snappy 3.0.3__cp38-cp38-macosx_11_0_arm64.whl → 3.2__cp38-cp38-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-38-darwin.so +0 -0
- snappy/SnapPy.cpython-38-darwin.so +0 -0
- snappy/SnapPyHP.cpython-38-darwin.so +0 -0
- snappy/__init__.py +373 -426
- snappy/app.py +240 -75
- snappy/app_menus.py +93 -78
- snappy/browser.py +87 -63
- snappy/cache.py +5 -8
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +11 -19
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +39 -54
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +40 -31
- snappy/db_utilities.py +13 -14
- snappy/decorated_isosig.py +377 -133
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +42 -9
- snappy/dev/extended_ptolemy/extended.py +32 -25
- snappy/dev/extended_ptolemy/giac_rur.py +23 -8
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +2 -1
- snappy/dev/vericlosed/gimbalLoopFinder.py +5 -5
- snappy/dev/vericlosed/hyperbolicStructure.py +3 -3
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +2 -2
- snappy/dev/vericlosed/truncatedComplex.py +3 -2
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +4 -3
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +1 -0
- snappy/doc/_sources/credits.rst.txt +6 -1
- snappy/doc/_sources/development.rst.txt +69 -50
- snappy/doc/_sources/index.rst.txt +101 -66
- snappy/doc/_sources/installing.rst.txt +148 -165
- snappy/doc/_sources/news.rst.txt +136 -32
- snappy/doc/_sources/ptolemy.rst.txt +1 -1
- snappy/doc/_sources/ptolemy_examples1.rst.txt +9 -8
- snappy/doc/_sources/ptolemy_examples2.rst.txt +3 -3
- snappy/doc/_sources/ptolemy_examples3.rst.txt +14 -14
- snappy/doc/_sources/ptolemy_prelim.rst.txt +1 -1
- snappy/doc/_sources/snap.rst.txt +2 -2
- snappy/doc/_sources/snappy.rst.txt +1 -1
- snappy/doc/_sources/triangulation.rst.txt +3 -2
- snappy/doc/_sources/verify.rst.txt +89 -29
- snappy/doc/_sources/verify_internals.rst.txt +5 -16
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +47 -27
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +107 -274
- snappy/doc/_static/documentation_options.js +6 -5
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -2
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +3 -101
- snappy/doc/_static/pygments.css +1 -0
- snappy/doc/_static/searchtools.js +489 -398
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +688 -263
- snappy/doc/bugs.html +107 -94
- snappy/doc/censuses.html +155 -127
- snappy/doc/credits.html +115 -104
- snappy/doc/development.html +184 -146
- snappy/doc/genindex.html +287 -204
- snappy/doc/index.html +189 -150
- snappy/doc/installing.html +259 -266
- snappy/doc/manifold.html +1626 -592
- snappy/doc/manifoldhp.html +119 -105
- snappy/doc/news.html +198 -104
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +117 -105
- snappy/doc/platonic_census.html +161 -114
- snappy/doc/plink.html +113 -105
- snappy/doc/ptolemy.html +131 -108
- snappy/doc/ptolemy_classes.html +242 -223
- snappy/doc/ptolemy_examples1.html +144 -130
- snappy/doc/ptolemy_examples2.html +141 -129
- snappy/doc/ptolemy_examples3.html +148 -132
- snappy/doc/ptolemy_examples4.html +131 -111
- snappy/doc/ptolemy_prelim.html +162 -138
- snappy/doc/py-modindex.html +104 -69
- snappy/doc/screenshots.html +117 -108
- snappy/doc/search.html +115 -84
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +109 -96
- snappy/doc/snappy.html +134 -97
- snappy/doc/spherogram.html +259 -187
- snappy/doc/todo.html +107 -94
- snappy/doc/triangulation.html +1380 -111
- snappy/doc/tutorial.html +107 -94
- snappy/doc/verify.html +194 -125
- snappy/doc/verify_internals.html +248 -686
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +23 -3
- snappy/export_stl.py +20 -14
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +36 -36
- snappy/horoviewer.py +50 -48
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/{infodialog.py → infowindow.py} +32 -33
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/__init__.py +1 -1
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +97 -21
- snappy/numeric_output_checker.py +37 -27
- snappy/pari.py +30 -69
- snappy/phone_home.py +25 -20
- snappy/polyviewer.py +39 -37
- snappy/ptolemy/__init__.py +4 -6
- snappy/ptolemy/component.py +14 -12
- snappy/ptolemy/coordinates.py +312 -295
- snappy/ptolemy/fieldExtensions.py +14 -12
- snappy/ptolemy/findLoops.py +43 -31
- snappy/ptolemy/geometricRep.py +24 -26
- snappy/ptolemy/homology.py +12 -7
- snappy/ptolemy/manifoldMethods.py +69 -70
- snappy/ptolemy/matrix.py +65 -26
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +18 -14
- snappy/ptolemy/polynomial.py +125 -119
- snappy/ptolemy/processComponents.py +36 -30
- snappy/ptolemy/processFileBase.py +79 -18
- snappy/ptolemy/processFileDispatch.py +13 -14
- snappy/ptolemy/processMagmaFile.py +44 -39
- snappy/ptolemy/processRurFile.py +18 -11
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +20 -17
- snappy/ptolemy/ptolemyObstructionClass.py +13 -17
- snappy/ptolemy/ptolemyVariety.py +190 -121
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +20 -19
- snappy/ptolemy/reginaWrapper.py +25 -29
- snappy/ptolemy/rur.py +6 -14
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +27 -22
- snappy/ptolemy/test.py +247 -188
- snappy/ptolemy/utilities.py +41 -43
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +10 -6
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +48 -38
- snappy/raytracing/finite_viewer.py +218 -210
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +152 -40
- snappy/raytracing/hyperboloid_navigation.py +102 -52
- snappy/raytracing/hyperboloid_utilities.py +114 -261
- snappy/raytracing/ideal_raytracing_data.py +256 -179
- snappy/raytracing/inside_viewer.py +522 -253
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +46 -34
- snappy/raytracing/raytracing_view.py +190 -109
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +60 -4
- snappy/raytracing/shaders/fragment.glsl +575 -148
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +32 -29
- snappy/raytracing/zoom_slider/test.py +2 -0
- snappy/sage_helper.py +69 -123
- snappy/{preferences.py → settings.py} +167 -145
- snappy/shell.py +4 -0
- snappy/snap/__init__.py +12 -8
- snappy/snap/character_varieties.py +24 -18
- snappy/snap/find_field.py +35 -34
- snappy/snap/fundamental_polyhedron.py +99 -85
- snappy/snap/generators.py +6 -8
- snappy/snap/interval_reps.py +18 -6
- snappy/snap/kernel_structures.py +8 -3
- snappy/snap/mcomplex_base.py +1 -2
- snappy/snap/nsagetools.py +107 -53
- snappy/snap/peripheral/__init__.py +1 -1
- snappy/snap/peripheral/dual_cellulation.py +15 -7
- snappy/snap/peripheral/link.py +20 -16
- snappy/snap/peripheral/peripheral.py +22 -14
- snappy/snap/peripheral/surface.py +47 -50
- snappy/snap/peripheral/test.py +8 -8
- snappy/snap/polished_reps.py +65 -40
- snappy/snap/shapes.py +41 -22
- snappy/snap/slice_obs_HKL.py +64 -25
- snappy/snap/t3mlite/arrow.py +88 -51
- snappy/snap/t3mlite/corner.py +5 -6
- snappy/snap/t3mlite/edge.py +32 -21
- snappy/snap/t3mlite/face.py +7 -9
- snappy/snap/t3mlite/files.py +31 -23
- snappy/snap/t3mlite/homology.py +14 -10
- snappy/snap/t3mlite/linalg.py +158 -56
- snappy/snap/t3mlite/mcomplex.py +739 -291
- snappy/snap/t3mlite/perm4.py +236 -84
- snappy/snap/t3mlite/setup.py +9 -10
- snappy/snap/t3mlite/simplex.py +65 -48
- snappy/snap/t3mlite/spun.py +42 -30
- snappy/snap/t3mlite/surface.py +45 -45
- snappy/snap/t3mlite/test.py +3 -0
- snappy/snap/t3mlite/test_vs_regina.py +17 -13
- snappy/snap/t3mlite/tetrahedron.py +25 -24
- snappy/snap/t3mlite/vertex.py +8 -13
- snappy/snap/test.py +45 -52
- snappy/snap/utilities.py +66 -65
- snappy/test.py +155 -158
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +313 -203
- snappy/twister/main.py +1 -8
- snappy/twister/twister_core.cpython-38-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +4 -8
- snappy/verify/{verifyCanonical.py → canonical.py} +114 -97
- snappy/verify/complex_volume/__init__.py +3 -2
- snappy/verify/complex_volume/adjust_torsion.py +13 -11
- snappy/verify/complex_volume/closed.py +29 -24
- snappy/verify/complex_volume/compute_ptolemys.py +8 -6
- snappy/verify/complex_volume/cusped.py +10 -9
- snappy/verify/complex_volume/extended_bloch.py +14 -12
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +15 -14
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +23 -56
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +19 -15
- snappy/verify/interval_newton_shapes_engine.py +51 -211
- snappy/verify/interval_tree.py +27 -25
- snappy/verify/krawczyk_shapes_engine.py +47 -50
- snappy/verify/maximal_cusp_area_matrix/__init__.py +17 -86
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +58 -48
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +53 -57
- snappy/verify/{realAlgebra.py → real_algebra.py} +26 -20
- snappy/verify/shapes.py +10 -7
- snappy/verify/short_slopes.py +41 -42
- snappy/verify/{squareExtensions.py → square_extensions.py} +96 -92
- snappy/verify/test.py +59 -57
- snappy/verify/upper_halfspace/extended_matrix.py +5 -5
- snappy/verify/upper_halfspace/finite_point.py +44 -31
- snappy/verify/upper_halfspace/ideal_point.py +69 -57
- snappy/verify/volume.py +15 -12
- snappy/version.py +2 -3
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/METADATA +14 -12
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/top_level.txt +10 -1
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/classic.css +0 -266
- snappy/doc/_static/jquery-3.5.1.js +0 -10872
- snappy/doc/_static/sidebar.js +0 -159
- snappy/doc/_static/underscore-1.13.1.js +0 -2042
- snappy/doc/_static/underscore.js +0 -6
- snappy/doc/verify_canon.html +0 -283
- snappy/ppm_to_png.py +0 -243
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/verify/cuspCrossSection.py +0 -1413
- snappy/verify/mathHelpers.py +0 -64
- snappy-3.0.3.dist-info/RECORD +0 -360
@@ -0,0 +1,456 @@
|
|
1
|
+
from . import exceptions
|
2
|
+
from . import epsilons
|
3
|
+
from . import debug
|
4
|
+
from .tracing import trace_geodesic
|
5
|
+
from .perturb import perturb_geodesics
|
6
|
+
from .subdivide import traverse_geodesics_to_subdivide
|
7
|
+
from .barycentric import mark_subtetrahedra_about_geodesic_pieces
|
8
|
+
from .shorten import shorten_in_barycentric_subdivision
|
9
|
+
from .crush import crush_geodesic_pieces
|
10
|
+
from .cusps import (
|
11
|
+
CuspPostDrillInfo,
|
12
|
+
index_geodesics_and_add_post_drill_infos,
|
13
|
+
reorder_vertices_and_get_post_drill_infos,
|
14
|
+
refill_and_adjust_peripheral_curves)
|
15
|
+
|
16
|
+
from .. import Manifold, ManifoldHP
|
17
|
+
|
18
|
+
from ..geometric_structure.geodesic.geodesic_start_point_info import GeodesicStartPointInfo, compute_geodesic_start_point_info
|
19
|
+
from ..geometric_structure import (add_r13_geometry,
|
20
|
+
add_filling_information)
|
21
|
+
from ..geometric_structure.geodesic.add_core_curves import add_r13_core_curves
|
22
|
+
from ..geometric_structure.geodesic.line import R13LineWithMatrix
|
23
|
+
from ..snap.t3mlite import Mcomplex
|
24
|
+
from ..exceptions import InsufficientPrecisionError
|
25
|
+
|
26
|
+
from typing import Optional, Sequence
|
27
|
+
|
28
|
+
def drill_word(manifold,
|
29
|
+
word : str,
|
30
|
+
verified : bool = False,
|
31
|
+
bits_prec : Optional[int] = None,
|
32
|
+
verbose : bool = False) -> Manifold:
|
33
|
+
"""
|
34
|
+
Drills the geodesic corresponding to the given word in the unsimplified
|
35
|
+
fundamental group. Here is an example::
|
36
|
+
|
37
|
+
>>> M = Manifold("m004")
|
38
|
+
>>> M.length_spectrum_alt(max_len=1.2) # doctest: +NUMERIC9
|
39
|
+
[Length Core curve Word
|
40
|
+
1.08707014499574 + 1.72276844987009*I - bC,
|
41
|
+
1.08707014499574 - 1.72276844987009*I - a]
|
42
|
+
>>> N = M.drill_word('a')
|
43
|
+
>>> N.identify()
|
44
|
+
[m129(0,0)(0,0), 5^2_1(0,0)(0,0), L5a1(0,0)(0,0), ooct01_00001(0,0)(0,0)]
|
45
|
+
|
46
|
+
The last cusp of the resulting manifold corresponds to the drilled
|
47
|
+
geodesic. The longitude and meridian for that cusp are chosen such that
|
48
|
+
``(1,0)``-filling the last cusp results in the given (undrilled) manifold::
|
49
|
+
|
50
|
+
>>> N.dehn_fill((1,0),-1)
|
51
|
+
>>> M.is_isometric_to(N)
|
52
|
+
True
|
53
|
+
>>> N.cusp_info(1)['core_length'] # doctest: +NUMERIC9
|
54
|
+
1.08707014499574 - 1.72276844987009*I
|
55
|
+
|
56
|
+
The orientation of the new longitude is chosen so that it is parallel to
|
57
|
+
the closed geodesic. That is, the new longitude is homotopic to the closed
|
58
|
+
geodesic when embedding the drilled manifold into the given manifold.
|
59
|
+
|
60
|
+
If the given geodesic coincides with a core curve of a filled cusp, the
|
61
|
+
cusp is unfilled instead::
|
62
|
+
|
63
|
+
>>> M = Manifold("m004(2,3)")
|
64
|
+
>>> M.volume() # doctest: +NUMERIC9
|
65
|
+
1.73712388065
|
66
|
+
>>> M.cusp_info(0)['core_length'] # doctest: +NUMERIC9
|
67
|
+
0.178792491242577 - 2.11983007979743*I
|
68
|
+
>>> M.fundamental_group(simplify_presentation = False).complex_length('aBAbbABab') # doctest: +NUMERIC9
|
69
|
+
0.178792491242577 - 2.11983007979743*I
|
70
|
+
>>> N = M.drill_word('aBAbbABab')
|
71
|
+
>>> N
|
72
|
+
m004_drilled(0,0)
|
73
|
+
>>> N.num_cusps()
|
74
|
+
1
|
75
|
+
|
76
|
+
In this case, the peripheral information is also
|
77
|
+
updated such that the above remark about ``(1,0)``-filling applies again::
|
78
|
+
|
79
|
+
>>> N.dehn_fill((1,0), -1)
|
80
|
+
>>> N.volume() # doctest: +NUMERIC9
|
81
|
+
1.73712388065
|
82
|
+
|
83
|
+
That is, the longitude and meridian of the unfilled cusps are reinstalled
|
84
|
+
and the cusps reindexed so that the unfilled cusp becomes the last cusp.
|
85
|
+
|
86
|
+
Here is another example where we drill the core geodesic::
|
87
|
+
|
88
|
+
>>> M = Manifold("v2986(3,4)")
|
89
|
+
>>> N = M.drill_word('EdFgabcGEdFgaDcc')
|
90
|
+
>>> N.is_isometric_to(Manifold("v2986"), return_isometries = True) # doctest: +NORMALIZE_WHITESPACE
|
91
|
+
[0 -> 0
|
92
|
+
[3 -1]
|
93
|
+
[4 -1]
|
94
|
+
Does not extend to link]
|
95
|
+
|
96
|
+
While the result of drilling a geodesic is a triangulation and thus
|
97
|
+
combinatorial in nature, some intermediate computations (for example,
|
98
|
+
to compute the intersections of the geodesic with the faces of the
|
99
|
+
tetrahedra) are numerical. Sometimes, it is necessary to increase the
|
100
|
+
precision with :attr:`bits_prec` to make the method succeed and produce
|
101
|
+
the correct result.
|
102
|
+
|
103
|
+
**Verified computation**
|
104
|
+
|
105
|
+
If :attr:`verified = False`, floating-point issues can arise resulting
|
106
|
+
in drilling the wrong loop. The method can be made
|
107
|
+
:ref:`verified <verify-primer>` by passing :attr:`verified = True`::
|
108
|
+
|
109
|
+
sage: M = Manifold("m004(2,3)")
|
110
|
+
sage: M.drill_word('caa', verified = True, bits_prec = 100)
|
111
|
+
m004_drilled(2,3)(0,0)
|
112
|
+
|
113
|
+
That is, if the precision is insufficient to prove the result is correct,
|
114
|
+
the algorithm fails with an exception (most likely
|
115
|
+
``InsufficientPrecisionError``).
|
116
|
+
|
117
|
+
:param word:
|
118
|
+
The word in the unsimplified fundamental group specifying the
|
119
|
+
geodesic to be drilled.
|
120
|
+
:param bits_prec:
|
121
|
+
The precision used in the intermediate computation. Increase
|
122
|
+
if the computation failed.
|
123
|
+
:param verified:
|
124
|
+
Use :ref:`verified computation <verify-primer>`.
|
125
|
+
:param verbose:
|
126
|
+
Print intermediate results and statistics.
|
127
|
+
|
128
|
+
:return:
|
129
|
+
Manifold obtained by drilling geodesic. ``(1,0)``-filling the
|
130
|
+
last cusp gives the given (undrilled) manifold.
|
131
|
+
"""
|
132
|
+
|
133
|
+
return drill_words(manifold,
|
134
|
+
[word],
|
135
|
+
verified=verified,
|
136
|
+
bits_prec=bits_prec,
|
137
|
+
verbose=verbose)
|
138
|
+
|
139
|
+
|
140
|
+
def drill_words(manifold,
|
141
|
+
words : Sequence[str],
|
142
|
+
verified : bool = False,
|
143
|
+
bits_prec : Optional[int] = None,
|
144
|
+
verbose : bool = False) -> Manifold:
|
145
|
+
"""
|
146
|
+
A generalization of :meth:`drill_word <Manifold.drill_word>` to drill
|
147
|
+
several geodesics simultaneously. It takes a list of words in the
|
148
|
+
unsimplified fundamental group.
|
149
|
+
|
150
|
+
Here is an example where we drill two geodesics. One of the geodesics is
|
151
|
+
the core curve corresponding to the third cusp. The other geodesic is not
|
152
|
+
a core curve::
|
153
|
+
|
154
|
+
>>> M=Manifold("t12047(0,0)(1,3)(1,4)(1,5)")
|
155
|
+
>>> [ info.get('core_length') for info in M.cusp_info() ] # doctest: +NUMERIC9
|
156
|
+
[None,
|
157
|
+
0.510804267610103 + 1.92397456664239*I,
|
158
|
+
0.317363079597924 + 1.48157893409218*I,
|
159
|
+
0.223574975263386 + 1.26933288854145*I]
|
160
|
+
>>> G = M.fundamental_group(simplify_presentation = False)
|
161
|
+
>>> G.complex_length('c') # doctest: +NUMERIC9
|
162
|
+
0.317363079597924 + 1.48157893409218*I
|
163
|
+
>>> G.complex_length('fA') # doctest: +NUMERIC9
|
164
|
+
1.43914411734250 + 2.66246879992795*I
|
165
|
+
>>> N = M.drill_words(['c','fA'])
|
166
|
+
>>> N
|
167
|
+
t12047_drilled(0,0)(1,3)(1,5)(0,0)(0,0)
|
168
|
+
|
169
|
+
Let n be the number of geodesics that were drilled. Then the last n
|
170
|
+
cusps correspond to the drilled geodesics and appear in the same order than
|
171
|
+
the geodesics were given as words. Note that in the above example, we expect
|
172
|
+
six cusps since we started with four cusps and drilled two geodesics. However,
|
173
|
+
we only obtain five cusps because one geodesic was a core curve. The
|
174
|
+
corresponding cusp was unfilled (from ``(1,4)``) and grouped with the other
|
175
|
+
cusps coming from drilling.
|
176
|
+
|
177
|
+
We obtain the given (undrilled) manifold by ``(1,0)``-filling the last n
|
178
|
+
cusps.
|
179
|
+
|
180
|
+
>>> N.dehn_fill((1,0), -2)
|
181
|
+
>>> N.dehn_fill((1,0), -1)
|
182
|
+
>>> M.is_isometric_to(N)
|
183
|
+
True
|
184
|
+
>>> [ info.get('core_length') for info in N.cusp_info() ] # doctest: +NUMERIC9
|
185
|
+
[None,
|
186
|
+
0.510804267610103 + 1.92397456664239*I,
|
187
|
+
0.223574975263386 + 1.26933288854145*I,
|
188
|
+
0.317363079597924 + 1.48157893409218*I,
|
189
|
+
1.43914411734251 + 2.66246879992796*I]
|
190
|
+
|
191
|
+
:param word:
|
192
|
+
The words in the unsimplified fundamental group specifying the
|
193
|
+
geodesics to be drilled.
|
194
|
+
:param bits_prec:
|
195
|
+
The precision used in the intermediate computation. Increase
|
196
|
+
if the computation failed.
|
197
|
+
:param verified:
|
198
|
+
Use :ref:`verified computation <verify-primer>`.
|
199
|
+
:param verbose:
|
200
|
+
Print intermediate results and statistics.
|
201
|
+
|
202
|
+
:return:
|
203
|
+
Manifold obtained by drilling geodesics. ``(1,0)``-filling the
|
204
|
+
last n cusps gives the given (undrilled) manifold where n is the
|
205
|
+
number of given words.
|
206
|
+
"""
|
207
|
+
|
208
|
+
if isinstance(words, str):
|
209
|
+
raise ValueError("words has to be a list of strings, not a single string.")
|
210
|
+
|
211
|
+
if len(words) == 0:
|
212
|
+
# Just return copy of manifold if nothing is drilled.
|
213
|
+
return manifold.copy()
|
214
|
+
|
215
|
+
if not manifold.is_orientable():
|
216
|
+
raise ValueError("Drilling only supported for orientable manifolds.")
|
217
|
+
|
218
|
+
try:
|
219
|
+
# First try to drill the geodesics without perturbing them.
|
220
|
+
return drill_words_implementation(
|
221
|
+
manifold,
|
222
|
+
words=words,
|
223
|
+
verified=verified,
|
224
|
+
bits_prec=bits_prec,
|
225
|
+
verbose=verbose)
|
226
|
+
except exceptions.GeodesicHittingOneSkeletonError:
|
227
|
+
# Exceptions raised when geodesic is intersecting the 1-skeleton
|
228
|
+
# (including that a positive length piece of the geodesic lying
|
229
|
+
# in a face).
|
230
|
+
# An interesting example is the shortest geodesic ("a" in
|
231
|
+
# unsimplified fundamental group) of m125: the entire geodesic
|
232
|
+
# lies in the faces of the triangulation.
|
233
|
+
pass
|
234
|
+
|
235
|
+
# If geodesic is intersecting 1-skeleton, try again, this time
|
236
|
+
# perturbing the geodesic before drilling it.
|
237
|
+
try:
|
238
|
+
return drill_words_implementation(
|
239
|
+
manifold,
|
240
|
+
words=words,
|
241
|
+
verified=verified,
|
242
|
+
bits_prec=bits_prec,
|
243
|
+
perturb=True,
|
244
|
+
verbose=verbose)
|
245
|
+
except exceptions.RayHittingOneSkeletonError as e:
|
246
|
+
# Sometimes, the code runs into numerical issues and cannot
|
247
|
+
# determine whether the perturbed geodesic is passing an edge
|
248
|
+
# on one side or the other. This can usually be fixed by
|
249
|
+
# increasing precision - change the exception type to tell the
|
250
|
+
# user.
|
251
|
+
raise InsufficientPrecisionError(
|
252
|
+
"The geodesic is so closer to an edge of the "
|
253
|
+
"triangulation that it cannot be unambiguously traced "
|
254
|
+
"with the current precision. "
|
255
|
+
"Increasing the precision should solve this problem.") from e
|
256
|
+
|
257
|
+
|
258
|
+
def drill_words_implementation(
|
259
|
+
manifold,
|
260
|
+
words,
|
261
|
+
verified,
|
262
|
+
bits_prec,
|
263
|
+
perturb=False,
|
264
|
+
verbose : bool = False):
|
265
|
+
|
266
|
+
# Convert SnapPea kernel triangulation to python triangulation
|
267
|
+
# snappy.snap.t3mlite.Mcomplex
|
268
|
+
mcomplex = Mcomplex(manifold)
|
269
|
+
|
270
|
+
# Add vertices in hyperboloid model and other geometric information
|
271
|
+
add_r13_geometry(mcomplex,
|
272
|
+
manifold,
|
273
|
+
verified=verified, bits_prec=bits_prec)
|
274
|
+
add_filling_information(mcomplex, manifold)
|
275
|
+
add_r13_core_curves(mcomplex, manifold)
|
276
|
+
|
277
|
+
# For the words compute basic information such as the corresponding
|
278
|
+
# matrix and the end points and a sample point on the fixed line.
|
279
|
+
# Try to conjugate/translate matrix and end points such that the
|
280
|
+
# line intersects the fundamental domain.
|
281
|
+
geodesics : Sequence[GeodesicStartPointInfo] = [
|
282
|
+
compute_geodesic_start_point_info(mcomplex, word)
|
283
|
+
for word in words ]
|
284
|
+
|
285
|
+
# Record information in the geodesics and triangulation needed
|
286
|
+
# to index the cusps after drilling and transform the peripheral
|
287
|
+
# curves and unfill the cusps if drilling a core curve.
|
288
|
+
index_geodesics_and_add_post_drill_infos(geodesics, mcomplex)
|
289
|
+
|
290
|
+
# Only drill the geodesics that are not core curves of filled
|
291
|
+
# cusps. For the other geodesics, we simply unfill the cusp instead.
|
292
|
+
geodesics_to_drill = [ g for g in geodesics
|
293
|
+
if not g.core_curve_cusp ]
|
294
|
+
|
295
|
+
if verbose:
|
296
|
+
for g in geodesics:
|
297
|
+
if g.core_curve_cusp:
|
298
|
+
print("%s is core curve" % g.word)
|
299
|
+
|
300
|
+
if perturb:
|
301
|
+
# Move the sample point for each geodesic a bit and use it
|
302
|
+
# as start point. Much of perturb_geodesics is about computing
|
303
|
+
# the maximal amount we can move all the start points without
|
304
|
+
# changing the isotopy class of the system of resulting closed
|
305
|
+
# curves.
|
306
|
+
perturb_geodesics(mcomplex,
|
307
|
+
geodesics_to_drill,
|
308
|
+
verbose=verbose)
|
309
|
+
|
310
|
+
# At this point, the information in each entry of geodesics_to_drill
|
311
|
+
# "should" (*) contain a start point in the interior of a tetrahedron
|
312
|
+
# of the fundamental domain and an end point that is the image under
|
313
|
+
# the stored matrix corresponding to the geodesic.
|
314
|
+
# Depending on perturb, the start point is either on or close
|
315
|
+
# the line fixed by the matrix.
|
316
|
+
# The image of the line segment from start point to end point
|
317
|
+
# in the manifold is a closed curve that is equal or isotopic to the
|
318
|
+
# geodesic. If multiple words are given, the system of closed curve
|
319
|
+
# is isotopic to the system of geodesics.
|
320
|
+
|
321
|
+
# (*) This is not true if perturb is false and the geodesic intersects
|
322
|
+
# the 1-skeleton. In this case, drill_geodesics raises a
|
323
|
+
# GeodesicHittingOneSkeletonError which is caught by the callee so that
|
324
|
+
# the callee can call this function again with perturb = True.
|
325
|
+
|
326
|
+
# For each geodesic to drill, trace the line segment from start to end
|
327
|
+
# point through the triangulation, and then drill the closed curve.
|
328
|
+
drilled_mcomplex : Mcomplex = drill_geodesics(mcomplex,
|
329
|
+
geodesics_to_drill,
|
330
|
+
verbose=verbose)
|
331
|
+
|
332
|
+
# Index the cusps of the new triangulation and extract information
|
333
|
+
# needed later
|
334
|
+
post_drill_infos : Sequence[CuspPostDrillInfo] = (
|
335
|
+
reorder_vertices_and_get_post_drill_infos(drilled_mcomplex))
|
336
|
+
|
337
|
+
# Convert python triangulation to SnapPea kernel triangulation.
|
338
|
+
# Note that this will remove the finite vertices created by
|
339
|
+
# drill_geodesics.
|
340
|
+
drilled_manifold = drilled_mcomplex.snappy_manifold()
|
341
|
+
|
342
|
+
# If there was a filled cusp whose core curve was not drilled, we need
|
343
|
+
# to refill it. If there was a filled cusp whose core curve was drilled,
|
344
|
+
# we need to change the peripheral curves such that the longitude
|
345
|
+
# corresponds to the core curve so that (1,0)-filling results in the
|
346
|
+
# original manifold.
|
347
|
+
refill_and_adjust_peripheral_curves(drilled_manifold, post_drill_infos)
|
348
|
+
|
349
|
+
# Set name
|
350
|
+
drilled_manifold.set_name(manifold.name() + "_drilled")
|
351
|
+
|
352
|
+
return drilled_manifold
|
353
|
+
|
354
|
+
def drill_geodesics(mcomplex : Mcomplex,
|
355
|
+
geodesics : Sequence[GeodesicStartPointInfo],
|
356
|
+
verbose : bool = False) -> Mcomplex:
|
357
|
+
"""
|
358
|
+
Given a triangulation with geometric structure attached with
|
359
|
+
add_r13_geometry and basic information about geodesics, computes
|
360
|
+
the triangulation (with finite vertices) obtained by drilling
|
361
|
+
the geodesics.
|
362
|
+
|
363
|
+
Each provided GeodesicStartPointInfo is supposed to have a start point and
|
364
|
+
a tetrahedron in the fundamental domain that contains the start point
|
365
|
+
in its interior and an end point such that the line segment from the
|
366
|
+
start to the endpoint forms a closed curve in the manifold.
|
367
|
+
"""
|
368
|
+
|
369
|
+
if len(geodesics) == 0:
|
370
|
+
# Nothing to do if there is nothing to drill
|
371
|
+
return mcomplex
|
372
|
+
|
373
|
+
for g in geodesics:
|
374
|
+
# We need a tetrahedron guaranteed to contain the start point
|
375
|
+
# to start tracing.
|
376
|
+
if not g.tet:
|
377
|
+
raise exceptions.GeodesicStartPointOnTwoSkeletonError()
|
378
|
+
|
379
|
+
# For each line segment described above, trace it through the
|
380
|
+
# triangulation.
|
381
|
+
all_pieces : Sequence[Sequence[GeodesicPiece]] = [
|
382
|
+
trace_geodesic(g, verified=mcomplex.verified)
|
383
|
+
for g in geodesics ]
|
384
|
+
|
385
|
+
if verbose:
|
386
|
+
print("Number of geodesic pieces:",
|
387
|
+
[len(pieces) for pieces in all_pieces])
|
388
|
+
|
389
|
+
# Perform 1-4 and 2-3 moves such that the closed curves embed
|
390
|
+
# into the 1-skeleton of the resulting triangulation.
|
391
|
+
#
|
392
|
+
# Rather than creating a triangulation object (and thus
|
393
|
+
# computing the Vertex, Edge, ... objects), we just compute
|
394
|
+
# the tetrahedra forming the triangulation.
|
395
|
+
tetrahedra : Sequence[Tetrahedron] = traverse_geodesics_to_subdivide(
|
396
|
+
mcomplex, all_pieces)
|
397
|
+
|
398
|
+
if verbose:
|
399
|
+
print("Number of tets after subdividing: %d" % (
|
400
|
+
len(tetrahedra)))
|
401
|
+
|
402
|
+
# Mark which subtetrahedra in the barycentric subdivision
|
403
|
+
# are adjacent to the closed curve we traced.
|
404
|
+
mark_subtetrahedra_about_geodesic_pieces(tetrahedra)
|
405
|
+
|
406
|
+
# If the simple closed curve is having two consecutive pieces
|
407
|
+
# adjacent to the same face, making it shorter by replacing
|
408
|
+
# the two pieces by just one corresponding to the third edge
|
409
|
+
# of the triangle.
|
410
|
+
shorten_in_barycentric_subdivision(tetrahedra, verbose)
|
411
|
+
|
412
|
+
# Perform a barycentric subdivision. Then crush all tetrahedra
|
413
|
+
# touching the closed curve we traced. Note that
|
414
|
+
# crush_geodesic_pieces is actually doing the subdivision and
|
415
|
+
# crushing of the subsimplices marked above in just one step.
|
416
|
+
result : Mcomplex = crush_geodesic_pieces(tetrahedra)
|
417
|
+
|
418
|
+
# Sanity checks while we are still testing the new features.
|
419
|
+
debug.check_vertex_indices(result.Tetrahedra)
|
420
|
+
debug.check_peripheral_curves(result.Tetrahedra)
|
421
|
+
|
422
|
+
return result
|
423
|
+
|
424
|
+
def drill_word_hp(manifold,
|
425
|
+
word : str,
|
426
|
+
verified : bool = False,
|
427
|
+
bits_prec : Optional[int] = None,
|
428
|
+
verbose : bool = False) -> ManifoldHP:
|
429
|
+
return drill_word(
|
430
|
+
manifold,
|
431
|
+
word = word,
|
432
|
+
verified = verified,
|
433
|
+
bits_prec = bits_prec,
|
434
|
+
verbose = verbose).high_precision()
|
435
|
+
drill_word_hp.__doc__ = drill_word.__doc__
|
436
|
+
|
437
|
+
def drill_words_hp(manifold,
|
438
|
+
words : Sequence[str],
|
439
|
+
verified : bool = False,
|
440
|
+
bits_prec : Optional[int] = None,
|
441
|
+
verbose : bool = False) -> ManifoldHP:
|
442
|
+
return drill_words(
|
443
|
+
manifold,
|
444
|
+
words = words,
|
445
|
+
verified = verified,
|
446
|
+
bits_prec = bits_prec,
|
447
|
+
verbose = verbose).high_precision()
|
448
|
+
drill_words_hp.__doc__ = drill_words.__doc__
|
449
|
+
|
450
|
+
def _add_methods(mfld_class, high_precision=False):
|
451
|
+
if high_precision:
|
452
|
+
mfld_class.drill_word = drill_word_hp
|
453
|
+
mfld_class.drill_words = drill_words_hp
|
454
|
+
else:
|
455
|
+
mfld_class.drill_word = drill_word
|
456
|
+
mfld_class.drill_words = drill_words
|
@@ -0,0 +1,103 @@
|
|
1
|
+
from .tracing import GeodesicPiece
|
2
|
+
|
3
|
+
from ..snap.t3mlite import Tetrahedron, Perm4, simplex
|
4
|
+
|
5
|
+
from typing import Dict, List, Sequence, Tuple
|
6
|
+
|
7
|
+
def mark_subtetrahedra_about_geodesic_pieces(
|
8
|
+
tetrahedra : Sequence[Tetrahedron]) -> None:
|
9
|
+
"""
|
10
|
+
Record which subtetrahedra of the barycentric subdivision
|
11
|
+
are adjacent to a piece of the geodesic.
|
12
|
+
|
13
|
+
This is recorded in the array Tetrahedron.marked_subtetrahedra.
|
14
|
+
|
15
|
+
Recall that the subtetrahedra of the barycentric subdivision
|
16
|
+
are indexed by S4 permutations. The index within
|
17
|
+
Tetrahedron.marked_subtetrahedra is given by perm_to_index(p).
|
18
|
+
|
19
|
+
The value of Tetrahedron.marked_subtetrahedra[j] is 0 if
|
20
|
+
the subtetrahedron is not adjacent to any piece of the geodesic.
|
21
|
+
Otherwise, it is +/-1 depending on whether the 0-1 edge
|
22
|
+
of the subtetrahedron is parallel or anti-parallel to the
|
23
|
+
geodesic piece. This is recorded to orient the meridian
|
24
|
+
and longitude.
|
25
|
+
"""
|
26
|
+
|
27
|
+
for tet in tetrahedra:
|
28
|
+
tet.marked_subtetrahedra = 24 * [ 0 ]
|
29
|
+
|
30
|
+
for tet in tetrahedra:
|
31
|
+
for piece in tet.geodesic_pieces:
|
32
|
+
mark_subtetrahedra_about_edge(tet, _perm_for_piece(piece))
|
33
|
+
|
34
|
+
transpositions : List[Perm4] = [ Perm4((1,0,2,3)),
|
35
|
+
Perm4((0,2,1,3)),
|
36
|
+
Perm4((0,1,3,2)) ]
|
37
|
+
|
38
|
+
def perm_to_index(perm : Perm4) -> int:
|
39
|
+
"""
|
40
|
+
list(Perm4.S4())[perm_to_index(p)] returns the same Perm4 p.
|
41
|
+
"""
|
42
|
+
return _perm_tuple_to_index[perm.tuple()]
|
43
|
+
|
44
|
+
_perm_tuple_to_index : Dict[Tuple[int, int, int, int], int] = {
|
45
|
+
perm.tuple() : i for i, perm in enumerate(Perm4.S4()) }
|
46
|
+
|
47
|
+
def _perm_for_piece(piece : GeodesicPiece):
|
48
|
+
"""
|
49
|
+
Given a GeodesicPiece with endpoints being on the vertices
|
50
|
+
of the tetrahedron and spanning an oriented edge of the tetrahedron,
|
51
|
+
find an "edge embedding permutation" (similar to regina's
|
52
|
+
edge embedding) that maps the 0-1 edge to the given edge.
|
53
|
+
|
54
|
+
The subtetrahedron corresponding to this permutation is
|
55
|
+
adjacent to half of this edge.
|
56
|
+
"""
|
57
|
+
|
58
|
+
s0 = piece.endpoints[0].subsimplex
|
59
|
+
s1 = piece.endpoints[1].subsimplex
|
60
|
+
|
61
|
+
# Important to consistently always pick a permutation of the
|
62
|
+
# same parity and respect the ordering of the vertices V0 and V1
|
63
|
+
# since this affects which subtetrahedron will be chosen as peripheral
|
64
|
+
# base subtetrahedron - and thus ultimately affects the orientation
|
65
|
+
# of the meridian and longitude computed by install_peripheral_curves.
|
66
|
+
for perm in Perm4.A4():
|
67
|
+
if perm.image(simplex.V0) == s0 and perm.image(simplex.V1) == s1:
|
68
|
+
return perm
|
69
|
+
|
70
|
+
def mark_subtetrahedra_about_edge(tet0 : Tetrahedron, perm0 : Perm4, orientation : int = 1):
|
71
|
+
"""
|
72
|
+
Given a subtetrahedron in the barycentric subdivision parametrized
|
73
|
+
by a tetrahedron and permutation, find all subtetrahedra adjacent to the
|
74
|
+
same edge in the original triangulation and mark them in
|
75
|
+
Tetrahedron.marked_subtetrahedra.
|
76
|
+
|
77
|
+
By default (orientation = 1), the subtetrahedra are marked by +/-1 according
|
78
|
+
to whether each is parallel or anti-parallel to the given edge.
|
79
|
+
Subtetrahedra can be unmarked by forcing orientation = 0.
|
80
|
+
"""
|
81
|
+
|
82
|
+
tet = tet0
|
83
|
+
perm = perm0
|
84
|
+
|
85
|
+
while True:
|
86
|
+
# All subtetrahedra touching the same edge in the current
|
87
|
+
# tetrahedron.
|
88
|
+
for edge_perm in [ perm,
|
89
|
+
perm * transpositions[2] ]:
|
90
|
+
for marked_subtet, subtet_perm in [
|
91
|
+
(+orientation, edge_perm),
|
92
|
+
(-orientation, edge_perm * transpositions[0]) ]:
|
93
|
+
j = perm_to_index(subtet_perm)
|
94
|
+
tet.marked_subtetrahedra[j] = marked_subtet
|
95
|
+
|
96
|
+
# Find the next "edge embedding"
|
97
|
+
face = perm.image(simplex.F3)
|
98
|
+
tet, perm = (
|
99
|
+
tet.Neighbor[face],
|
100
|
+
tet.Gluing[face] * perm * transpositions[2])
|
101
|
+
# Stop if back at the first "edge embedding"
|
102
|
+
if tet is tet0 and perm.tuple() == perm0.tuple():
|
103
|
+
return
|