py +97 -21
  226. snappy/numeric_output_checker.py +37 -27
  227. snappy/pari.py +30 -69
  228. snappy/phone_home.py +25 -20
  229. snappy/polyviewer.py +39 -37
  230. snappy/ptolemy/__init__.py +4 -6
  231. snappy/ptolemy/component.py +14 -12
  232. snappy/ptolemy/coordinates.py +312 -295
  233. snappy/ptolemy/fieldExtensions.py +14 -12
  234. snappy/ptolemy/findLoops.py +43 -31
  235. snappy/ptolemy/geometricRep.py +24 -26
  236. snappy/ptolemy/homology.py +12 -7
  237. snappy/ptolemy/manifoldMethods.py +69 -70
  238. snappy/ptolemy/matrix.py +65 -26
  239. snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +18 -14
  240. snappy/ptolemy/polynomial.py +125 -119
  241. snappy/ptolemy/processComponents.py +36 -30
  242. snappy/ptolemy/processFileBase.py +79 -18
  243. snappy/ptolemy/processFileDispatch.py +13 -14
  244. snappy/ptolemy/processMagmaFile.py +44 -39
  245. snappy/ptolemy/processRurFile.py +18 -11
  246. snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +20 -17
  247. snappy/ptolemy/ptolemyObstructionClass.py +13 -17
  248. snappy/ptolemy/ptolemyVariety.py +190 -121
  249. snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +20 -19
  250. snappy/ptolemy/reginaWrapper.py +25 -29
  251. snappy/ptolemy/rur.py +6 -14
  252. snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +27 -22
  253. snappy/ptolemy/test.py +247 -188
  254. snappy/ptolemy/utilities.py +41 -43
  255. snappy/raytracing/__init__.py +64 -0
  256. snappy/raytracing/additional_horospheres.py +64 -0
  257. snappy/raytracing/additional_len_spec_choices.py +63 -0
  258. snappy/raytracing/cohomology_fractal.py +10 -6
  259. snappy/raytracing/eyeball.py +123 -0
  260. snappy/raytracing/finite_raytracing_data.py +48 -38
  261. snappy/raytracing/finite_viewer.py +218 -210
  262. snappy/raytracing/geodesic_tube_info.py +174 -0
  263. snappy/raytracing/geodesics.py +246 -0
  264. snappy/raytracing/geodesics_window.py +258 -0
  265. snappy/raytracing/gui_utilities.py +152 -40
  266. snappy/raytracing/hyperboloid_navigation.py +102 -52
  267. snappy/raytracing/hyperboloid_utilities.py +114 -261
  268. snappy/raytracing/ideal_raytracing_data.py +256 -179
  269. snappy/raytracing/inside_viewer.py +522 -253
  270. snappy/raytracing/pack.py +22 -0
  271. snappy/raytracing/raytracing_data.py +46 -34
  272. snappy/raytracing/raytracing_view.py +190 -109
  273. snappy/raytracing/shaders/Eye.png +0 -0
  274. snappy/raytracing/shaders/NonGeometric.png +0 -0
  275. snappy/raytracing/shaders/__init__.py +60 -4
  276. snappy/raytracing/shaders/fragment.glsl +575 -148
  277. snappy/raytracing/test.py +29 -0
  278. snappy/raytracing/tooltip.py +146 -0
  279. snappy/raytracing/upper_halfspace_utilities.py +98 -0
  280. snappy/raytracing/view_scale_controller.py +98 -0
  281. snappy/raytracing/zoom_slider/__init__.py +32 -29
  282. snappy/raytracing/zoom_slider/test.py +2 -0
  283. snappy/sage_helper.py +69 -123
  284. snappy/{preferences.py → settings.py} +167 -145
  285. snappy/shell.py +4 -0
  286. snappy/snap/__init__.py +12 -8
  287. snappy/snap/character_varieties.py +24 -18
  288. snappy/snap/find_field.py +35 -34
  289. snappy/snap/fundamental_polyhedron.py +99 -85
  290. snappy/snap/generators.py +6 -8
  291. snappy/snap/interval_reps.py +18 -6
  292. snappy/snap/kernel_structures.py +8 -3
  293. snappy/snap/mcomplex_base.py +1 -2
  294. snappy/snap/nsagetools.py +107 -53
  295. snappy/snap/peripheral/__init__.py +1 -1
  296. snappy/snap/peripheral/dual_cellulation.py +15 -7
  297. snappy/snap/peripheral/link.py +20 -16
  298. snappy/snap/peripheral/peripheral.py +22 -14
  299. snappy/snap/peripheral/surface.py +47 -50
  300. snappy/snap/peripheral/test.py +8 -8
  301. snappy/snap/polished_reps.py +65 -40
  302. snappy/snap/shapes.py +41 -22
  303. snappy/snap/slice_obs_HKL.py +64 -25
  304. snappy/snap/t3mlite/arrow.py +88 -51
  305. snappy/snap/t3mlite/corner.py +5 -6
  306. snappy/snap/t3mlite/edge.py +32 -21
  307. snappy/snap/t3mlite/face.py +7 -9
  308. snappy/snap/t3mlite/files.py +31 -23
  309. snappy/snap/t3mlite/homology.py +14 -10
  310. snappy/snap/t3mlite/linalg.py +158 -56
  311. snappy/snap/t3mlite/mcomplex.py +739 -291
  312. snappy/snap/t3mlite/perm4.py +236 -84
  313. snappy/snap/t3mlite/setup.py +9 -10
  314. snappy/snap/t3mlite/simplex.py +65 -48
  315. snappy/snap/t3mlite/spun.py +42 -30
  316. snappy/snap/t3mlite/surface.py +45 -45
  317. snappy/snap/t3mlite/test.py +3 -0
  318. snappy/snap/t3mlite/test_vs_regina.py +17 -13
  319. snappy/snap/t3mlite/tetrahedron.py +25 -24
  320. snappy/snap/t3mlite/vertex.py +8 -13
  321. snappy/snap/test.py +45 -52
  322. snappy/snap/utilities.py +66 -65
  323. snappy/test.py +155 -158
  324. snappy/test_cases.py +263 -0
  325. snappy/testing.py +131 -0
  326. snappy/tiling/__init__.py +2 -0
  327. snappy/tiling/canonical_key_dict.py +59 -0
  328. snappy/tiling/dict_based_set.py +79 -0
  329. snappy/tiling/floor.py +49 -0
  330. snappy/tiling/hyperboloid_dict.py +54 -0
  331. snappy/tiling/iter_utils.py +78 -0
  332. snappy/tiling/lifted_tetrahedron.py +22 -0
  333. snappy/tiling/lifted_tetrahedron_set.py +54 -0
  334. snappy/tiling/real_hash_dict.py +164 -0
  335. snappy/tiling/test.py +23 -0
  336. snappy/tiling/tile.py +215 -0
  337. snappy/tiling/triangle.py +33 -0
  338. snappy/tkterminal.py +313 -203
  339. snappy/twister/main.py +1 -8
  340. snappy/twister/twister_core.cpython-38-darwin.so +0 -0
  341. snappy/upper_halfspace/__init__.py +146 -0
  342. snappy/upper_halfspace/ideal_point.py +26 -0
  343. snappy/verify/__init__.py +4 -8
  344. snappy/verify/{verifyCanonical.py → canonical.py} +114 -97
  345. snappy/verify/complex_volume/__init__.py +3 -2
  346. snappy/verify/complex_volume/adjust_torsion.py +13 -11
  347. snappy/verify/complex_volume/closed.py +29 -24
  348. snappy/verify/complex_volume/compute_ptolemys.py +8 -6
  349. snappy/verify/complex_volume/cusped.py +10 -9
  350. snappy/verify/complex_volume/extended_bloch.py +14 -12
  351. snappy/verify/{cuspTranslations.py → cusp_translations.py} +15 -14
  352. snappy/verify/edge_equations.py +80 -0
  353. snappy/verify/exceptions.py +23 -56
  354. snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +19 -15
  355. snappy/verify/interval_newton_shapes_engine.py +51 -211
  356. snappy/verify/interval_tree.py +27 -25
  357. snappy/verify/krawczyk_shapes_engine.py +47 -50
  358. snappy/verify/maximal_cusp_area_matrix/__init__.py +17 -86
  359. snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +58 -48
  360. snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +53 -57
  361. snappy/verify/{realAlgebra.py → real_algebra.py} +26 -20
  362. snappy/verify/shapes.py +10 -7
  363. snappy/verify/short_slopes.py +41 -42
  364. snappy/verify/{squareExtensions.py → square_extensions.py} +96 -92
  365. snappy/verify/test.py +59 -57
  366. snappy/verify/upper_halfspace/extended_matrix.py +5 -5
  367. snappy/verify/upper_halfspace/finite_point.py +44 -31
  368. snappy/verify/upper_halfspace/ideal_point.py +69 -57
  369. snappy/verify/volume.py +15 -12
  370. snappy/version.py +2 -3
  371. {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/METADATA +14 -12
  372. snappy-3.2.dist-info/RECORD +503 -0
  373. {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
  374. {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -1
  375. {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/top_level.txt +10 -1
  376. snappy/doc/_sources/verify_canon.rst.txt +0 -90
  377. snappy/doc/_static/classic.css +0 -266
  378. snappy/doc/_static/jquery-3.5.1.js +0 -10872
  379. snappy/doc/_static/sidebar.js +0 -159
  380. snappy/doc/_static/underscore-1.13.1.js +0 -2042
  381. snappy/doc/_static/underscore.js +0 -6
  382. snappy/doc/verify_canon.html +0 -283
  383. snappy/ppm_to_png.py +0 -243
  384. snappy/togl/__init__.py +0 -3
  385. snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
  386. snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
  387. snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  388. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  389. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
  390. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  391. snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
  392. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
  393. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
  394. snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  395. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  396. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
  397. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
  398. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  399. snappy/verify/cuspCrossSection.py +0 -1413
  400. snappy/verify/mathHelpers.py +0 -64
  401. snappy-3.0.3.dist-info/RECORD +0 -360
@@ -1,1413 +0,0 @@
1
- # Original source:
2
- # Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling
3
- # Nathan M. Dunfield, Neil R. Hoffman, Joan E. Licata
4
- # http://arxiv.org/abs/1407.7827
5
- # This code is copyrighted by Nathan Dunfield, Neil Hoffman, and Joan Licata
6
- # and released under the GNU GPL version 2 or (at your option) any later
7
- # version.
8
- #
9
- # 02/22/15 Major rewrite and checked into SnapPy repository:
10
- # handle any number of cusps,
11
- # agnostic of type of numbers for shape,
12
- # support non-orientable manifolds,
13
- # refactoring and cleanup
14
- # - Matthias Goerner
15
- #
16
- # 01/15/16 Split CuspCrossSectionClass into a base class and
17
- # two subclasses for computing real and
18
- # complex edge lengths. Added methods to ensure a cusp
19
- # neighborhood is disjoint and methods to compute the
20
- # complex edge length.
21
- #
22
- # 01/28/18 Fix an important bug: do not use built-in min for intervals.
23
-
24
- from ..sage_helper import _within_sage
25
-
26
- import math
27
-
28
- if _within_sage:
29
- # python's log and sqrt only work for floats
30
- # They would fail or convert to float losing precision
31
- from sage.functions.log import log
32
- from sage.functions.other import sqrt
33
- else:
34
- # Otherwise, define our own log and sqrt which checks whether
35
- # the given type defines a log/sqrt method and fallsback
36
- # to python's log and sqrt which has the above drawback of
37
- # potentially losing precision.
38
- import cmath
39
-
40
- def log(x):
41
- if hasattr(x, 'log'):
42
- return x.log()
43
- return cmath.log(x)
44
-
45
- def sqrt(x):
46
- if hasattr(x, 'sqrt'):
47
- return x.sqrt()
48
- return math.sqrt(x)
49
-
50
- from ..snap import t3mlite as t3m
51
- from ..snap.kernel_structures import *
52
- from ..snap.mcomplex_base import *
53
-
54
- from .mathHelpers import interval_aware_min
55
- from .exceptions import *
56
-
57
- __all__ = [
58
- 'IncompleteCuspError',
59
- 'RealCuspCrossSection',
60
- 'ComplexCuspCrossSection']
61
-
62
- class IncompleteCuspError(RuntimeError):
63
- """
64
- Exception raised when trying to construct a CuspCrossSection
65
- from a Manifold with Dehn-fillings.
66
- """
67
- def __init__(self, manifold):
68
- self.manifold = manifold
69
-
70
- def __str__(self):
71
- return (('Cannot construct CuspCrossSection from manifold with '
72
- 'Dehn-fillings: %s') % self.manifold)
73
-
74
- class HoroTriangleBase:
75
- @staticmethod
76
- def _make_second(sides, x):
77
- """
78
- Cyclically rotate sides = (a,b,c) so that x is the second entry"
79
- """
80
- i = (sides.index(x) + 2) % len(sides)
81
- return sides[i:]+sides[:i]
82
-
83
- @staticmethod
84
- def _sides_and_cross_ratios(tet, vertex, side):
85
- sides = t3m.simplex.FacesAroundVertexCounterclockwise[vertex]
86
- left_side, center_side, right_side = (
87
- HoroTriangleBase._make_second(sides, side))
88
- z_left = tet.ShapeParameters[left_side & center_side ]
89
- z_right = tet.ShapeParameters[center_side & right_side ]
90
- return left_side, center_side, right_side, z_left, z_right
91
-
92
- class RealHoroTriangle:
93
- """
94
- A horosphere cross section in the corner of an ideal tetrahedron.
95
- The sides of the triangle correspond to faces of the tetrahedron.
96
- The lengths stored for the triangle are real.
97
- """
98
- def __init__(self, tet, vertex, known_side, length_of_side):
99
- left_side, center_side, right_side, z_left, z_right = (
100
- HoroTriangleBase._sides_and_cross_ratios(tet, vertex, known_side))
101
-
102
- L = length_of_side
103
- self.lengths = { center_side : L,
104
- left_side : abs(z_left) * L,
105
- right_side : L / abs(z_right) }
106
- a, b, c = self.lengths.values()
107
- self.area = L * L * z_left.imag() / 2
108
-
109
- # Below is the usual formula for circumradius
110
- self.circumradius = a * b * c / (4 * self.area)
111
-
112
- def rescale(self, t):
113
- "Rescales the triangle by a Euclidean dilation"
114
- for face in self.lengths:
115
- self.lengths[face] *= t
116
- self.circumradius *= t
117
- self.area *= t * t
118
-
119
- @staticmethod
120
- def direction_sign():
121
- return +1
122
-
123
- # Given a vertex, cyclically order the three adjacent faces in
124
- # clockwise fashion. For each face, return the triple (face, edge, next face)
125
- # where edge is adjacent to both faces.
126
- _face_edge_face_triples_for_vertex_link = {
127
- vertex : [ (faces[i], faces[i] & faces[(i+1) % 3], faces[(i+1) % 3])
128
- for i in range(3) ]
129
- for vertex, faces in t3m.simplex.FacesAroundVertexCounterclockwise.items()
130
- }
131
-
132
- # For each vertex, return an edge connected to it
133
- _pick_an_edge_for_vertex = {
134
- vertex : [ edge
135
- for edge in t3m.simplex.OneSubsimplices
136
- if t3m.simplex.is_subset(vertex, edge) ][0]
137
- for vertex in t3m.simplex.ZeroSubsimplices
138
- }
139
-
140
- # For each (vertex, face) pair, pick one of the two edges adjacent
141
- # to both the vertex and face
142
- _pick_an_edge_for_vertex_and_face = {
143
- (vertex, face): [ edge
144
- for edge in t3m.simplex.OneSubsimplices
145
- if (t3m.simplex.is_subset(vertex, edge) and
146
- t3m.simplex.is_subset(edge, face)) ][0]
147
- for vertex in t3m.simplex.ZeroSubsimplices
148
- for face in t3m.simplex.TwoSubsimplices
149
- if t3m.simplex.is_subset(vertex, face)
150
- }
151
-
152
- class ComplexHoroTriangle:
153
- """
154
- A horosphere cross section in the corner of an ideal tetrahedron.
155
- The sides of the triangle correspond to faces of the tetrahedron.
156
- The lengths stored for the triangle are complex.
157
- """
158
- def __init__(self, tet, vertex, known_side, length_of_side):
159
- left_side, center_side, right_side, z_left, z_right = (
160
- HoroTriangleBase._sides_and_cross_ratios(tet, vertex, known_side))
161
-
162
- L = length_of_side
163
- self.lengths = { center_side : L,
164
- left_side : - z_left * L,
165
- right_side : - L / z_right }
166
- absL = abs(L)
167
- self.area = absL * absL * z_left.imag() / 2
168
-
169
- self._real_lengths_cache = None
170
-
171
- def get_real_lengths(self):
172
- if not self._real_lengths_cache:
173
- self._real_lengths_cache = {
174
- side : abs(length)
175
- for side, length in self.lengths.items() }
176
- return self._real_lengths_cache
177
-
178
- def rescale(self, t):
179
- "Rescales the triangle by a Euclidean dilation"
180
- for face in self.lengths:
181
- self.lengths[face] *= t
182
- self.area *= t * t
183
-
184
- @staticmethod
185
- def direction_sign():
186
- return -1
187
-
188
- def add_vertex_positions(self, vertex, edge, position):
189
- """
190
- Adds a dictionary vertex_positions mapping
191
- an edge (such as t3m.simplex.E01) to complex position
192
- for the vertex of the horotriangle obtained by
193
- intersecting the edge with the horosphere.
194
-
195
- Two of these positions are computed from the one given
196
- using the complex edge lengths. The given vertex and
197
- edge are t3m-style.
198
- """
199
-
200
- self.vertex_positions = {}
201
-
202
- # The three triples
203
- # (face, edge adjacent to face and next face, next face)
204
- # when going around the vertex counter clockwise
205
- vertex_link = _face_edge_face_triples_for_vertex_link[vertex]
206
-
207
- # Find for which of these triples the position is for
208
- for i in range(3):
209
- if edge == vertex_link[i][1]:
210
- break
211
-
212
- # Now go through the triples starting with the one for
213
- # which we have given the vertex position
214
- for j in range(3):
215
- face0, edge, face1 = vertex_link[(i + j) % 3]
216
- # Assign vertex position
217
- self.vertex_positions[edge] = position
218
- # Update vertex position to be for the next
219
- # edge using complex edge length
220
- position += self.lengths[face1]
221
-
222
- def lift_vertex_positions(self, lifted_position):
223
- """
224
- Lift the vertex positions of this triangle. lifted_position is
225
- used as a guide what branch of the logarithm to use.
226
-
227
- The lifted position is computed as the log of the vertex
228
- position where it is assumed that the fixed point of the
229
- holonomy is at the origin. The branch of the logarithm
230
- closest to lifted_position is used.
231
- """
232
-
233
- NumericalField = lifted_position.parent()
234
- twoPi = 2 * NumericalField.pi()
235
- I = NumericalField(1j)
236
-
237
- def adjust_log(z):
238
- # Compute log and adjust
239
- logZ = log(z)
240
- # Add multiplies of 2 * pi * I so that it is close
241
- # to lifted_position
242
- return logZ + ((lifted_position - logZ) / twoPi).imag().round() * twoPi * I
243
-
244
- self.lifted_vertex_positions = {
245
- # Take log of vertex position (assuming fixed point
246
- # is at origin).
247
- edge : adjust_log(position)
248
- for edge, position in self.vertex_positions.items()
249
- }
250
-
251
- class CuspCrossSectionBase(McomplexEngine):
252
- """
253
- Base class for RealCuspCrossSection and ComplexCuspCrossSection.
254
- """
255
-
256
- def add_structures(self, one_cocycle = None):
257
- self._add_edge_dict()
258
- self._add_cusp_cross_sections(one_cocycle)
259
-
260
- def _add_edge_dict(self):
261
- """
262
- Adds a dictionary that maps a pair of vertices to all edges
263
- of the triangulation connecting these vertices.
264
- The key is a pair (v0, v1) of integers with v0 < v1 that are the
265
- indices of the two vertices.
266
- """
267
-
268
- self._edge_dict = {}
269
- for edge in self.mcomplex.Edges:
270
- vert0, vert1 = edge.Vertices
271
- key = tuple(sorted([vert0.Index, vert1.Index]))
272
- self._edge_dict.setdefault(key, []).append(edge)
273
-
274
- def _add_cusp_cross_sections(self, one_cocycle):
275
- for T in self.mcomplex.Tetrahedra:
276
- T.horotriangles = {
277
- t3m.simplex.V0 : None,
278
- t3m.simplex.V1 : None,
279
- t3m.simplex.V2 : None,
280
- t3m.simplex.V3 : None
281
- }
282
- for cusp in self.mcomplex.Vertices:
283
- self._add_one_cusp_cross_section(cusp, one_cocycle)
284
-
285
- def _add_one_cusp_cross_section(self, cusp, one_cocycle):
286
- """
287
- Build a cusp cross section as described in Section 3.6 of the paper
288
-
289
- Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling
290
- Nathan M. Dunfield, Neil R. Hoffman, Joan E. Licata
291
- http://arxiv.org/abs/1407.7827
292
- """
293
- corner0 = cusp.Corners[0]
294
- tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
295
- face0 = t3m.simplex.FacesAroundVertexCounterclockwise[vert0][0]
296
- tet0.horotriangles[vert0] = self.HoroTriangle(tet0, vert0, face0, 1)
297
- active = [(tet0, vert0)]
298
- while active:
299
- tet0, vert0 = active.pop()
300
- for face0 in t3m.simplex.FacesAroundVertexCounterclockwise[vert0]:
301
- tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
302
- tet0, face0, vert0)
303
- if tet1.horotriangles[vert1] is None:
304
- known_side = (self.HoroTriangle.direction_sign() *
305
- tet0.horotriangles[vert0].lengths[face0])
306
- if one_cocycle:
307
- known_side *= one_cocycle[tet0.Index, face0, vert0]
308
-
309
- tet1.horotriangles[vert1] = self.HoroTriangle(
310
- tet1, vert1, face1, known_side)
311
- active.append( (tet1, vert1) )
312
-
313
- @staticmethod
314
- def _glued_to(tetrahedron, face, vertex):
315
- """
316
- Returns (other tet, other face, other vertex).
317
- """
318
- gluing = tetrahedron.Gluing[face]
319
- return tetrahedron.Neighbor[face], gluing.image(face), gluing.image(vertex)
320
-
321
- @staticmethod
322
- def _cusp_area(cusp):
323
- area = 0
324
- for corner in cusp.Corners:
325
- subsimplex = corner.Subsimplex
326
- area += corner.Tetrahedron.horotriangles[subsimplex].area
327
- return area
328
-
329
- def cusp_areas(self):
330
- """
331
- List of all cusp areas.
332
- """
333
- return [ CuspCrossSectionBase._cusp_area(cusp) for cusp in self.mcomplex.Vertices ]
334
-
335
- @staticmethod
336
- def _scale_cusp(cusp, scale):
337
- for corner in cusp.Corners:
338
- subsimplex = corner.Subsimplex
339
- corner.Tetrahedron.horotriangles[subsimplex].rescale(scale)
340
-
341
- def scale_cusps(self, scales):
342
- """
343
- Scale each cusp by Euclidean dilation by values in given array.
344
- """
345
- for cusp, scale in zip(self.mcomplex.Vertices, scales):
346
- CuspCrossSectionBase._scale_cusp(cusp, scale)
347
-
348
- def normalize_cusps(self, areas = None):
349
- """
350
- Scale cusp so that they have the given target area.
351
- Without argument, each cusp is scaled to have area 1.
352
- If the argument is a number, scale each cusp to have that area.
353
- If the argument is an array, scale each cusp by the respective
354
- entry in the array.
355
- """
356
- current_areas = self.cusp_areas()
357
- if not areas:
358
- areas = [ 1 for area in current_areas ]
359
- elif not isinstance(areas, list):
360
- areas = [ areas for area in current_areas ]
361
- scales = [ sqrt(area / current_area)
362
- for area, current_area in zip(areas, current_areas) ]
363
- self.scale_cusps(scales)
364
-
365
- def check_cusp_development_exactly(self):
366
- """
367
- Check that all side lengths of horo triangles are consistent.
368
- If the logarithmic edge equations are fulfilled, this implices
369
- that the all cusps are complete and thus the manifold is complete.
370
- """
371
-
372
- for tet0 in self.mcomplex.Tetrahedra:
373
- for vert0 in t3m.simplex.ZeroSubsimplices:
374
- for face0 in t3m.simplex.FacesAroundVertexCounterclockwise[vert0]:
375
- tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
376
- tet0, face0, vert0)
377
- side0 = tet0.horotriangles[vert0].lengths[face0]
378
- side1 = tet1.horotriangles[vert1].lengths[face1]
379
- if not side0 == side1 * self.HoroTriangle.direction_sign():
380
- raise CuspDevelopmentExactVerifyError(side0, side1)
381
-
382
- @staticmethod
383
- def _shape_for_edge_embedding(tet, perm):
384
- """
385
- Given an edge embedding, find the shape assignment for it.
386
- If the edge embedding flips orientation, apply conjugate inverse.
387
- """
388
-
389
- # Get the shape for this edge embedding
390
- subsimplex = perm.image(3)
391
-
392
- # Figure out the orientation of this tetrahedron
393
- # with respect to the edge, apply conjugate inverse
394
- # if differ
395
- if perm.sign():
396
- return 1 / tet.ShapeParameters[subsimplex].conjugate()
397
- else:
398
- return tet.ShapeParameters[subsimplex]
399
-
400
- def check_polynomial_edge_equations_exactly(self):
401
- """
402
- Check that the polynomial edge equations are fulfilled exactly.
403
-
404
- We use the conjugate inverse to support non-orientable manifolds.
405
- """
406
-
407
- # For each edge
408
- for edge in self.mcomplex.Edges:
409
- # The exact value when evaluating the edge equation
410
- val = 1
411
-
412
- # Iterate through edge embeddings
413
- for tet, perm in edge.embeddings():
414
- # Accumulate shapes of the edge exactly
415
- val *= CuspCrossSectionBase._shape_for_edge_embedding(
416
- tet, perm)
417
-
418
- if not val == 1:
419
- raise EdgeEquationExactVerifyError(val)
420
-
421
- def check_logarithmic_edge_equations_and_positivity(self, NumericalField):
422
- """
423
- Check that the shapes have positive imaginary part and that the
424
- logarithmic gluing equations have small error.
425
-
426
- The shapes are coerced into the field given as argument before the
427
- logarithm is computed. It can be, e.g., a ComplexIntervalField.
428
- """
429
-
430
- # For each edge
431
- for edge in self.mcomplex.Edges:
432
-
433
- # The complex interval arithmetic value of the logarithmic
434
- # version of the edge equation.
435
- log_sum = 0
436
-
437
- # Iterate through edge embeddings
438
- for tet, perm in edge.embeddings():
439
-
440
- shape = CuspCrossSectionBase._shape_for_edge_embedding(
441
- tet, perm)
442
-
443
- numerical_shape = NumericalField(shape)
444
-
445
- log_shape = log(numerical_shape)
446
-
447
- # Note that this is true for z in R, R < 0 as well,
448
- # but then it would fail for 1 - 1/z or 1 / (1-z)
449
-
450
- if not (log_shape.imag() > 0):
451
- raise ShapePositiveImaginaryPartNumericalVerifyError(
452
- numerical_shape)
453
-
454
- # Take logarithm and accumulate
455
- log_sum += log_shape
456
-
457
- twoPiI = NumericalField.pi() * NumericalField(2j)
458
-
459
- if not abs(log_sum - twoPiI) < NumericalField(1e-7):
460
- raise EdgeEquationLogLiftNumericalVerifyError(log_sum)
461
-
462
- def _testing_check_against_snappea(self, epsilon):
463
- # Short-hand
464
- ZeroSubs = t3m.simplex.ZeroSubsimplices
465
-
466
- # SnapPea kernel results
467
- snappea_tilts, snappea_edges = self.manifold._cusp_cross_section_info()
468
-
469
- # Check edge lengths
470
- # Iterate through tet
471
- for tet, snappea_tet_edges in zip(self.mcomplex.Tetrahedra, snappea_edges):
472
- # Iterate through vertices of tet
473
- for v, snappea_triangle_edges in zip(ZeroSubs, snappea_tet_edges):
474
- # Iterate through faces touching that vertex
475
- for f, snappea_triangle_edge in zip(ZeroSubs,
476
- snappea_triangle_edges):
477
- if v != f:
478
- F = t3m.simplex.comp(f)
479
- length = abs(tet.horotriangles[v].lengths[F])
480
- if not abs(length - snappea_triangle_edge) < epsilon:
481
- raise ConsistencyWithSnapPeaNumericalVerifyError(
482
- snappea_triangle_edge, length)
483
-
484
- @staticmethod
485
- def _lower_bound_max_area_triangle_for_std_form(z):
486
- """
487
- Imagine an ideal tetrahedron in the upper half space model with
488
- vertices at 0, 1, z, and infinity. Pick the lowest (horizontal)
489
- horosphere about infinity that intersects the tetrahedron in a
490
- triangle, i.e, just touches the face opposite to infinity.
491
- This method will return the hyperbolic area of that triangle.
492
-
493
- The result is the same for z, 1/(1-z), and 1 - 1/z.
494
- """
495
-
496
- # First, we check whether the center of the circumcenter of the
497
- # triangle containing 0, 1, and z is contained within the triangle.
498
-
499
- # If the center is outside of the triangle, the Euclidean height of the
500
- # horosphere is that of the highest point of the three arcs between
501
- # 0, 1, and z.
502
- # The height is half of the length e of the longest edge of the
503
- # triangle.
504
- # Given that the Euclidean area of the triangle is given by
505
- # A = Im(z) / 2, its hyperbolic area is
506
- # A / (e/2)^2 = Im(z) / 2 / (e^2/4) = 2 * Im(z) / e^2
507
- #
508
- # This is similar to fef_gen.py except that it had a bug in version 1.3
509
- # and implemented the last inequality the other way around!
510
- #
511
- # The center is outside if one of the angles is > pi/2, cover each case
512
- #
513
-
514
- # Angle at 0 is > pi/2
515
- if z.real() < 0:
516
- # So longest edge of the triangle must be opposite of 0
517
- return 2 * z.imag() / (abs(z - 1) ** 2)
518
- # Angle at 1 is > pi/2
519
- if z.real() > 1:
520
- # So longest edge of the triangle must be opposite of 1
521
- return 2 * z.imag() / (abs(z) ** 2)
522
- # Angle at z is > pi/2
523
- if abs(2 * z - 1) < 1:
524
- # So longest edge of the triangle must be opposite of z
525
- return 2 * z.imag()
526
-
527
- # An interval note: the circumcenter might still be in the triangle,
528
- # we just were not able to prove it. The area we compute is a lower
529
- # bound in any case. Thus, the function is not guaranteed to compute
530
- # the maximal area, just a lower bound for it.
531
-
532
- # Now cover the case that the center of the triangle is within the
533
- # triangle.
534
-
535
- # The Euclidean area of the above triangle is given by
536
- # A = Im(z) / 2
537
- # and its Euclidean side lengths are given by
538
- # a = 1, b = abs(z), and c = abs(z - 1).
539
- #
540
- # The Euclidean circumradius r of the triangle is given by the usual
541
- # formula
542
- # r = a * b * c / (4 * A)
543
- #
544
- # This is also the Euclidean radius of the circle containing 0, 1, and
545
- # z and of the halfsphere above that circle that contains the face
546
- # opposite to infinity.
547
- # Therefore, r is also the Euclidean height of the above horosphere and
548
- # hence, the hyperbolic metric at that height is 1/r.
549
- # So the hyperbolic area of the triangle becomes
550
- #
551
- # A / r^2 = A / (a * b * c / (4 * A))^2 = 16 * A^3 / (a * b * c)^2
552
- # = 2 * Im(z)^3 / (abs(z) * abs(z-1)) ^ 2
553
-
554
- return 2 * z.imag() ** 3 / (abs(z) * abs(z - 1)) ** 2
555
-
556
- def ensure_std_form(self, allow_scaling_up = False):
557
- """
558
- Makes sure that the cusp neighborhoods intersect each tetrahedron
559
- in standard form by scaling the cusp neighborhoods down if necessary.
560
- """
561
-
562
- # For each cusp, save the scaling factors for all triangles so that
563
- # we can later take the minimum to scale each cusp.
564
- if allow_scaling_up:
565
- area_scales = [ [] for v in self.mcomplex.Vertices ]
566
- else:
567
- # Add 1 so that we never scale the cusp area up, just down.
568
- area_scales = [ [1] for v in self.mcomplex.Vertices ]
569
-
570
- for tet in self.mcomplex.Tetrahedra:
571
- # Compute maximal area of a triangle for standard form
572
- z = tet.ShapeParameters[t3m.simplex.E01]
573
- max_area = ComplexCuspCrossSection._lower_bound_max_area_triangle_for_std_form(z)
574
-
575
- # For all four triangles corresponding to the four vertices of the
576
- # tetrahedron
577
- for zeroSubsimplex, triangle in tet.horotriangles.items():
578
- # Compute the area scaling factor
579
- area_scale = max_area / triangle.area
580
- # Get the cusp we need to scale
581
- vertex = tet.Class[zeroSubsimplex]
582
- # Remember it
583
- area_scales[vertex.Index].append(area_scale)
584
-
585
- # Compute scale per cusp as sqrt of the minimum of all area scales
586
- # of all triangles in that cusp
587
- scales = [ sqrt(interval_aware_min(s)) for s in area_scales ]
588
-
589
- self.scale_cusps(scales)
590
-
591
- @staticmethod
592
- def _exp_distance_edge(edge):
593
- """
594
- Given an edge, returns the exp of the (hyperbolic) distance of the
595
- two cusp neighborhoods at the ends of the edge measured along that
596
- edge.
597
- """
598
-
599
- # Get one embedding of the edge, tet is adjacent to that edge
600
- tet, perm = next(edge.embeddings())
601
- # Get a face of the tetrahedron adjacent to that edge
602
- face = 15 - (1 << perm[3])
603
- # At each end of the edge, this tetrahedron gives us one
604
- # triangle of a cusp cross-section and the intersection of the
605
- # face with the cusp cross-section gives us one edge of the
606
- # triangle.
607
- # Multiply the two edge lengths. If these are complex edge
608
- # lengths, the result is actually the square of a Ptolemy
609
- # coordinate (see C. Zickert, The volume and Chern-Simons
610
- # invariant of a representation).
611
- ptolemy_sqr = (tet.horotriangles[1 << perm[0]].lengths[face] *
612
- tet.horotriangles[1 << perm[1]].lengths[face])
613
- # Take abs value in case we have complex edge lengths.
614
- return abs(1 / ptolemy_sqr)
615
-
616
- @staticmethod
617
- def _exp_distance_of_edges(edges):
618
- """
619
- Given edges between two (not necessarily distinct) cusps,
620
- compute the exp of the smallest (hyperbolic) distance of the
621
- two cusp neighborhoods measured along all the given edges.
622
- """
623
- return interval_aware_min(
624
- [ ComplexCuspCrossSection._exp_distance_edge(edge)
625
- for edge in edges])
626
-
627
- def ensure_disjoint_on_edges(self):
628
- """
629
- Scales the cusp neighborhoods down until they are disjoint when
630
- intersected with the edges of the triangulations.
631
-
632
- Given an edge of a triangulation, we can easily compute the signed
633
- distance between the two cusp neighborhoods at the ends of the edge
634
- measured along that edge. Thus, we can easily check that all the
635
- distances measured along all the edges are positive and scale the
636
- cusps down if necessary.
637
-
638
- Unfortunately, this is not sufficient to ensure that two cusp
639
- neighborhoods are disjoint since there might be a geodesic between
640
- the two cusps such that the distance between the two cusps measured
641
- along the geodesic is shorter than measured along any edge of the
642
- triangulation.
643
-
644
- Thus, it is necessary to call ensure_std_form as well:
645
- it will make sure that the cusp neighborhoods are small enough so
646
- that they intersect the tetrahedra in "standard" form.
647
- Here, "standard" form means that the corresponding horoball about a
648
- vertex of a tetrahedron intersects the three faces of the tetrahedron
649
- adjacent to the vertex but not the one opposite to the vertex.
650
-
651
- For any geometric triangulation, standard form and positive distance
652
- measured along all edges of the triangulation is sufficient for
653
- disjoint neighborhoods.
654
-
655
- The SnapPea kernel uses the proto-canonical triangulation associated
656
- to the cusp neighborhood to get around this when computing the
657
- "reach" and the "stoppers" for the cusps.
658
-
659
- **Remark:** This means that the cusp neighborhoods might be scaled down
660
- more than necessary. Related open questions are: given maximal disjoint
661
- cusp neighborhoods (maximal in the sense that no neighborhood can be
662
- expanded without bumping into another or itself), is there always a
663
- geometric triangulation intersecting the cusp neighborhoods in standard
664
- form? Is there an easy algorithm to find this triangulation, e.g., by
665
- applying a 2-3 move whenever we see a non-standard intersection?
666
- """
667
-
668
- num_cusps = len(self.mcomplex.Vertices)
669
-
670
- # First check for every cusp that its cusp neighborhood does not bump
671
- # into itself - at least when measured along the edges of the
672
- # triangulation
673
- for i in range(num_cusps):
674
- # Get all edges
675
- if (i,i) in self._edge_dict:
676
- dist = ComplexCuspCrossSection._exp_distance_of_edges(
677
- self._edge_dict[(i,i)])
678
- # For verified computations, do not use the seemingly
679
- # equivalent dist <= 1. We want to scale down every time
680
- # we cannot ensure they are disjoint.
681
- if not (dist > 1):
682
- scale = sqrt(dist)
683
- # Scale the one cusp
684
- ComplexCuspCrossSection._scale_cusp(self.mcomplex.Vertices[i],
685
- scale)
686
-
687
- # Now check for the pairs of two distinct cusps that the corresponding
688
- # neighborhoods do not bump into each other - at least when measured
689
- # along the edges of the triangulation
690
- for i in range(num_cusps):
691
- for j in range(i):
692
- # Get all edges
693
- if (j,i) in self._edge_dict:
694
- dist = ComplexCuspCrossSection._exp_distance_of_edges(
695
- self._edge_dict[(j,i)])
696
- # Above comment applies
697
- if not (dist > 1):
698
- # Scale the two cusps by the same amount
699
- # We have choices here, for example, we could only
700
- # scale one cusp by dist.
701
- scale = sqrt(dist)
702
- ComplexCuspCrossSection._scale_cusp(self.mcomplex.Vertices[i],
703
- scale)
704
- ComplexCuspCrossSection._scale_cusp(self.mcomplex.Vertices[j],
705
- scale)
706
-
707
- class RealCuspCrossSection(CuspCrossSectionBase):
708
- """
709
- A t3m triangulation with real edge lengths of cusp cross sections built
710
- from a cusped (possibly non-orientable) SnapPy manifold M with a hyperbolic
711
- structure specified by shapes. It can scale the cusps to areas that can be
712
- specified or scale them such that they are disjoint.
713
- It can also compute the "tilts" used in the Tilt Theorem, see
714
- ``canonize_part_1.c``.
715
-
716
- The computations are agnostic about the type of numbers provided as shapes
717
- as long as they provide ``+``, ``-``, ``*``, ``/``, ``conjugate()``,
718
- ``im()``, ``abs()``, ``sqrt()``.
719
- Shapes can be a numerical type such as ComplexIntervalField or an exact
720
- type (supporting sqrt) such as QQbar.
721
-
722
- The resulting edge lengths and tilts will be of the type returned by
723
- applying the above operations to the shapes. For example, if the shapes
724
- are in ComplexIntervalField, the edge lengths and tilts are elements in
725
- RealIntervalField.
726
-
727
- **Remark:** The real edge lengths could also be obtained from the complex
728
- edge lengths computed by ``ComplexCuspCrossSection``, but this has two
729
- drawbacks. The times at which we apply ``abs`` or ``sqrt`` during the
730
- development and rescaling of the cusps would be different. Though this
731
- gives the same values, the resulting representation of these values by an
732
- exact number type (such as the ones in ``squareExtension.py``) might be
733
- prohibitively more complicated. Furthermore, ``ComplexCuspCrossSection``
734
- does not work for non-orientable manifolds (it does not implement working
735
- in a cusp's double-cover like the SnapPea kernel does).
736
- """
737
-
738
- HoroTriangle = RealHoroTriangle
739
-
740
- @staticmethod
741
- def fromManifoldAndShapes(manifold, shapes):
742
- """
743
- **Examples:**
744
-
745
- Initialize from shapes provided from the floats returned by
746
- tetrahedra_shapes. The tilts appear to be negative but are not
747
- verified by interval arithmetics::
748
-
749
- >>> from snappy import Manifold
750
- >>> M = Manifold("m004")
751
- >>> M.canonize()
752
- >>> shapes = M.tetrahedra_shapes('rect')
753
- >>> e = RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
754
- >>> e.normalize_cusps()
755
- >>> e.compute_tilts()
756
- >>> tilts = e.read_tilts()
757
- >>> for tilt in tilts:
758
- ... print('%.8f' % tilt)
759
- -0.31020162
760
- -0.31020162
761
- -0.31020162
762
- -0.31020162
763
- -0.31020162
764
- -0.31020162
765
- -0.31020162
766
- -0.31020162
767
-
768
- Use verified intervals:
769
-
770
- sage: from snappy.verify import *
771
- sage: M = Manifold("m004")
772
- sage: M.canonize()
773
- sage: shapes = M.tetrahedra_shapes('rect', intervals=True)
774
-
775
- Verify that the tetrahedra shapes form a complete manifold:
776
-
777
- sage: check_logarithmic_gluing_equations_and_positively_oriented_tets(M,shapes)
778
- sage: e = RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
779
- sage: e.normalize_cusps()
780
- sage: e.compute_tilts()
781
-
782
-
783
- Tilts are verified to be negative:
784
-
785
- sage: [tilt < 0 for tilt in e.read_tilts()]
786
- [True, True, True, True, True, True, True, True]
787
-
788
- Setup necessary things in Sage:
789
-
790
- sage: from sage.rings.qqbar import QQbar
791
- sage: from sage.rings.rational_field import RationalField
792
- sage: from sage.rings.polynomial.polynomial_ring import polygen
793
- sage: from sage.rings.real_mpfi import RealIntervalField
794
- sage: from sage.rings.complex_interval_field import ComplexIntervalField
795
- sage: x = polygen(RationalField())
796
- sage: RIF = RealIntervalField()
797
- sage: CIF = ComplexIntervalField()
798
-
799
- sage: M = Manifold("m412")
800
- sage: M.canonize()
801
-
802
- Make our own exact shapes using Sage. They are the root of the given
803
- polynomial isolated by the given interval.
804
-
805
- sage: r=QQbar.polynomial_root(x**2-x+1,CIF(RIF(0.49,0.51),RIF(0.86,0.87)))
806
- sage: shapes = 5 * [r]
807
- sage: e=RealCuspCrossSection.fromManifoldAndShapes(M, shapes)
808
- sage: e.normalize_cusps()
809
-
810
- The following three lines verify that we have shapes giving a complete
811
- hyperbolic structure. The last one uses complex interval arithmetics.
812
-
813
- sage: e.check_polynomial_edge_equations_exactly()
814
- sage: e.check_cusp_development_exactly()
815
- sage: e.check_logarithmic_edge_equations_and_positivity(CIF)
816
-
817
- Because we use exact types, we can verify that each tilt is either
818
- negative or exactly zero.
819
-
820
- sage: e.compute_tilts()
821
- sage: [(tilt < 0, tilt == 0) for tilt in e.read_tilts()]
822
- [(True, False), (True, False), (False, True), (True, False), (True, False), (True, False), (True, False), (False, True), (True, False), (True, False), (True, False), (False, True), (False, True), (False, True), (False, True), (False, True), (True, False), (True, False), (False, True), (True, False)]
823
-
824
- Some are exactly zero, so the canonical cell decomposition has
825
- non-tetrahedral cells. In fact, the one cell is a cube. We can obtain
826
- the retriangulation of the canonical cell decomposition as follows:
827
-
828
- sage: e.compute_tilts()
829
- sage: opacities = [tilt < 0 for tilt in e.read_tilts()]
830
- sage: N = M._canonical_retriangulation()
831
- sage: N.num_tetrahedra()
832
- 12
833
-
834
- The manifold m412 has 8 isometries, the above code certified that using
835
- exact arithmetic:
836
- sage: len(N.isomorphisms_to(N))
837
- 8
838
- """
839
- for cusp_info in manifold.cusp_info():
840
- if not cusp_info['complete?']:
841
- raise IncompleteCuspError(manifold)
842
-
843
- m = t3m.Mcomplex(manifold)
844
-
845
- t = TransferKernelStructuresEngine(m, manifold)
846
- t.reindex_cusps_and_transfer_peripheral_curves()
847
- t.add_shapes(shapes)
848
-
849
- c = RealCuspCrossSection(m)
850
- c.add_structures()
851
-
852
- # For testing against SnapPea kernel data
853
- c.manifold = manifold
854
-
855
- return c
856
-
857
- @staticmethod
858
- def _tet_tilt(tet, face):
859
- "The tilt of the face of the tetrahedron."
860
-
861
- v = t3m.simplex.comp(face)
862
-
863
- ans = 0
864
- for w in t3m.simplex.ZeroSubsimplices:
865
- if v == w:
866
- c_w = 1
867
- else:
868
- z = tet.ShapeParameters[v | w]
869
- c_w = -z.real() / abs(z)
870
- R_w = tet.horotriangles[w].circumradius
871
- ans += c_w * R_w
872
- return ans
873
-
874
- @staticmethod
875
- def _face_tilt(face):
876
- """
877
- Tilt of a face in the trinagulation: this is the sum of
878
- the two tilts of the two faces of the two tetrahedra that are
879
- glued. The argument is a t3m.simplex.Face.
880
- """
881
-
882
- return sum([ RealCuspCrossSection._tet_tilt(corner.Tetrahedron,
883
- corner.Subsimplex)
884
- for corner in face.Corners ])
885
-
886
- def compute_tilts(self):
887
- """
888
- Computes all tilts. They are written to the instances of
889
- t3m.simplex.Face and can be accessed as
890
- [ face.Tilt for face in crossSection.Faces].
891
- """
892
-
893
- for face in self.mcomplex.Faces:
894
- face.Tilt = RealCuspCrossSection._face_tilt(face)
895
-
896
- def read_tilts(self):
897
- """
898
- After compute_tilts() has been called, put the tilt values into an
899
- array containing the tilt of face 0, 1, 2, 3 of the first tetrahedron,
900
- ... of the second tetrahedron, ....
901
- """
902
-
903
- def index_of_face_corner(corner):
904
- face_index = t3m.simplex.comp(corner.Subsimplex).bit_length() - 1
905
- return 4 * corner.Tetrahedron.Index + face_index
906
-
907
- tilts = (4 * len(self.mcomplex.Tetrahedra)) * [ None ]
908
-
909
- # For each face of the triangulation
910
- for face in self.mcomplex.Faces:
911
- for corner in face.Corners:
912
- tilts[index_of_face_corner(corner)] = face.Tilt
913
-
914
- return tilts
915
-
916
- def _testing_check_against_snappea(self, epsilon):
917
- """
918
- Compare the computed edge lengths and tilts against the one computed by
919
- the SnapPea kernel.
920
-
921
- >>> from snappy import Manifold
922
-
923
- Convention of the kernel is to use (3/8) sqrt(3) as area (ensuring that
924
- cusp neighborhoods are disjoint).
925
-
926
- >>> cusp_area = 0.649519052838329
927
-
928
- >>> for name in ['m009', 'm015', 't02333']:
929
- ... M = Manifold(name)
930
- ... e = RealCuspCrossSection.fromManifoldAndShapes(M, M.tetrahedra_shapes('rect'))
931
- ... e.normalize_cusps(cusp_area)
932
- ... e._testing_check_against_snappea(1e-10)
933
-
934
- """
935
-
936
- CuspCrossSectionBase._testing_check_against_snappea(self, epsilon)
937
-
938
- # Short-hand
939
- TwoSubs = t3m.simplex.TwoSubsimplices
940
-
941
- # SnapPea kernel results
942
- snappea_tilts, snappea_edges = self.manifold._cusp_cross_section_info()
943
-
944
- # Check tilts
945
- # Iterate through tet
946
- for tet, snappea_tet_tilts in zip(self.mcomplex.Tetrahedra, snappea_tilts):
947
- # Iterate through vertices of tet
948
- for f, snappea_tet_tilt in zip(TwoSubs, snappea_tet_tilts):
949
- tilt = RealCuspCrossSection._tet_tilt(tet, f)
950
- if not abs(snappea_tet_tilt - tilt) < epsilon:
951
- raise ConsistencyWithSnapPeaNumericalVerifyError(
952
- snappea_tet_tilt, tilt)
953
-
954
- class ComplexCuspCrossSection(CuspCrossSectionBase):
955
- """
956
- Similarly to RealCuspCrossSection with the following differences: it
957
- computes the complex edge lengths and the cusp translations (instead
958
- of the tilts) and it only works for orientable manifolds.
959
-
960
- The same comment applies about the type of the shapes. The resulting
961
- edge lengths and translations will be of the same type as the shapes.
962
-
963
- For shapes corresponding to a non-boundary unipotent representation
964
- (in other words, a manifold having an incomplete cusp), a cusp can
965
- be developed if an appropriate 1-cocycle is given. The 1-cocycle
966
- is a cellular cocycle in the dual of the cusp triangulations and
967
- represents an element in H^1(boundary M; C^*) that must match the
968
- PSL(2,C) boundary holonomy of the representation.
969
- It is encoded as dictionary with key (tet index, t3m face, t3m vertex).
970
- """
971
-
972
- HoroTriangle = ComplexHoroTriangle
973
-
974
- @staticmethod
975
- def fromManifoldAndShapes(manifold, shapes, one_cocycle = None):
976
- if not one_cocycle:
977
- for cusp_info in manifold.cusp_info():
978
- if not cusp_info['complete?']:
979
- raise IncompleteCuspError(manifold)
980
-
981
- if not manifold.is_orientable():
982
- raise RuntimeError("Non-orientable")
983
-
984
- m = t3m.Mcomplex(manifold)
985
-
986
- t = TransferKernelStructuresEngine(m, manifold)
987
- t.reindex_cusps_and_transfer_peripheral_curves()
988
- t.add_shapes(shapes)
989
-
990
- if one_cocycle == 'develop':
991
- resolved_one_cocycle = None
992
- else:
993
- resolved_one_cocycle = one_cocycle
994
-
995
- c = ComplexCuspCrossSection(m)
996
- c.add_structures(resolved_one_cocycle)
997
-
998
- # For testing against SnapPea kernel data
999
- c.manifold = manifold
1000
-
1001
- return c
1002
-
1003
- def _dummy_for_testing(self):
1004
- """
1005
- Compare the computed edge lengths and tilts against the one computed by
1006
- the SnapPea kernel.
1007
-
1008
- >>> from snappy import Manifold
1009
-
1010
- Convention of the kernel is to use (3/8) sqrt(3) as area (ensuring that
1011
- cusp neighborhoods are disjoint).
1012
-
1013
- >>> cusp_area = 0.649519052838329
1014
-
1015
- >>> for name in ['m009', 'm015', 't02333']:
1016
- ... M = Manifold(name)
1017
- ... e = ComplexCuspCrossSection.fromManifoldAndShapes(M, M.tetrahedra_shapes('rect'))
1018
- ... e.normalize_cusps(cusp_area)
1019
- ... e._testing_check_against_snappea(1e-10)
1020
-
1021
- """
1022
-
1023
- @staticmethod
1024
- def _get_translation(vertex, ml):
1025
- """
1026
- Compute the translation corresponding to the meridian (ml = 0) or
1027
- longitude (ml = 1) of the given cusp.
1028
- """
1029
-
1030
- # Accumulate result
1031
- result = 0
1032
-
1033
- # For each triangle of this cusp's cross-section
1034
- for corner in vertex.Corners:
1035
- # Get the corresponding tetrahedron
1036
- tet = corner.Tetrahedron
1037
- # Get the corresponding vertex of this tetrahedron
1038
- subsimplex = corner.Subsimplex
1039
- # Get the three faces of the tetrahedron adjacent to that vertex
1040
- # Each one intersects the cusp cross-section in an edge of
1041
- # the triangle.
1042
- faces = t3m.simplex.FacesAroundVertexCounterclockwise[subsimplex]
1043
- # Get the data for this triangle
1044
- triangle = tet.horotriangles[subsimplex]
1045
-
1046
- # Restrict the peripheral curve data to this triangle.
1047
- # The result consists of four integers, but the one at
1048
- # subsimplex will always be zero, so effectively, it
1049
- # is three integers corresponding to the three sides of the
1050
- # triangle.
1051
- # Each of these integers tells us how often the peripheral curve
1052
- # "enters" the triangle from the corresponding side of the
1053
- # triangle.
1054
- # Each time the peripheral curve "enters" the triangle through a
1055
- # side, its contribution to the translation is the vector from the
1056
- # center of the side to the center of the triangle.
1057
- curves = tet.PeripheralCurves[ml][0][subsimplex]
1058
-
1059
- # We know need to compute this contribution to the translation.
1060
- # Imagine a triangle with complex edge lengths e_0, e_1, e_2 and,
1061
- # without loss of generality, move it such that its vertices are
1062
- # at v_0 = 0, v_1 = e_0, v_2 = e_0 + e_1.
1063
- # The center of the triangle is at
1064
- # c = (v_0 + v_1 + v_2) / 3 = 2 * e_0 / 3 + e_1 / 3.
1065
- # The vector from the center of the side corresponding to e_0
1066
- # to the center of the triangle is given by
1067
- # c - e_0 / 2 = e_0 / 6 + e_1 / 3
1068
- #
1069
- # If the peripheral curves enters the side of the triangle
1070
- # corresponding to e_i n_i-times, then the total contribution
1071
- # with respect to that triangle is given by
1072
- # n_0 * (e_0 / 6 + e_1 / 3)
1073
- # + n_1 * (e_1 / 6 + e_2 / 3)
1074
- # + n_2 * (e_2 / 6 + e_0 / 3)
1075
- # = ( (n_0 + 2 * n_2) * e_0
1076
- # + (n_1 + 2 * n_0) * e_1
1077
- # + (n_2 + 2 * n_1) * e_2) / 6
1078
- #
1079
- # = (sum_{i=0,1,2} (n_i + 2 * n_{i+2}) * e_i) / 6
1080
-
1081
- # Implement this sum
1082
- for i in range(3):
1083
- # Find the t3m faces corresponding to two edges of this
1084
- # triangle
1085
- this_face = faces[ i ]
1086
- prev_face = faces[(i+2) % 3]
1087
-
1088
- # n_i + 2 * n_{i+2} in above notation
1089
- f = curves[this_face] + 2 * curves[prev_face]
1090
-
1091
- # (n_i + 2 * n_{i+2}) * e_i in above notation
1092
- result += f * triangle.lengths[this_face]
1093
-
1094
- return result / 6
1095
-
1096
- @staticmethod
1097
- def _compute_translations(vertex):
1098
- vertex.Translations = [
1099
- ComplexCuspCrossSection._get_translation(vertex, i)
1100
- for i in range(2) ]
1101
-
1102
- def compute_translations(self):
1103
- for vertex in self.mcomplex.Vertices:
1104
- ComplexCuspCrossSection._compute_translations(vertex)
1105
-
1106
- @staticmethod
1107
- def _get_normalized_translations(vertex):
1108
- """
1109
- Compute the translations corresponding to the merdian and longitude of
1110
- the given cusp.
1111
- """
1112
-
1113
- m, l = vertex.Translations
1114
- return m / l * abs(l), abs(l)
1115
-
1116
- def all_normalized_translations(self):
1117
- """
1118
- Compute the translations corresponding to the meridian and longitude
1119
- for each cusp.
1120
- """
1121
-
1122
- self.compute_translations()
1123
- return [ ComplexCuspCrossSection._get_normalized_translations(vertex)
1124
- for vertex in self.mcomplex.Vertices ]
1125
-
1126
- @staticmethod
1127
- def _compute_cusp_shape(vertex):
1128
- m, l = vertex.Translations
1129
- return (l / m).conjugate()
1130
-
1131
- def cusp_shapes(self):
1132
- """
1133
- Compute the cusp shapes as conjugate of the quotient of the translations
1134
- corresponding to the longitude and meridian for each cusp (SnapPea
1135
- kernel convention).
1136
- """
1137
- self.compute_translations()
1138
- return [ ComplexCuspCrossSection._compute_cusp_shape(vertex)
1139
- for vertex in self.mcomplex.Vertices ]
1140
-
1141
- def add_vertex_positions_to_horotriangles(self):
1142
- """
1143
- Develops cusp to assign to each horotriangle the positions of its three
1144
- vertices in the Euclidean plane.
1145
-
1146
- Note: For a complete cusp, this is defined only up to translating the
1147
- entire triangle by translations generated by meridian and longitude.
1148
-
1149
- For an incomplete cusp, this is defined only up to
1150
- similarities generated by the meridian and longitude. The
1151
- positions can be moved such that the fixed point of these
1152
- similarities is at the origin by calling
1153
- move_fixed_point_to_zero after
1154
- add_vertex_positions_to_horotriangles.
1155
-
1156
- Note: This is not working when one_cocycle is passed during the
1157
- construction of the cusp cross section.
1158
- """
1159
- for cusp in self.mcomplex.Vertices:
1160
- self._add_one_cusp_vertex_positions(cusp)
1161
-
1162
- def _add_one_cusp_vertex_positions(self, cusp):
1163
- """
1164
- Procedure is similar to _add_one_cusp_cross_section
1165
- """
1166
-
1167
- corner0 = cusp.Corners[0]
1168
- tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
1169
- zero = tet0.ShapeParameters[t3m.simplex.E01].parent()(0)
1170
- tet0.horotriangles[vert0].add_vertex_positions(
1171
- vert0, _pick_an_edge_for_vertex[vert0], zero)
1172
-
1173
- active = [(tet0, vert0)]
1174
-
1175
- # Pairs (tet index, vertex) indicating what has already been
1176
- # visited
1177
- visited = set()
1178
-
1179
- while active:
1180
- tet0, vert0 = active.pop()
1181
- for face0 in t3m.simplex.FacesAroundVertexCounterclockwise[vert0]:
1182
- tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
1183
- tet0, face0, vert0)
1184
- if not (tet1.Index, vert1) in visited:
1185
- edge0 = _pick_an_edge_for_vertex_and_face[vert0, face0]
1186
- edge1 = tet0.Gluing[face0].image(edge0)
1187
-
1188
- tet1.horotriangles[vert1].add_vertex_positions(
1189
- vert1,
1190
- edge1,
1191
- tet0.horotriangles[vert0].vertex_positions[edge0])
1192
-
1193
- active.append( (tet1, vert1) )
1194
- visited.add((tet1.Index, vert1))
1195
-
1196
- def _debug_show_horotriangles(self, cusp = 0):
1197
- from sage.all import line, real, imag
1198
-
1199
- self.add_vertex_positions_to_horotriangles()
1200
-
1201
- return sum(
1202
- [ line( [ (real(z0), imag(z0)),
1203
- (real(z1), imag(z1)) ] )
1204
- for tet in self.mcomplex.Tetrahedra
1205
- for V, h in tet.horotriangles.items()
1206
- for z0 in h.vertex_positions.values()
1207
- for z1 in h.vertex_positions.values()
1208
- if tet.Class[V].Index == cusp ])
1209
-
1210
- def _debug_show_lifted_horotriangles(self, cusp = 0):
1211
- from sage.all import line, real, imag
1212
-
1213
- self.add_vertex_positions_to_horotriangles()
1214
-
1215
- return sum(
1216
- [ line( [ (real(z0), imag(z0)),
1217
- (real(z1), imag(z1)) ] )
1218
- for tet in self.mcomplex.Tetrahedra
1219
- for V, h in tet.horotriangles.items()
1220
- for z0 in h.lifted_vertex_positions.values()
1221
- for z1 in h.lifted_vertex_positions.values()
1222
- if tet.Class[V].Index == cusp ])
1223
-
1224
- def move_fixed_point_to_zero(self):
1225
- """
1226
- Determines the fixed point of the holonomies for all
1227
- incomplete cusps. Then moves the vertex positions of the
1228
- corresponding cusp triangles so that the fixed point is at the
1229
- origin.
1230
-
1231
- It also add the boolean v.is_complete to all vertices of the
1232
- triangulation to mark whether the corresponding cusp is
1233
- complete or not.
1234
- """
1235
-
1236
- # For each cusp
1237
- for cusp, cusp_info in zip(self.mcomplex.Vertices,
1238
- self.manifold.cusp_info()):
1239
-
1240
- cusp.is_complete = cusp_info['complete?']
1241
- if not cusp.is_complete:
1242
- # For an incomplete cusp, compute fixed point
1243
- fixed_pt = self._compute_cusp_fixed_point(cusp)
1244
- for corner in cusp.Corners:
1245
- tet, vert = corner.Tetrahedron, corner.Subsimplex
1246
- trig = tet.horotriangles[vert]
1247
- # Move all vertex positions so that fixed point
1248
- # is at origin
1249
- trig.vertex_positions = {
1250
- edge : position - fixed_pt
1251
- for edge, position in trig.vertex_positions.items() }
1252
-
1253
- def _compute_cusp_fixed_point(self, cusp):
1254
- """
1255
- Compute fixed point for an incomplete cusp.
1256
- """
1257
-
1258
- # Given a horotriangle trig0 with a vertex and edge, let
1259
- # l0 be the complex position of the vertex and p0 the complex
1260
- # edge length.
1261
- # Let trig1 be the horotriangle glued to trig0 along the edge
1262
- # and the l1 and p1 be the corresponding position and edge length
1263
- # (traversed the opposite direction) in the other horotriangle.
1264
- #
1265
- # Then the similarity is described the complex number z = -l1 / l0
1266
- # which is one or the holonomy of meridian or longitude (depending
1267
- # on whether the common edge is inside or on the boundary of a
1268
- # fundamental domain implicitly chosen when developing the cusp).
1269
- #
1270
- # Furthermore, we can compute the fixed point p of the similarity
1271
- # using p1 - p = z * (p0 - p).
1272
-
1273
- # Compute z, p0, p1 for each horotriangle, vertex and edge and pick
1274
- # the one where z is furthest away from one.
1275
- dummy, z, p0, p1 = max(self._compute_cusp_fixed_point_data(cusp),
1276
- key = lambda d: d[0])
1277
-
1278
- # Compute fixed point
1279
- return (p1 - z * p0) / (1 - z)
1280
-
1281
- def _compute_cusp_fixed_point_data(self, cusp):
1282
- """
1283
- Compute abs(z-1), z, p0, p1 for each horotriangle, vertex and edge
1284
- as described in _compute_cusp_fixed_point.
1285
- """
1286
-
1287
- # For each horotriangle
1288
- for corner in cusp.Corners:
1289
- tet0, vert0 = corner.Tetrahedron, corner.Subsimplex
1290
- vertex_link = _face_edge_face_triples_for_vertex_link[vert0]
1291
-
1292
- # A flag of a horotriangle corresponds to a face and edge
1293
- # of the tetrahedron.
1294
- for face0, edge0, other_face in vertex_link:
1295
- # How that horotriangle is glued to the neighboring one
1296
- tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
1297
- tet0, face0, vert0)
1298
- edge1 = tet0.Gluing[face0].image(edge0)
1299
-
1300
- # Get horotriangle and the complex vertex position and
1301
- # edge length
1302
- trig0 = tet0.horotriangles[vert0]
1303
- l0 = trig0.lengths[face0]
1304
- p0 = trig0.vertex_positions[edge0]
1305
-
1306
- # And for neighbor
1307
- trig1 = tet1.horotriangles[vert1]
1308
- l1 = trig1.lengths[face1]
1309
- p1 = trig1.vertex_positions[edge1]
1310
-
1311
- # Parameter for similarity
1312
- z = - l1 / l0
1313
- yield (abs(z - 1), z, p0, p1)
1314
-
1315
- def lift_vertex_positions_of_horotriangles(self):
1316
- """
1317
- After developing an incomplete cusp with
1318
- add_vertex_positions_to_horotriangles, this function moves the
1319
- vertex positions first to zero the fixed point (see
1320
- move_ffixed_point_to_zero) and computes logarithms for all the
1321
- vertex positions of the horotriangles in the Euclidean plane
1322
- in a consistent manner. These logarithms are written to a
1323
- dictionary lifted_vertex_positions on the HoroTriangle's.
1324
-
1325
- For an incomplete cusp, the respective value in lifted_vertex_positions
1326
- will be None.
1327
-
1328
- The three logarithms of the vertex positions of a triangle are only
1329
- defined up to adding mu Z + lambda Z where mu and lambda are the
1330
- logarithmic holonomies of the meridian and longitude.
1331
- """
1332
-
1333
- self.move_fixed_point_to_zero()
1334
-
1335
- for cusp in self.mcomplex.Vertices:
1336
- self._lift_one_cusp_vertex_positions(cusp)
1337
-
1338
- def _lift_one_cusp_vertex_positions(self, cusp):
1339
- # Pick first triangle to develop
1340
- corner0 = cusp.Corners[0]
1341
- tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
1342
- trig0 = tet0.horotriangles[vert0]
1343
- edge0 = _pick_an_edge_for_vertex[vert0]
1344
-
1345
- if cusp.is_complete:
1346
- # If cusp is complete, we store None for the logarithms
1347
- for corner in cusp.Corners:
1348
- tet0, vert0 = corner.Tetrahedron, corner.Subsimplex
1349
- tet0.horotriangles[vert0].lifted_vertex_positions = {
1350
- vert0 | vert1 : None
1351
- for vert1 in t3m.ZeroSubsimplices
1352
- if vert0 != vert1 }
1353
- return
1354
-
1355
- # Lift first triangle, picking main branch of logarithm for
1356
- # the first vertex
1357
- trig0.lift_vertex_positions(log(trig0.vertex_positions[edge0]))
1358
-
1359
- # Procedure similar to _add_one_cusp_cross_section
1360
- active = [(tet0, vert0)]
1361
-
1362
- # Pairs (tet index, vertex) indicating what has already been
1363
- # visited
1364
- visited = set()
1365
-
1366
- while active:
1367
- tet0, vert0 = active.pop()
1368
- for face0 in t3m.simplex.FacesAroundVertexCounterclockwise[vert0]:
1369
- tet1, face1, vert1 = CuspCrossSectionBase._glued_to(
1370
- tet0, face0, vert0)
1371
- if not (tet1.Index, vert1) in visited:
1372
- edge0 = _pick_an_edge_for_vertex_and_face[vert0, face0]
1373
-
1374
- # Lift triangle using lifted vertex position of
1375
- # neighboring triangle as guide (when determining what
1376
- # branch of logarithm to take).
1377
- tet1.horotriangles[vert1].lift_vertex_positions(
1378
- tet0.horotriangles[vert0].lifted_vertex_positions[edge0])
1379
-
1380
- active.append( (tet1, vert1) )
1381
- visited.add( (tet1.Index, vert1) )
1382
-
1383
- def move_lifted_vertex_positions_to_zero_first(self):
1384
- """
1385
- Shift the lifted vertex positions such that the one associated
1386
- to the first vertex when developing the incomplete cusp is
1387
- zero. This makes the values we obtain more stable when
1388
- changing the Dehn-surgery parameters.
1389
- """
1390
-
1391
- for cusp in self.mcomplex.Vertices:
1392
- if not cusp.is_complete:
1393
- ComplexCuspCrossSection._move_lifted_vertex_positions_cusp(cusp)
1394
-
1395
- @staticmethod
1396
- def _move_lifted_vertex_positions_cusp(cusp):
1397
- corner0 = cusp.Corners[0]
1398
- tet0, vert0 = corner0.Tetrahedron, corner0.Subsimplex
1399
- trig0 = tet0.horotriangles[vert0]
1400
- edge0 = _pick_an_edge_for_vertex[vert0]
1401
-
1402
- log0 = trig0.lifted_vertex_positions[edge0]
1403
-
1404
- for corner in cusp.Corners:
1405
- tet, vert = corner.Tetrahedron, corner.Subsimplex
1406
- trig = tet.horotriangles[vert]
1407
-
1408
- trig.lifted_vertex_positions = {
1409
- edge : position - log0
1410
- for edge, position in trig.lifted_vertex_positions.items()
1411
- }
1412
-
1413
-