snappy 3.0.3__cp38-cp38-macosx_11_0_arm64.whl → 3.2__cp38-cp38-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-38-darwin.so +0 -0
- snappy/SnapPy.cpython-38-darwin.so +0 -0
- snappy/SnapPyHP.cpython-38-darwin.so +0 -0
- snappy/__init__.py +373 -426
- snappy/app.py +240 -75
- snappy/app_menus.py +93 -78
- snappy/browser.py +87 -63
- snappy/cache.py +5 -8
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +11 -19
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +39 -54
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +40 -31
- snappy/db_utilities.py +13 -14
- snappy/decorated_isosig.py +377 -133
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +42 -9
- snappy/dev/extended_ptolemy/extended.py +32 -25
- snappy/dev/extended_ptolemy/giac_rur.py +23 -8
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +2 -1
- snappy/dev/vericlosed/gimbalLoopFinder.py +5 -5
- snappy/dev/vericlosed/hyperbolicStructure.py +3 -3
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +2 -2
- snappy/dev/vericlosed/truncatedComplex.py +3 -2
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +4 -3
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +1 -0
- snappy/doc/_sources/credits.rst.txt +6 -1
- snappy/doc/_sources/development.rst.txt +69 -50
- snappy/doc/_sources/index.rst.txt +101 -66
- snappy/doc/_sources/installing.rst.txt +148 -165
- snappy/doc/_sources/news.rst.txt +136 -32
- snappy/doc/_sources/ptolemy.rst.txt +1 -1
- snappy/doc/_sources/ptolemy_examples1.rst.txt +9 -8
- snappy/doc/_sources/ptolemy_examples2.rst.txt +3 -3
- snappy/doc/_sources/ptolemy_examples3.rst.txt +14 -14
- snappy/doc/_sources/ptolemy_prelim.rst.txt +1 -1
- snappy/doc/_sources/snap.rst.txt +2 -2
- snappy/doc/_sources/snappy.rst.txt +1 -1
- snappy/doc/_sources/triangulation.rst.txt +3 -2
- snappy/doc/_sources/verify.rst.txt +89 -29
- snappy/doc/_sources/verify_internals.rst.txt +5 -16
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +47 -27
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +107 -274
- snappy/doc/_static/documentation_options.js +6 -5
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -2
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +3 -101
- snappy/doc/_static/pygments.css +1 -0
- snappy/doc/_static/searchtools.js +489 -398
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +688 -263
- snappy/doc/bugs.html +107 -94
- snappy/doc/censuses.html +155 -127
- snappy/doc/credits.html +115 -104
- snappy/doc/development.html +184 -146
- snappy/doc/genindex.html +287 -204
- snappy/doc/index.html +189 -150
- snappy/doc/installing.html +259 -266
- snappy/doc/manifold.html +1626 -592
- snappy/doc/manifoldhp.html +119 -105
- snappy/doc/news.html +198 -104
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +117 -105
- snappy/doc/platonic_census.html +161 -114
- snappy/doc/plink.html +113 -105
- snappy/doc/ptolemy.html +131 -108
- snappy/doc/ptolemy_classes.html +242 -223
- snappy/doc/ptolemy_examples1.html +144 -130
- snappy/doc/ptolemy_examples2.html +141 -129
- snappy/doc/ptolemy_examples3.html +148 -132
- snappy/doc/ptolemy_examples4.html +131 -111
- snappy/doc/ptolemy_prelim.html +162 -138
- snappy/doc/py-modindex.html +104 -69
- snappy/doc/screenshots.html +117 -108
- snappy/doc/search.html +115 -84
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +109 -96
- snappy/doc/snappy.html +134 -97
- snappy/doc/spherogram.html +259 -187
- snappy/doc/todo.html +107 -94
- snappy/doc/triangulation.html +1380 -111
- snappy/doc/tutorial.html +107 -94
- snappy/doc/verify.html +194 -125
- snappy/doc/verify_internals.html +248 -686
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +23 -3
- snappy/export_stl.py +20 -14
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +36 -36
- snappy/horoviewer.py +50 -48
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/{infodialog.py → infowindow.py} +32 -33
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/__init__.py +1 -1
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +97 -21
- snappy/numeric_output_checker.py +37 -27
- snappy/pari.py +30 -69
- snappy/phone_home.py +25 -20
- snappy/polyviewer.py +39 -37
- snappy/ptolemy/__init__.py +4 -6
- snappy/ptolemy/component.py +14 -12
- snappy/ptolemy/coordinates.py +312 -295
- snappy/ptolemy/fieldExtensions.py +14 -12
- snappy/ptolemy/findLoops.py +43 -31
- snappy/ptolemy/geometricRep.py +24 -26
- snappy/ptolemy/homology.py +12 -7
- snappy/ptolemy/manifoldMethods.py +69 -70
- snappy/ptolemy/matrix.py +65 -26
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +18 -14
- snappy/ptolemy/polynomial.py +125 -119
- snappy/ptolemy/processComponents.py +36 -30
- snappy/ptolemy/processFileBase.py +79 -18
- snappy/ptolemy/processFileDispatch.py +13 -14
- snappy/ptolemy/processMagmaFile.py +44 -39
- snappy/ptolemy/processRurFile.py +18 -11
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +20 -17
- snappy/ptolemy/ptolemyObstructionClass.py +13 -17
- snappy/ptolemy/ptolemyVariety.py +190 -121
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +20 -19
- snappy/ptolemy/reginaWrapper.py +25 -29
- snappy/ptolemy/rur.py +6 -14
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +27 -22
- snappy/ptolemy/test.py +247 -188
- snappy/ptolemy/utilities.py +41 -43
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +10 -6
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +48 -38
- snappy/raytracing/finite_viewer.py +218 -210
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +152 -40
- snappy/raytracing/hyperboloid_navigation.py +102 -52
- snappy/raytracing/hyperboloid_utilities.py +114 -261
- snappy/raytracing/ideal_raytracing_data.py +256 -179
- snappy/raytracing/inside_viewer.py +522 -253
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +46 -34
- snappy/raytracing/raytracing_view.py +190 -109
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +60 -4
- snappy/raytracing/shaders/fragment.glsl +575 -148
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +32 -29
- snappy/raytracing/zoom_slider/test.py +2 -0
- snappy/sage_helper.py +69 -123
- snappy/{preferences.py → settings.py} +167 -145
- snappy/shell.py +4 -0
- snappy/snap/__init__.py +12 -8
- snappy/snap/character_varieties.py +24 -18
- snappy/snap/find_field.py +35 -34
- snappy/snap/fundamental_polyhedron.py +99 -85
- snappy/snap/generators.py +6 -8
- snappy/snap/interval_reps.py +18 -6
- snappy/snap/kernel_structures.py +8 -3
- snappy/snap/mcomplex_base.py +1 -2
- snappy/snap/nsagetools.py +107 -53
- snappy/snap/peripheral/__init__.py +1 -1
- snappy/snap/peripheral/dual_cellulation.py +15 -7
- snappy/snap/peripheral/link.py +20 -16
- snappy/snap/peripheral/peripheral.py +22 -14
- snappy/snap/peripheral/surface.py +47 -50
- snappy/snap/peripheral/test.py +8 -8
- snappy/snap/polished_reps.py +65 -40
- snappy/snap/shapes.py +41 -22
- snappy/snap/slice_obs_HKL.py +64 -25
- snappy/snap/t3mlite/arrow.py +88 -51
- snappy/snap/t3mlite/corner.py +5 -6
- snappy/snap/t3mlite/edge.py +32 -21
- snappy/snap/t3mlite/face.py +7 -9
- snappy/snap/t3mlite/files.py +31 -23
- snappy/snap/t3mlite/homology.py +14 -10
- snappy/snap/t3mlite/linalg.py +158 -56
- snappy/snap/t3mlite/mcomplex.py +739 -291
- snappy/snap/t3mlite/perm4.py +236 -84
- snappy/snap/t3mlite/setup.py +9 -10
- snappy/snap/t3mlite/simplex.py +65 -48
- snappy/snap/t3mlite/spun.py +42 -30
- snappy/snap/t3mlite/surface.py +45 -45
- snappy/snap/t3mlite/test.py +3 -0
- snappy/snap/t3mlite/test_vs_regina.py +17 -13
- snappy/snap/t3mlite/tetrahedron.py +25 -24
- snappy/snap/t3mlite/vertex.py +8 -13
- snappy/snap/test.py +45 -52
- snappy/snap/utilities.py +66 -65
- snappy/test.py +155 -158
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +313 -203
- snappy/twister/main.py +1 -8
- snappy/twister/twister_core.cpython-38-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +4 -8
- snappy/verify/{verifyCanonical.py → canonical.py} +114 -97
- snappy/verify/complex_volume/__init__.py +3 -2
- snappy/verify/complex_volume/adjust_torsion.py +13 -11
- snappy/verify/complex_volume/closed.py +29 -24
- snappy/verify/complex_volume/compute_ptolemys.py +8 -6
- snappy/verify/complex_volume/cusped.py +10 -9
- snappy/verify/complex_volume/extended_bloch.py +14 -12
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +15 -14
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +23 -56
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +19 -15
- snappy/verify/interval_newton_shapes_engine.py +51 -211
- snappy/verify/interval_tree.py +27 -25
- snappy/verify/krawczyk_shapes_engine.py +47 -50
- snappy/verify/maximal_cusp_area_matrix/__init__.py +17 -86
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +58 -48
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +53 -57
- snappy/verify/{realAlgebra.py → real_algebra.py} +26 -20
- snappy/verify/shapes.py +10 -7
- snappy/verify/short_slopes.py +41 -42
- snappy/verify/{squareExtensions.py → square_extensions.py} +96 -92
- snappy/verify/test.py +59 -57
- snappy/verify/upper_halfspace/extended_matrix.py +5 -5
- snappy/verify/upper_halfspace/finite_point.py +44 -31
- snappy/verify/upper_halfspace/ideal_point.py +69 -57
- snappy/verify/volume.py +15 -12
- snappy/version.py +2 -3
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/METADATA +14 -12
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -1
- {snappy-3.0.3.dist-info → snappy-3.2.dist-info}/top_level.txt +10 -1
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/classic.css +0 -266
- snappy/doc/_static/jquery-3.5.1.js +0 -10872
- snappy/doc/_static/sidebar.js +0 -159
- snappy/doc/_static/underscore-1.13.1.js +0 -2042
- snappy/doc/_static/underscore.js +0 -6
- snappy/doc/verify_canon.html +0 -283
- snappy/ppm_to_png.py +0 -243
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/verify/cuspCrossSection.py +0 -1413
- snappy/verify/mathHelpers.py +0 -64
- snappy-3.0.3.dist-info/RECORD +0 -360
snappy/doc/_static/underscore.js
DELETED
@@ -1,6 +0,0 @@
|
|
1
|
-
!function(n,r){"object"==typeof exports&&"undefined"!=typeof module?module.exports=r():"function"==typeof define&&define.amd?define("underscore",r):(n="undefined"!=typeof globalThis?globalThis:n||self,function(){var t=n._,e=n._=r();e.noConflict=function(){return n._=t,e}}())}(this,(function(){
|
2
|
-
// Underscore.js 1.13.1
|
3
|
-
// https://underscorejs.org
|
4
|
-
// (c) 2009-2021 Jeremy Ashkenas, Julian Gonggrijp, and DocumentCloud and Investigative Reporters & Editors
|
5
|
-
// Underscore may be freely distributed under the MIT license.
|
6
|
-
var n="1.13.1",r="object"==typeof self&&self.self===self&&self||"object"==typeof global&&global.global===global&&global||Function("return this")()||{},t=Array.prototype,e=Object.prototype,u="undefined"!=typeof Symbol?Symbol.prototype:null,o=t.push,i=t.slice,a=e.toString,f=e.hasOwnProperty,c="undefined"!=typeof ArrayBuffer,l="undefined"!=typeof DataView,s=Array.isArray,p=Object.keys,v=Object.create,h=c&&ArrayBuffer.isView,y=isNaN,d=isFinite,g=!{toString:null}.propertyIsEnumerable("toString"),b=["valueOf","isPrototypeOf","toString","propertyIsEnumerable","hasOwnProperty","toLocaleString"],m=Math.pow(2,53)-1;function j(n,r){return r=null==r?n.length-1:+r,function(){for(var t=Math.max(arguments.length-r,0),e=Array(t),u=0;u<t;u++)e[u]=arguments[u+r];switch(r){case 0:return n.call(this,e);case 1:return n.call(this,arguments[0],e);case 2:return n.call(this,arguments[0],arguments[1],e)}var o=Array(r+1);for(u=0;u<r;u++)o[u]=arguments[u];return o[r]=e,n.apply(this,o)}}function _(n){var r=typeof n;return"function"===r||"object"===r&&!!n}function w(n){return void 0===n}function A(n){return!0===n||!1===n||"[object Boolean]"===a.call(n)}function x(n){var r="[object "+n+"]";return function(n){return a.call(n)===r}}var S=x("String"),O=x("Number"),M=x("Date"),E=x("RegExp"),B=x("Error"),N=x("Symbol"),I=x("ArrayBuffer"),T=x("Function"),k=r.document&&r.document.childNodes;"function"!=typeof/./&&"object"!=typeof Int8Array&&"function"!=typeof k&&(T=function(n){return"function"==typeof n||!1});var D=T,R=x("Object"),F=l&&R(new DataView(new ArrayBuffer(8))),V="undefined"!=typeof Map&&R(new Map),P=x("DataView");var q=F?function(n){return null!=n&&D(n.getInt8)&&I(n.buffer)}:P,U=s||x("Array");function W(n,r){return null!=n&&f.call(n,r)}var z=x("Arguments");!function(){z(arguments)||(z=function(n){return W(n,"callee")})}();var L=z;function $(n){return O(n)&&y(n)}function C(n){return function(){return n}}function K(n){return function(r){var t=n(r);return"number"==typeof t&&t>=0&&t<=m}}function J(n){return function(r){return null==r?void 0:r[n]}}var G=J("byteLength"),H=K(G),Q=/\[object ((I|Ui)nt(8|16|32)|Float(32|64)|Uint8Clamped|Big(I|Ui)nt64)Array\]/;var X=c?function(n){return h?h(n)&&!q(n):H(n)&&Q.test(a.call(n))}:C(!1),Y=J("length");function Z(n,r){r=function(n){for(var r={},t=n.length,e=0;e<t;++e)r[n[e]]=!0;return{contains:function(n){return r[n]},push:function(t){return r[t]=!0,n.push(t)}}}(r);var t=b.length,u=n.constructor,o=D(u)&&u.prototype||e,i="constructor";for(W(n,i)&&!r.contains(i)&&r.push(i);t--;)(i=b[t])in n&&n[i]!==o[i]&&!r.contains(i)&&r.push(i)}function nn(n){if(!_(n))return[];if(p)return p(n);var r=[];for(var t in n)W(n,t)&&r.push(t);return g&&Z(n,r),r}function rn(n,r){var t=nn(r),e=t.length;if(null==n)return!e;for(var u=Object(n),o=0;o<e;o++){var i=t[o];if(r[i]!==u[i]||!(i in u))return!1}return!0}function tn(n){return n instanceof tn?n:this instanceof tn?void(this._wrapped=n):new tn(n)}function en(n){return new Uint8Array(n.buffer||n,n.byteOffset||0,G(n))}tn.VERSION=n,tn.prototype.value=function(){return this._wrapped},tn.prototype.valueOf=tn.prototype.toJSON=tn.prototype.value,tn.prototype.toString=function(){return String(this._wrapped)};var un="[object DataView]";function on(n,r,t,e){if(n===r)return 0!==n||1/n==1/r;if(null==n||null==r)return!1;if(n!=n)return r!=r;var o=typeof n;return("function"===o||"object"===o||"object"==typeof r)&&function n(r,t,e,o){r instanceof tn&&(r=r._wrapped);t instanceof tn&&(t=t._wrapped);var i=a.call(r);if(i!==a.call(t))return!1;if(F&&"[object Object]"==i&&q(r)){if(!q(t))return!1;i=un}switch(i){case"[object RegExp]":case"[object String]":return""+r==""+t;case"[object Number]":return+r!=+r?+t!=+t:0==+r?1/+r==1/t:+r==+t;case"[object Date]":case"[object Boolean]":return+r==+t;case"[object Symbol]":return u.valueOf.call(r)===u.valueOf.call(t);case"[object ArrayBuffer]":case un:return n(en(r),en(t),e,o)}var f="[object Array]"===i;if(!f&&X(r)){if(G(r)!==G(t))return!1;if(r.buffer===t.buffer&&r.byteOffset===t.byteOffset)return!0;f=!0}if(!f){if("object"!=typeof r||"object"!=typeof t)return!1;var c=r.constructor,l=t.constructor;if(c!==l&&!(D(c)&&c instanceof c&&D(l)&&l instanceof l)&&"constructor"in r&&"constructor"in t)return!1}o=o||[];var s=(e=e||[]).length;for(;s--;)if(e[s]===r)return o[s]===t;if(e.push(r),o.push(t),f){if((s=r.length)!==t.length)return!1;for(;s--;)if(!on(r[s],t[s],e,o))return!1}else{var p,v=nn(r);if(s=v.length,nn(t).length!==s)return!1;for(;s--;)if(p=v[s],!W(t,p)||!on(r[p],t[p],e,o))return!1}return e.pop(),o.pop(),!0}(n,r,t,e)}function an(n){if(!_(n))return[];var r=[];for(var t in n)r.push(t);return g&&Z(n,r),r}function fn(n){var r=Y(n);return function(t){if(null==t)return!1;var e=an(t);if(Y(e))return!1;for(var u=0;u<r;u++)if(!D(t[n[u]]))return!1;return n!==hn||!D(t[cn])}}var cn="forEach",ln="has",sn=["clear","delete"],pn=["get",ln,"set"],vn=sn.concat(cn,pn),hn=sn.concat(pn),yn=["add"].concat(sn,cn,ln),dn=V?fn(vn):x("Map"),gn=V?fn(hn):x("WeakMap"),bn=V?fn(yn):x("Set"),mn=x("WeakSet");function jn(n){for(var r=nn(n),t=r.length,e=Array(t),u=0;u<t;u++)e[u]=n[r[u]];return e}function _n(n){for(var r={},t=nn(n),e=0,u=t.length;e<u;e++)r[n[t[e]]]=t[e];return r}function wn(n){var r=[];for(var t in n)D(n[t])&&r.push(t);return r.sort()}function An(n,r){return function(t){var e=arguments.length;if(r&&(t=Object(t)),e<2||null==t)return t;for(var u=1;u<e;u++)for(var o=arguments[u],i=n(o),a=i.length,f=0;f<a;f++){var c=i[f];r&&void 0!==t[c]||(t[c]=o[c])}return t}}var xn=An(an),Sn=An(nn),On=An(an,!0);function Mn(n){if(!_(n))return{};if(v)return v(n);var r=function(){};r.prototype=n;var t=new r;return r.prototype=null,t}function En(n){return _(n)?U(n)?n.slice():xn({},n):n}function Bn(n){return U(n)?n:[n]}function Nn(n){return tn.toPath(n)}function In(n,r){for(var t=r.length,e=0;e<t;e++){if(null==n)return;n=n[r[e]]}return t?n:void 0}function Tn(n,r,t){var e=In(n,Nn(r));return w(e)?t:e}function kn(n){return n}function Dn(n){return n=Sn({},n),function(r){return rn(r,n)}}function Rn(n){return n=Nn(n),function(r){return In(r,n)}}function Fn(n,r,t){if(void 0===r)return n;switch(null==t?3:t){case 1:return function(t){return n.call(r,t)};case 3:return function(t,e,u){return n.call(r,t,e,u)};case 4:return function(t,e,u,o){return n.call(r,t,e,u,o)}}return function(){return n.apply(r,arguments)}}function Vn(n,r,t){return null==n?kn:D(n)?Fn(n,r,t):_(n)&&!U(n)?Dn(n):Rn(n)}function Pn(n,r){return Vn(n,r,1/0)}function qn(n,r,t){return tn.iteratee!==Pn?tn.iteratee(n,r):Vn(n,r,t)}function Un(){}function Wn(n,r){return null==r&&(r=n,n=0),n+Math.floor(Math.random()*(r-n+1))}tn.toPath=Bn,tn.iteratee=Pn;var zn=Date.now||function(){return(new Date).getTime()};function Ln(n){var r=function(r){return n[r]},t="(?:"+nn(n).join("|")+")",e=RegExp(t),u=RegExp(t,"g");return function(n){return n=null==n?"":""+n,e.test(n)?n.replace(u,r):n}}var $n={"&":"&","<":"<",">":">",'"':""","'":"'","`":"`"},Cn=Ln($n),Kn=Ln(_n($n)),Jn=tn.templateSettings={evaluate:/<%([\s\S]+?)%>/g,interpolate:/<%=([\s\S]+?)%>/g,escape:/<%-([\s\S]+?)%>/g},Gn=/(.)^/,Hn={"'":"'","\\":"\\","\r":"r","\n":"n","\u2028":"u2028","\u2029":"u2029"},Qn=/\\|'|\r|\n|\u2028|\u2029/g;function Xn(n){return"\\"+Hn[n]}var Yn=/^\s*(\w|\$)+\s*$/;var Zn=0;function nr(n,r,t,e,u){if(!(e instanceof r))return n.apply(t,u);var o=Mn(n.prototype),i=n.apply(o,u);return _(i)?i:o}var rr=j((function(n,r){var t=rr.placeholder,e=function(){for(var u=0,o=r.length,i=Array(o),a=0;a<o;a++)i[a]=r[a]===t?arguments[u++]:r[a];for(;u<arguments.length;)i.push(arguments[u++]);return nr(n,e,this,this,i)};return e}));rr.placeholder=tn;var tr=j((function(n,r,t){if(!D(n))throw new TypeError("Bind must be called on a function");var e=j((function(u){return nr(n,e,r,this,t.concat(u))}));return e})),er=K(Y);function ur(n,r,t,e){if(e=e||[],r||0===r){if(r<=0)return e.concat(n)}else r=1/0;for(var u=e.length,o=0,i=Y(n);o<i;o++){var a=n[o];if(er(a)&&(U(a)||L(a)))if(r>1)ur(a,r-1,t,e),u=e.length;else for(var f=0,c=a.length;f<c;)e[u++]=a[f++];else t||(e[u++]=a)}return e}var or=j((function(n,r){var t=(r=ur(r,!1,!1)).length;if(t<1)throw new Error("bindAll must be passed function names");for(;t--;){var e=r[t];n[e]=tr(n[e],n)}return n}));var ir=j((function(n,r,t){return setTimeout((function(){return n.apply(null,t)}),r)})),ar=rr(ir,tn,1);function fr(n){return function(){return!n.apply(this,arguments)}}function cr(n,r){var t;return function(){return--n>0&&(t=r.apply(this,arguments)),n<=1&&(r=null),t}}var lr=rr(cr,2);function sr(n,r,t){r=qn(r,t);for(var e,u=nn(n),o=0,i=u.length;o<i;o++)if(r(n[e=u[o]],e,n))return e}function pr(n){return function(r,t,e){t=qn(t,e);for(var u=Y(r),o=n>0?0:u-1;o>=0&&o<u;o+=n)if(t(r[o],o,r))return o;return-1}}var vr=pr(1),hr=pr(-1);function yr(n,r,t,e){for(var u=(t=qn(t,e,1))(r),o=0,i=Y(n);o<i;){var a=Math.floor((o+i)/2);t(n[a])<u?o=a+1:i=a}return o}function dr(n,r,t){return function(e,u,o){var a=0,f=Y(e);if("number"==typeof o)n>0?a=o>=0?o:Math.max(o+f,a):f=o>=0?Math.min(o+1,f):o+f+1;else if(t&&o&&f)return e[o=t(e,u)]===u?o:-1;if(u!=u)return(o=r(i.call(e,a,f),$))>=0?o+a:-1;for(o=n>0?a:f-1;o>=0&&o<f;o+=n)if(e[o]===u)return o;return-1}}var gr=dr(1,vr,yr),br=dr(-1,hr);function mr(n,r,t){var e=(er(n)?vr:sr)(n,r,t);if(void 0!==e&&-1!==e)return n[e]}function jr(n,r,t){var e,u;if(r=Fn(r,t),er(n))for(e=0,u=n.length;e<u;e++)r(n[e],e,n);else{var o=nn(n);for(e=0,u=o.length;e<u;e++)r(n[o[e]],o[e],n)}return n}function _r(n,r,t){r=qn(r,t);for(var e=!er(n)&&nn(n),u=(e||n).length,o=Array(u),i=0;i<u;i++){var a=e?e[i]:i;o[i]=r(n[a],a,n)}return o}function wr(n){var r=function(r,t,e,u){var o=!er(r)&&nn(r),i=(o||r).length,a=n>0?0:i-1;for(u||(e=r[o?o[a]:a],a+=n);a>=0&&a<i;a+=n){var f=o?o[a]:a;e=t(e,r[f],f,r)}return e};return function(n,t,e,u){var o=arguments.length>=3;return r(n,Fn(t,u,4),e,o)}}var Ar=wr(1),xr=wr(-1);function Sr(n,r,t){var e=[];return r=qn(r,t),jr(n,(function(n,t,u){r(n,t,u)&&e.push(n)})),e}function Or(n,r,t){r=qn(r,t);for(var e=!er(n)&&nn(n),u=(e||n).length,o=0;o<u;o++){var i=e?e[o]:o;if(!r(n[i],i,n))return!1}return!0}function Mr(n,r,t){r=qn(r,t);for(var e=!er(n)&&nn(n),u=(e||n).length,o=0;o<u;o++){var i=e?e[o]:o;if(r(n[i],i,n))return!0}return!1}function Er(n,r,t,e){return er(n)||(n=jn(n)),("number"!=typeof t||e)&&(t=0),gr(n,r,t)>=0}var Br=j((function(n,r,t){var e,u;return D(r)?u=r:(r=Nn(r),e=r.slice(0,-1),r=r[r.length-1]),_r(n,(function(n){var o=u;if(!o){if(e&&e.length&&(n=In(n,e)),null==n)return;o=n[r]}return null==o?o:o.apply(n,t)}))}));function Nr(n,r){return _r(n,Rn(r))}function Ir(n,r,t){var e,u,o=-1/0,i=-1/0;if(null==r||"number"==typeof r&&"object"!=typeof n[0]&&null!=n)for(var a=0,f=(n=er(n)?n:jn(n)).length;a<f;a++)null!=(e=n[a])&&e>o&&(o=e);else r=qn(r,t),jr(n,(function(n,t,e){((u=r(n,t,e))>i||u===-1/0&&o===-1/0)&&(o=n,i=u)}));return o}function Tr(n,r,t){if(null==r||t)return er(n)||(n=jn(n)),n[Wn(n.length-1)];var e=er(n)?En(n):jn(n),u=Y(e);r=Math.max(Math.min(r,u),0);for(var o=u-1,i=0;i<r;i++){var a=Wn(i,o),f=e[i];e[i]=e[a],e[a]=f}return e.slice(0,r)}function kr(n,r){return function(t,e,u){var o=r?[[],[]]:{};return e=qn(e,u),jr(t,(function(r,u){var i=e(r,u,t);n(o,r,i)})),o}}var Dr=kr((function(n,r,t){W(n,t)?n[t].push(r):n[t]=[r]})),Rr=kr((function(n,r,t){n[t]=r})),Fr=kr((function(n,r,t){W(n,t)?n[t]++:n[t]=1})),Vr=kr((function(n,r,t){n[t?0:1].push(r)}),!0),Pr=/[^\ud800-\udfff]|[\ud800-\udbff][\udc00-\udfff]|[\ud800-\udfff]/g;function qr(n,r,t){return r in t}var Ur=j((function(n,r){var t={},e=r[0];if(null==n)return t;D(e)?(r.length>1&&(e=Fn(e,r[1])),r=an(n)):(e=qr,r=ur(r,!1,!1),n=Object(n));for(var u=0,o=r.length;u<o;u++){var i=r[u],a=n[i];e(a,i,n)&&(t[i]=a)}return t})),Wr=j((function(n,r){var t,e=r[0];return D(e)?(e=fr(e),r.length>1&&(t=r[1])):(r=_r(ur(r,!1,!1),String),e=function(n,t){return!Er(r,t)}),Ur(n,e,t)}));function zr(n,r,t){return i.call(n,0,Math.max(0,n.length-(null==r||t?1:r)))}function Lr(n,r,t){return null==n||n.length<1?null==r||t?void 0:[]:null==r||t?n[0]:zr(n,n.length-r)}function $r(n,r,t){return i.call(n,null==r||t?1:r)}var Cr=j((function(n,r){return r=ur(r,!0,!0),Sr(n,(function(n){return!Er(r,n)}))})),Kr=j((function(n,r){return Cr(n,r)}));function Jr(n,r,t,e){A(r)||(e=t,t=r,r=!1),null!=t&&(t=qn(t,e));for(var u=[],o=[],i=0,a=Y(n);i<a;i++){var f=n[i],c=t?t(f,i,n):f;r&&!t?(i&&o===c||u.push(f),o=c):t?Er(o,c)||(o.push(c),u.push(f)):Er(u,f)||u.push(f)}return u}var Gr=j((function(n){return Jr(ur(n,!0,!0))}));function Hr(n){for(var r=n&&Ir(n,Y).length||0,t=Array(r),e=0;e<r;e++)t[e]=Nr(n,e);return t}var Qr=j(Hr);function Xr(n,r){return n._chain?tn(r).chain():r}function Yr(n){return jr(wn(n),(function(r){var t=tn[r]=n[r];tn.prototype[r]=function(){var n=[this._wrapped];return o.apply(n,arguments),Xr(this,t.apply(tn,n))}})),tn}jr(["pop","push","reverse","shift","sort","splice","unshift"],(function(n){var r=t[n];tn.prototype[n]=function(){var t=this._wrapped;return null!=t&&(r.apply(t,arguments),"shift"!==n&&"splice"!==n||0!==t.length||delete t[0]),Xr(this,t)}})),jr(["concat","join","slice"],(function(n){var r=t[n];tn.prototype[n]=function(){var n=this._wrapped;return null!=n&&(n=r.apply(n,arguments)),Xr(this,n)}}));var Zr=Yr({__proto__:null,VERSION:n,restArguments:j,isObject:_,isNull:function(n){return null===n},isUndefined:w,isBoolean:A,isElement:function(n){return!(!n||1!==n.nodeType)},isString:S,isNumber:O,isDate:M,isRegExp:E,isError:B,isSymbol:N,isArrayBuffer:I,isDataView:q,isArray:U,isFunction:D,isArguments:L,isFinite:function(n){return!N(n)&&d(n)&&!isNaN(parseFloat(n))},isNaN:$,isTypedArray:X,isEmpty:function(n){if(null==n)return!0;var r=Y(n);return"number"==typeof r&&(U(n)||S(n)||L(n))?0===r:0===Y(nn(n))},isMatch:rn,isEqual:function(n,r){return on(n,r)},isMap:dn,isWeakMap:gn,isSet:bn,isWeakSet:mn,keys:nn,allKeys:an,values:jn,pairs:function(n){for(var r=nn(n),t=r.length,e=Array(t),u=0;u<t;u++)e[u]=[r[u],n[r[u]]];return e},invert:_n,functions:wn,methods:wn,extend:xn,extendOwn:Sn,assign:Sn,defaults:On,create:function(n,r){var t=Mn(n);return r&&Sn(t,r),t},clone:En,tap:function(n,r){return r(n),n},get:Tn,has:function(n,r){for(var t=(r=Nn(r)).length,e=0;e<t;e++){var u=r[e];if(!W(n,u))return!1;n=n[u]}return!!t},mapObject:function(n,r,t){r=qn(r,t);for(var e=nn(n),u=e.length,o={},i=0;i<u;i++){var a=e[i];o[a]=r(n[a],a,n)}return o},identity:kn,constant:C,noop:Un,toPath:Bn,property:Rn,propertyOf:function(n){return null==n?Un:function(r){return Tn(n,r)}},matcher:Dn,matches:Dn,times:function(n,r,t){var e=Array(Math.max(0,n));r=Fn(r,t,1);for(var u=0;u<n;u++)e[u]=r(u);return e},random:Wn,now:zn,escape:Cn,unescape:Kn,templateSettings:Jn,template:function(n,r,t){!r&&t&&(r=t),r=On({},r,tn.templateSettings);var e=RegExp([(r.escape||Gn).source,(r.interpolate||Gn).source,(r.evaluate||Gn).source].join("|")+"|$","g"),u=0,o="__p+='";n.replace(e,(function(r,t,e,i,a){return o+=n.slice(u,a).replace(Qn,Xn),u=a+r.length,t?o+="'+\n((__t=("+t+"))==null?'':_.escape(__t))+\n'":e?o+="'+\n((__t=("+e+"))==null?'':__t)+\n'":i&&(o+="';\n"+i+"\n__p+='"),r})),o+="';\n";var i,a=r.variable;if(a){if(!Yn.test(a))throw new Error("variable is not a bare identifier: "+a)}else o="with(obj||{}){\n"+o+"}\n",a="obj";o="var __t,__p='',__j=Array.prototype.join,"+"print=function(){__p+=__j.call(arguments,'');};\n"+o+"return __p;\n";try{i=new Function(a,"_",o)}catch(n){throw n.source=o,n}var f=function(n){return i.call(this,n,tn)};return f.source="function("+a+"){\n"+o+"}",f},result:function(n,r,t){var e=(r=Nn(r)).length;if(!e)return D(t)?t.call(n):t;for(var u=0;u<e;u++){var o=null==n?void 0:n[r[u]];void 0===o&&(o=t,u=e),n=D(o)?o.call(n):o}return n},uniqueId:function(n){var r=++Zn+"";return n?n+r:r},chain:function(n){var r=tn(n);return r._chain=!0,r},iteratee:Pn,partial:rr,bind:tr,bindAll:or,memoize:function(n,r){var t=function(e){var u=t.cache,o=""+(r?r.apply(this,arguments):e);return W(u,o)||(u[o]=n.apply(this,arguments)),u[o]};return t.cache={},t},delay:ir,defer:ar,throttle:function(n,r,t){var e,u,o,i,a=0;t||(t={});var f=function(){a=!1===t.leading?0:zn(),e=null,i=n.apply(u,o),e||(u=o=null)},c=function(){var c=zn();a||!1!==t.leading||(a=c);var l=r-(c-a);return u=this,o=arguments,l<=0||l>r?(e&&(clearTimeout(e),e=null),a=c,i=n.apply(u,o),e||(u=o=null)):e||!1===t.trailing||(e=setTimeout(f,l)),i};return c.cancel=function(){clearTimeout(e),a=0,e=u=o=null},c},debounce:function(n,r,t){var e,u,o,i,a,f=function(){var c=zn()-u;r>c?e=setTimeout(f,r-c):(e=null,t||(i=n.apply(a,o)),e||(o=a=null))},c=j((function(c){return a=this,o=c,u=zn(),e||(e=setTimeout(f,r),t&&(i=n.apply(a,o))),i}));return c.cancel=function(){clearTimeout(e),e=o=a=null},c},wrap:function(n,r){return rr(r,n)},negate:fr,compose:function(){var n=arguments,r=n.length-1;return function(){for(var t=r,e=n[r].apply(this,arguments);t--;)e=n[t].call(this,e);return e}},after:function(n,r){return function(){if(--n<1)return r.apply(this,arguments)}},before:cr,once:lr,findKey:sr,findIndex:vr,findLastIndex:hr,sortedIndex:yr,indexOf:gr,lastIndexOf:br,find:mr,detect:mr,findWhere:function(n,r){return mr(n,Dn(r))},each:jr,forEach:jr,map:_r,collect:_r,reduce:Ar,foldl:Ar,inject:Ar,reduceRight:xr,foldr:xr,filter:Sr,select:Sr,reject:function(n,r,t){return Sr(n,fr(qn(r)),t)},every:Or,all:Or,some:Mr,any:Mr,contains:Er,includes:Er,include:Er,invoke:Br,pluck:Nr,where:function(n,r){return Sr(n,Dn(r))},max:Ir,min:function(n,r,t){var e,u,o=1/0,i=1/0;if(null==r||"number"==typeof r&&"object"!=typeof n[0]&&null!=n)for(var a=0,f=(n=er(n)?n:jn(n)).length;a<f;a++)null!=(e=n[a])&&e<o&&(o=e);else r=qn(r,t),jr(n,(function(n,t,e){((u=r(n,t,e))<i||u===1/0&&o===1/0)&&(o=n,i=u)}));return o},shuffle:function(n){return Tr(n,1/0)},sample:Tr,sortBy:function(n,r,t){var e=0;return r=qn(r,t),Nr(_r(n,(function(n,t,u){return{value:n,index:e++,criteria:r(n,t,u)}})).sort((function(n,r){var t=n.criteria,e=r.criteria;if(t!==e){if(t>e||void 0===t)return 1;if(t<e||void 0===e)return-1}return n.index-r.index})),"value")},groupBy:Dr,indexBy:Rr,countBy:Fr,partition:Vr,toArray:function(n){return n?U(n)?i.call(n):S(n)?n.match(Pr):er(n)?_r(n,kn):jn(n):[]},size:function(n){return null==n?0:er(n)?n.length:nn(n).length},pick:Ur,omit:Wr,first:Lr,head:Lr,take:Lr,initial:zr,last:function(n,r,t){return null==n||n.length<1?null==r||t?void 0:[]:null==r||t?n[n.length-1]:$r(n,Math.max(0,n.length-r))},rest:$r,tail:$r,drop:$r,compact:function(n){return Sr(n,Boolean)},flatten:function(n,r){return ur(n,r,!1)},without:Kr,uniq:Jr,unique:Jr,union:Gr,intersection:function(n){for(var r=[],t=arguments.length,e=0,u=Y(n);e<u;e++){var o=n[e];if(!Er(r,o)){var i;for(i=1;i<t&&Er(arguments[i],o);i++);i===t&&r.push(o)}}return r},difference:Cr,unzip:Hr,transpose:Hr,zip:Qr,object:function(n,r){for(var t={},e=0,u=Y(n);e<u;e++)r?t[n[e]]=r[e]:t[n[e][0]]=n[e][1];return t},range:function(n,r,t){null==r&&(r=n||0,n=0),t||(t=r<n?-1:1);for(var e=Math.max(Math.ceil((r-n)/t),0),u=Array(e),o=0;o<e;o++,n+=t)u[o]=n;return u},chunk:function(n,r){if(null==r||r<1)return[];for(var t=[],e=0,u=n.length;e<u;)t.push(i.call(n,e,e+=r));return t},mixin:Yr,default:tn});return Zr._=Zr,Zr}));
|
snappy/doc/verify_canon.html
DELETED
@@ -1,283 +0,0 @@
|
|
1
|
-
|
2
|
-
<!DOCTYPE html>
|
3
|
-
|
4
|
-
<html>
|
5
|
-
<head>
|
6
|
-
<meta charset="utf-8" />
|
7
|
-
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
|
8
|
-
|
9
|
-
<title>Canonical retriangulation and isometry signature — SnapPy 3.0.3 documentation</title>
|
10
|
-
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
|
11
|
-
<link rel="stylesheet" type="text/css" href="_static/classic.css" />
|
12
|
-
|
13
|
-
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
|
14
|
-
<script src="_static/jquery.js"></script>
|
15
|
-
<script src="_static/underscore.js"></script>
|
16
|
-
<script src="_static/doctools.js"></script>
|
17
|
-
|
18
|
-
<link rel="index" title="Index" href="genindex.html" />
|
19
|
-
<link rel="search" title="Search" href="search.html" />
|
20
|
-
<link rel="next" title="Internals of verified computations" href="verify_internals.html" />
|
21
|
-
<link rel="prev" title="Verified computations" href="verify.html" />
|
22
|
-
</head><body>
|
23
|
-
<div class="related" role="navigation" aria-label="related navigation">
|
24
|
-
<h3>Navigation</h3>
|
25
|
-
<ul>
|
26
|
-
<li class="right" style="margin-right: 10px">
|
27
|
-
<a href="genindex.html" title="General Index"
|
28
|
-
accesskey="I">index</a></li>
|
29
|
-
<li class="right" >
|
30
|
-
<a href="py-modindex.html" title="Python Module Index"
|
31
|
-
>modules</a> |</li>
|
32
|
-
<li class="right" >
|
33
|
-
<a href="verify_internals.html" title="Internals of verified computations"
|
34
|
-
accesskey="N">next</a> |</li>
|
35
|
-
<li class="right" >
|
36
|
-
<a href="verify.html" title="Verified computations"
|
37
|
-
accesskey="P">previous</a> |</li>
|
38
|
-
<li class="nav-item nav-item-0"><a href="index.html">SnapPy 3.0.3 documentation</a> »</li>
|
39
|
-
<li class="nav-item nav-item-1"><a href="verify.html" accesskey="U">Verified computations</a> »</li>
|
40
|
-
<li class="nav-item nav-item-this"><a href="">Canonical retriangulation and isometry signature</a></li>
|
41
|
-
</ul>
|
42
|
-
</div>
|
43
|
-
|
44
|
-
<div class="document">
|
45
|
-
<div class="documentwrapper">
|
46
|
-
<div class="bodywrapper">
|
47
|
-
<div class="body" role="main">
|
48
|
-
|
49
|
-
<section id="canonical-retriangulation-and-isometry-signature">
|
50
|
-
<h1>Canonical retriangulation and isometry signature<a class="headerlink" href="#canonical-retriangulation-and-isometry-signature" title="Permalink to this headline">¶</a></h1>
|
51
|
-
<p>The canonical retriangulation is a close relative to the canonical cell
|
52
|
-
decomposition defined by <a class="reference external" href="https://projecteuclid.org/euclid.jdg/1214441650">Epstein and Penner</a>.
|
53
|
-
Like the canonical cell decomposition, it is intrinsic to
|
54
|
-
a hyperbolic manifold M and is (up to combinatorial isomorphism
|
55
|
-
relabeling the tetrahedra and vertices) completely determined by the
|
56
|
-
isometry type of a hyperbolic manifold. Unlike the canonical cell decomposition,
|
57
|
-
the canonical retriangulation always conists entirely of tetrahedra which makes
|
58
|
-
it more amenable for many computations by SnapPy.</p>
|
59
|
-
<p>If the canonical cell decompositon of manifold M has only tetrahedral cells,
|
60
|
-
we define the canonical retriangulation to be the canonical cell decomposition.
|
61
|
-
In this case, the canonical retriangulation consists of ideal hyperbolic
|
62
|
-
tetrahedra and the <code class="docutils literal notranslate"><span class="pre">canonical_retriangulation</span></code> method returns a
|
63
|
-
SnapPy manifold. Example:</p>
|
64
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m015"</span><span class="p">)</span>
|
65
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
66
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span> <span class="c1"># False iff all canonical cells tetrahedral</span>
|
67
|
-
<span class="kc">False</span>
|
68
|
-
</pre></div>
|
69
|
-
</div>
|
70
|
-
<p>If the canonical cell decomposition has non-tetrahedral cells, we turn it into
|
71
|
-
a topological triangulation as follows: pick a point (called center) in each
|
72
|
-
3-cell. “Suspend” each 2-cell (which is an ideal n-gon) between
|
73
|
-
the centers of the two neighboring 3-cells. These suspensions form a
|
74
|
-
decomposition of M into topological “diamonds”. Each diamond can be split along
|
75
|
-
its central axis into n tetrahedra. This introduces finite vertices, thus
|
76
|
-
the <code class="docutils literal notranslate"><span class="pre">verified_canonical_retriangulation</span></code> method returns only a SnapPy
|
77
|
-
triangulation. Example (canonical cell is a cube):</p>
|
78
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m412"</span><span class="p">)</span>
|
79
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
80
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
81
|
-
<span class="kc">True</span>
|
82
|
-
</pre></div>
|
83
|
-
</div>
|
84
|
-
<p>The canonical retriangulation can be used to certifiably find all isometries
|
85
|
-
of a manifold:</p>
|
86
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">)</span>
|
87
|
-
<span class="p">[</span><span class="mi">0</span> <span class="o">-></span> <span class="mi">1</span> <span class="mi">1</span> <span class="o">-></span> <span class="mi">0</span>
|
88
|
-
<span class="p">[</span><span class="mi">1</span> <span class="mi">0</span><span class="p">]</span> <span class="p">[</span><span class="mi">1</span> <span class="mi">0</span><span class="p">]</span>
|
89
|
-
<span class="p">[</span><span class="mi">0</span> <span class="mi">1</span><span class="p">]</span> <span class="p">[</span><span class="mi">0</span> <span class="mi">1</span><span class="p">]</span>
|
90
|
-
<span class="n">Extends</span> <span class="n">to</span> <span class="n">link</span><span class="p">,</span>
|
91
|
-
<span class="o">...</span>
|
92
|
-
<span class="n">Extends</span> <span class="n">to</span> <span class="n">link</span><span class="p">]</span>
|
93
|
-
<span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">))</span>
|
94
|
-
<span class="mi">8</span>
|
95
|
-
</pre></div>
|
96
|
-
</div>
|
97
|
-
<p>Recall that the <em>isomorphism
|
98
|
-
signature</em> is a complete invariant of the combinatorial
|
99
|
-
isomorphism type of a triangulation that was defined by <a class="reference external" href="http://arxiv.org/abs/1110.6080">Burton</a>. We can compute the isomorphism signature
|
100
|
-
of the canonical retriangulation:</p>
|
101
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
|
102
|
-
<span class="s1">'cPcbbbdxm'</span>
|
103
|
-
</pre></div>
|
104
|
-
</div>
|
105
|
-
<p>The resulting invariant was called <em>isometry signature</em> by
|
106
|
-
<a class="reference external" href="http://arxiv.org/abs/1502.00383">Goerner</a> and, for convenience, can be
|
107
|
-
accessed by:</p>
|
108
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
109
|
-
<span class="s1">'cPcbbbdxm'</span>
|
110
|
-
</pre></div>
|
111
|
-
</div>
|
112
|
-
<p>It is a complete invariant of the isometry type of a hyperbolic manifold.
|
113
|
-
Thus it can be used to easily identify isometric manifolds
|
114
|
-
(here, the last two manifolds have the same isometry signature and thus
|
115
|
-
have to be isomorphic):</p>
|
116
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
117
|
-
<span class="s1">'cPcbbbdxm'</span>
|
118
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
119
|
-
<span class="s1">'cPcbbbiht'</span>
|
120
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
121
|
-
<span class="s1">'cPcbbbiht'</span>
|
122
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span> <span class="o">==</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
123
|
-
<span class="kc">True</span>
|
124
|
-
</pre></div>
|
125
|
-
</div>
|
126
|
-
<p>Other applications of the canonical retriangulation include the detection of
|
127
|
-
2-bridge knots.</p>
|
128
|
-
<section id="verifiying-the-canonical-retriangulation">
|
129
|
-
<h2>Verifiying the canonical retriangulation<a class="headerlink" href="#verifiying-the-canonical-retriangulation" title="Permalink to this headline">¶</a></h2>
|
130
|
-
<dl class="py function">
|
131
|
-
<dt class="sig sig-object py" id="snappy.verify.verified_canonical_retriangulation">
|
132
|
-
<span class="sig-prename descclassname"><span class="pre">snappy.verify.</span></span><span class="sig-name descname"><span class="pre">verified_canonical_retriangulation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">interval_bits_precs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[53,</span> <span class="pre">212]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exact_bits_prec_and_degrees</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[(212,</span> <span class="pre">10),</span> <span class="pre">(1000,</span> <span class="pre">20),</span> <span class="pre">(2000,</span> <span class="pre">20)]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.verified_canonical_retriangulation" title="Permalink to this definition">¶</a></dt>
|
133
|
-
<dd><p>Given some triangulation of a cusped (possibly non-orientable) manifold <code class="docutils literal notranslate"><span class="pre">M</span></code>,
|
134
|
-
return its canonical retriangulation. Return <code class="docutils literal notranslate"><span class="pre">None</span></code> if it could not certify
|
135
|
-
the result.</p>
|
136
|
-
<p>To compute the canonical retriangulation, it first prepares the manifold
|
137
|
-
(filling all Dehn-filled cusps and trying to find a proto-canonical
|
138
|
-
triangulation).
|
139
|
-
It then tries to certify the canonical triangulation using interval
|
140
|
-
arithmetics. If this fails, it uses snap (using <a class="reference external" href="http://en.wikipedia.org/wiki/Lenstra%E2%80%93Lenstra%E2%80%93Lov%C3%A1sz_lattice_basis_reduction_algorithm">LLL-algorithm</a>)
|
141
|
-
to guess
|
142
|
-
exact representations of the shapes in the shape field and then certifies
|
143
|
-
that it found the proto-canonical triangulation and determines the
|
144
|
-
transparent faces to construct the canonical retriangulation.</p>
|
145
|
-
<p>The optional arguments are:</p>
|
146
|
-
<ul class="simple">
|
147
|
-
<li><p><code class="docutils literal notranslate"><span class="pre">interval_bits_precs</span></code>:
|
148
|
-
a list of precisions used to try to
|
149
|
-
certify the canonical triangulation using intervals. By default, it
|
150
|
-
first tries to certify using 53 bits precision. If it failed, it tries
|
151
|
-
212 bits precision next. If it failed again, it moves on to trying exact
|
152
|
-
arithmetics.</p></li>
|
153
|
-
<li><p><code class="docutils literal notranslate"><span class="pre">exact_bits_prec_and_degrees</span></code>:
|
154
|
-
a list of pairs (precision, maximal degree) used when the LLL-algorithm
|
155
|
-
is trying to find the defining polynomial of the shape field.
|
156
|
-
Similar to <code class="docutils literal notranslate"><span class="pre">interval_bits_precs</span></code>, each pair is tried until we succeed.</p></li>
|
157
|
-
<li><p><code class="docutils literal notranslate"><span class="pre">verbose</span></code>:
|
158
|
-
If <code class="docutils literal notranslate"><span class="pre">True</span></code>, print out additional information.</p></li>
|
159
|
-
</ul>
|
160
|
-
<p>The exact arithmetics can take a long time. To circumvent it, use
|
161
|
-
<code class="docutils literal notranslate"><span class="pre">exact_bits_prec_and_degrees</span> <span class="pre">=</span> <span class="pre">None</span></code>.</p>
|
162
|
-
<p>More information on the canonical retriangulation can be found in the
|
163
|
-
SnapPea kernel <code class="docutils literal notranslate"><span class="pre">canonize_part_2.c</span></code> and in Section 3.1 of
|
164
|
-
<a class="reference external" href="http://arxiv.org/abs/1502.00383">Fominykh, Garoufalidis, Goerner, Tarkaev, Vesnin</a>.</p>
|
165
|
-
<p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m004</span></code> has 2 tetrahedral cells:</p>
|
166
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
167
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span>
|
168
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
169
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
170
|
-
<span class="kc">False</span>
|
171
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
172
|
-
<span class="mi">2</span>
|
173
|
-
</pre></div>
|
174
|
-
</div>
|
175
|
-
<p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m137</span></code> is not tetrahedral:</p>
|
176
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m137"</span><span class="p">)</span>
|
177
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
178
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
179
|
-
<span class="kc">True</span>
|
180
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
181
|
-
<span class="mi">18</span>
|
182
|
-
</pre></div>
|
183
|
-
</div>
|
184
|
-
<p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m412</span></code> is a cube and has exactly 8
|
185
|
-
symmetries:</p>
|
186
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m412"</span><span class="p">)</span>
|
187
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
188
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
189
|
-
<span class="kc">True</span>
|
190
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
191
|
-
<span class="mi">12</span>
|
192
|
-
<span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">))</span>
|
193
|
-
<span class="mi">8</span>
|
194
|
-
</pre></div>
|
195
|
-
</div>
|
196
|
-
<p><a class="reference external" href="http://arxiv.org/abs/1311.7615">Burton’s example</a> of <code class="docutils literal notranslate"><span class="pre">x101</span></code> and <code class="docutils literal notranslate"><span class="pre">x103</span></code> which are actually isometric but
|
197
|
-
SnapPea fails to show so. We certify the canonical retriangulation and
|
198
|
-
find them isomorphic:</p>
|
199
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'x101'</span><span class="p">);</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
200
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'x103'</span><span class="p">);</span> <span class="n">L</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
|
201
|
-
<span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">L</span><span class="p">))</span> <span class="o">></span> <span class="mi">0</span>
|
202
|
-
<span class="kc">True</span>
|
203
|
-
</pre></div>
|
204
|
-
</div>
|
205
|
-
<p>Avoid potentially expensive exact arithmetics (return <code class="docutils literal notranslate"><span class="pre">None</span></code> because it has
|
206
|
-
non-tetrahedral cells so interval arithmetics can’t certify it):</p>
|
207
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m412"</span><span class="p">)</span>
|
208
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">exact_bits_prec_and_degrees</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span>
|
209
|
-
</pre></div>
|
210
|
-
</div>
|
211
|
-
</dd></dl>
|
212
|
-
|
213
|
-
</section>
|
214
|
-
</section>
|
215
|
-
|
216
|
-
|
217
|
-
<div class="clearer"></div>
|
218
|
-
</div>
|
219
|
-
</div>
|
220
|
-
</div>
|
221
|
-
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
222
|
-
<div class="sphinxsidebarwrapper">
|
223
|
-
<h3><a href="index.html">Table of Contents</a></h3>
|
224
|
-
<ul>
|
225
|
-
<li><a class="reference internal" href="#">Canonical retriangulation and isometry signature</a><ul>
|
226
|
-
<li><a class="reference internal" href="#verifiying-the-canonical-retriangulation">Verifiying the canonical retriangulation</a></li>
|
227
|
-
</ul>
|
228
|
-
</li>
|
229
|
-
</ul>
|
230
|
-
|
231
|
-
<h4>Previous topic</h4>
|
232
|
-
<p class="topless"><a href="verify.html"
|
233
|
-
title="previous chapter">Verified computations</a></p>
|
234
|
-
<h4>Next topic</h4>
|
235
|
-
<p class="topless"><a href="verify_internals.html"
|
236
|
-
title="next chapter">Internals of verified computations</a></p>
|
237
|
-
<div role="note" aria-label="source link">
|
238
|
-
<h3>This Page</h3>
|
239
|
-
<ul class="this-page-menu">
|
240
|
-
<li><a href="_sources/verify_canon.rst.txt"
|
241
|
-
rel="nofollow">Show Source</a></li>
|
242
|
-
</ul>
|
243
|
-
</div>
|
244
|
-
<div id="searchbox" style="display: none" role="search">
|
245
|
-
<h3 id="searchlabel">Quick search</h3>
|
246
|
-
<div class="searchformwrapper">
|
247
|
-
<form class="search" action="search.html" method="get">
|
248
|
-
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
|
249
|
-
<input type="submit" value="Go" />
|
250
|
-
</form>
|
251
|
-
</div>
|
252
|
-
</div>
|
253
|
-
<script>$('#searchbox').show(0);</script>
|
254
|
-
</div>
|
255
|
-
</div>
|
256
|
-
<div class="clearer"></div>
|
257
|
-
</div>
|
258
|
-
<div class="related" role="navigation" aria-label="related navigation">
|
259
|
-
<h3>Navigation</h3>
|
260
|
-
<ul>
|
261
|
-
<li class="right" style="margin-right: 10px">
|
262
|
-
<a href="genindex.html" title="General Index"
|
263
|
-
>index</a></li>
|
264
|
-
<li class="right" >
|
265
|
-
<a href="py-modindex.html" title="Python Module Index"
|
266
|
-
>modules</a> |</li>
|
267
|
-
<li class="right" >
|
268
|
-
<a href="verify_internals.html" title="Internals of verified computations"
|
269
|
-
>next</a> |</li>
|
270
|
-
<li class="right" >
|
271
|
-
<a href="verify.html" title="Verified computations"
|
272
|
-
>previous</a> |</li>
|
273
|
-
<li class="nav-item nav-item-0"><a href="index.html">SnapPy 3.0.3 documentation</a> »</li>
|
274
|
-
<li class="nav-item nav-item-1"><a href="verify.html" >Verified computations</a> »</li>
|
275
|
-
<li class="nav-item nav-item-this"><a href="">Canonical retriangulation and isometry signature</a></li>
|
276
|
-
</ul>
|
277
|
-
</div>
|
278
|
-
<div class="footer" role="contentinfo">
|
279
|
-
© Copyright 2009-2021, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.
|
280
|
-
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.3.1.
|
281
|
-
</div>
|
282
|
-
</body>
|
283
|
-
</html>
|
snappy/ppm_to_png.py
DELETED
@@ -1,243 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
This code is almost entirely copied
|
3
|
-
|
4
|
-
https://github.com/drj11/pypng/blob/main/code/pripamtopng
|
5
|
-
|
6
|
-
by David Jones, released under the MIT License. It used to be part of
|
7
|
-
his png module proper, but was moved elsewhere in 0.0.19.
|
8
|
-
"""
|
9
|
-
|
10
|
-
from array import array
|
11
|
-
import png
|
12
|
-
|
13
|
-
def read_pam_header(infile):
|
14
|
-
"""
|
15
|
-
Read (the rest of a) PAM header.
|
16
|
-
`infile` should be positioned immediately after the initial 'P7' line
|
17
|
-
(at the beginning of the second line).
|
18
|
-
Returns are as for `read_pnm_header`.
|
19
|
-
"""
|
20
|
-
|
21
|
-
# Unlike PBM, PGM, and PPM, we can read the header a line at a time.
|
22
|
-
header = dict()
|
23
|
-
while True:
|
24
|
-
line = infile.readline().strip()
|
25
|
-
if line == b"ENDHDR":
|
26
|
-
break
|
27
|
-
if not line:
|
28
|
-
raise EOFError("PAM ended prematurely")
|
29
|
-
if line[0] == b"#":
|
30
|
-
continue
|
31
|
-
line = line.split(None, 1)
|
32
|
-
key = line[0]
|
33
|
-
if key not in header:
|
34
|
-
header[key] = line[1]
|
35
|
-
else:
|
36
|
-
header[key] += b" " + line[1]
|
37
|
-
|
38
|
-
required = [b"WIDTH", b"HEIGHT", b"DEPTH", b"MAXVAL"]
|
39
|
-
required_str = b", ".join(required).decode("ascii")
|
40
|
-
result = []
|
41
|
-
for token in required:
|
42
|
-
if token not in header:
|
43
|
-
raise png.Error("PAM file must specify " + required_str)
|
44
|
-
try:
|
45
|
-
x = int(header[token])
|
46
|
-
except ValueError:
|
47
|
-
raise png.Error(required_str + " must all be valid integers")
|
48
|
-
if x <= 0:
|
49
|
-
raise png.Error(required_str + " must all be positive integers")
|
50
|
-
result.append(x)
|
51
|
-
|
52
|
-
return ("P7",) + tuple(result)
|
53
|
-
|
54
|
-
|
55
|
-
def read_pnm_header(infile):
|
56
|
-
"""
|
57
|
-
Read a PNM header, returning (format,width,height,depth,maxval).
|
58
|
-
Also reads a PAM header (by using a helper function).
|
59
|
-
`width` and `height` are in pixels.
|
60
|
-
`depth` is the number of channels in the image;
|
61
|
-
for PBM and PGM it is synthesized as 1, for PPM as 3;
|
62
|
-
for PAM images it is read from the header.
|
63
|
-
`maxval` is synthesized (as 1) for PBM images.
|
64
|
-
"""
|
65
|
-
|
66
|
-
# Generally, see http://netpbm.sourceforge.net/doc/ppm.html
|
67
|
-
# and http://netpbm.sourceforge.net/doc/pam.html
|
68
|
-
|
69
|
-
supported = (b"P5", b"P6", b"P7")
|
70
|
-
|
71
|
-
# Technically 'P7' must be followed by a newline,
|
72
|
-
# so by using rstrip() we are being liberal in what we accept.
|
73
|
-
# I think this is acceptable.
|
74
|
-
type = infile.read(3).rstrip()
|
75
|
-
if type not in supported:
|
76
|
-
raise NotImplementedError("file format %s not supported" % type)
|
77
|
-
if type == b"P7":
|
78
|
-
# PAM header parsing is completely different.
|
79
|
-
return read_pam_header(infile)
|
80
|
-
|
81
|
-
# Expected number of tokens in header (3 for P4, 4 for P6)
|
82
|
-
expected = 4
|
83
|
-
pbm = (b"P1", b"P4")
|
84
|
-
if type in pbm:
|
85
|
-
expected = 3
|
86
|
-
header = [type]
|
87
|
-
|
88
|
-
# We must read the rest of the header byte by byte because
|
89
|
-
# the final whitespace character may not be a newline.
|
90
|
-
# Of course all PNM files in the wild use a newline at this point,
|
91
|
-
# but we are strong and so we avoid
|
92
|
-
# the temptation to use readline.
|
93
|
-
bs = bytearray()
|
94
|
-
backs = bytearray()
|
95
|
-
|
96
|
-
def next():
|
97
|
-
if backs:
|
98
|
-
c = bytes(backs[0:1])
|
99
|
-
del backs[0]
|
100
|
-
else:
|
101
|
-
c = infile.read(1)
|
102
|
-
if not c:
|
103
|
-
raise png.Error("premature EOF reading PNM header")
|
104
|
-
bs.extend(c)
|
105
|
-
return c
|
106
|
-
|
107
|
-
def backup():
|
108
|
-
"""Push last byte of token onto front of backs."""
|
109
|
-
backs.insert(0, bs[-1])
|
110
|
-
del bs[-1]
|
111
|
-
|
112
|
-
def ignore():
|
113
|
-
del bs[:]
|
114
|
-
|
115
|
-
def tokens():
|
116
|
-
ls = lexInit
|
117
|
-
while True:
|
118
|
-
token, ls = ls()
|
119
|
-
if token:
|
120
|
-
yield token
|
121
|
-
|
122
|
-
def lexInit():
|
123
|
-
c = next()
|
124
|
-
# Skip comments
|
125
|
-
if b"#" <= c <= b"#":
|
126
|
-
while c not in b"\n\r":
|
127
|
-
c = next()
|
128
|
-
ignore()
|
129
|
-
return None, lexInit
|
130
|
-
# Skip whitespace (that precedes a token)
|
131
|
-
if c.isspace():
|
132
|
-
ignore()
|
133
|
-
return None, lexInit
|
134
|
-
if not c.isdigit():
|
135
|
-
raise png.Error("unexpected byte %r found in header" % c)
|
136
|
-
return None, lexNumber
|
137
|
-
|
138
|
-
def lexNumber():
|
139
|
-
# According to the specification it is legal to have comments
|
140
|
-
# that appear in the middle of a token.
|
141
|
-
# I've never seen it; and,
|
142
|
-
# it's a bit awkward to code good lexers in Python (no goto).
|
143
|
-
# So we break on such cases.
|
144
|
-
c = next()
|
145
|
-
while c.isdigit():
|
146
|
-
c = next()
|
147
|
-
backup()
|
148
|
-
token = bs[:]
|
149
|
-
ignore()
|
150
|
-
return token, lexInit
|
151
|
-
|
152
|
-
for token in tokens():
|
153
|
-
# All "tokens" are decimal integers, so convert them here.
|
154
|
-
header.append(int(token))
|
155
|
-
if len(header) == expected:
|
156
|
-
break
|
157
|
-
|
158
|
-
final = next()
|
159
|
-
if not final.isspace():
|
160
|
-
raise png.Error("expected header to end with whitespace, not %r" % final)
|
161
|
-
|
162
|
-
if type in pbm:
|
163
|
-
# synthesize a MAXVAL
|
164
|
-
header.append(1)
|
165
|
-
depth = (1, 3)[type == b"P6"]
|
166
|
-
return header[0], header[1], header[2], depth, header[3]
|
167
|
-
|
168
|
-
|
169
|
-
def convert_pnm(w, infile, outfile):
|
170
|
-
"""
|
171
|
-
Convert a PNM file containing raw pixel data into
|
172
|
-
a PNG file with the parameters set in the writer object.
|
173
|
-
Works for (binary) PGM, PPM, and PAM formats.
|
174
|
-
"""
|
175
|
-
|
176
|
-
rows = scan_rows_from_file(infile, w.width, w.height, w.planes, w.bitdepth)
|
177
|
-
w.write(outfile, rows)
|
178
|
-
|
179
|
-
|
180
|
-
def scan_rows_from_file(infile, width, height, planes, bitdepth):
|
181
|
-
"""
|
182
|
-
Generate a sequence of rows from the input file `infile`.
|
183
|
-
The input file should be in a "Netpbm-like" binary format.
|
184
|
-
The input file should be positioned at the beginning of the first pixel.
|
185
|
-
The number of pixels to read is taken from
|
186
|
-
the image dimensions (`width`, `height`, `planes`);
|
187
|
-
the number of bytes per value is implied by `bitdepth`.
|
188
|
-
Each row is yielded as a single sequence of values.
|
189
|
-
"""
|
190
|
-
|
191
|
-
# Values per row
|
192
|
-
vpr = width * planes
|
193
|
-
# Bytes per row
|
194
|
-
bpr = vpr
|
195
|
-
if bitdepth > 8:
|
196
|
-
assert bitdepth == 16
|
197
|
-
bpr *= 2
|
198
|
-
fmt = ">%dH" % vpr
|
199
|
-
|
200
|
-
def line():
|
201
|
-
return array("H", struct.unpack(fmt, infile.read(bpr)))
|
202
|
-
|
203
|
-
else:
|
204
|
-
|
205
|
-
def line():
|
206
|
-
return array("B", infile.read(bpr))
|
207
|
-
|
208
|
-
for y in range(height):
|
209
|
-
yield line()
|
210
|
-
|
211
|
-
##### Prior to this line, everything is identical to
|
212
|
-
|
213
|
-
def convert_ppm_to_png(infile_object, outfile_object):
|
214
|
-
"""
|
215
|
-
Adapted from the "main" function of "pripamtopng"
|
216
|
-
"""
|
217
|
-
format, width, height, depth, maxval = read_pnm_header(infile_object)
|
218
|
-
# The NetPBM depth (number of channels) completely
|
219
|
-
# determines the PNG format.
|
220
|
-
# Observe:
|
221
|
-
# - L, LA, RGB, RGBA are the 4 modes supported by PNG;
|
222
|
-
# - they correspond to 1, 2, 3, 4 channels respectively.
|
223
|
-
# We use the number of channels in the source image to
|
224
|
-
# determine which one we have.
|
225
|
-
# We ignore the NetPBM image type and the PAM TUPLTYPE.
|
226
|
-
greyscale = depth <= 2
|
227
|
-
pamalpha = depth in (2, 4)
|
228
|
-
supported = [2 ** x - 1 for x in range(1, 17)]
|
229
|
-
try:
|
230
|
-
mi = supported.index(maxval)
|
231
|
-
except ValueError:
|
232
|
-
raise NotImplementedError(
|
233
|
-
"input maxval (%s) not in supported list %s" % (maxval, str(supported))
|
234
|
-
)
|
235
|
-
bitdepth = mi + 1
|
236
|
-
writer = png.Writer(
|
237
|
-
width,
|
238
|
-
height,
|
239
|
-
greyscale=greyscale,
|
240
|
-
bitdepth=bitdepth,
|
241
|
-
alpha=pamalpha,
|
242
|
-
)
|
243
|
-
convert_pnm(writer, infile_object, outfile_object)
|
snappy/togl/__init__.py
DELETED