passagemath-symbolics 10.8.1a1__cp311-cp311-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_symbolics/.dylibs/libgmp.10.dylib +0 -0
- passagemath_symbolics/__init__.py +3 -0
- passagemath_symbolics-10.8.1a1.dist-info/METADATA +186 -0
- passagemath_symbolics-10.8.1a1.dist-info/RECORD +182 -0
- passagemath_symbolics-10.8.1a1.dist-info/WHEEL +6 -0
- passagemath_symbolics-10.8.1a1.dist-info/top_level.txt +3 -0
- sage/all__sagemath_symbolics.py +17 -0
- sage/calculus/all.py +14 -0
- sage/calculus/calculus.py +2838 -0
- sage/calculus/desolvers.py +1864 -0
- sage/calculus/predefined.py +51 -0
- sage/calculus/tests.py +225 -0
- sage/calculus/var.cpython-311-darwin.so +0 -0
- sage/calculus/var.pyx +401 -0
- sage/dynamics/all__sagemath_symbolics.py +6 -0
- sage/dynamics/complex_dynamics/all.py +5 -0
- sage/dynamics/complex_dynamics/mandel_julia.py +765 -0
- sage/dynamics/complex_dynamics/mandel_julia_helper.cpython-311-darwin.so +0 -0
- sage/dynamics/complex_dynamics/mandel_julia_helper.pyx +1034 -0
- sage/ext/all__sagemath_symbolics.py +1 -0
- sage/ext_data/kenzo/CP2.txt +45 -0
- sage/ext_data/kenzo/CP3.txt +349 -0
- sage/ext_data/kenzo/CP4.txt +4774 -0
- sage/ext_data/kenzo/README.txt +49 -0
- sage/ext_data/kenzo/S4.txt +20 -0
- sage/ext_data/magma/latex/latex.m +1021 -0
- sage/ext_data/magma/latex/latex.spec +1 -0
- sage/ext_data/magma/sage/basic.m +356 -0
- sage/ext_data/magma/sage/sage.spec +1 -0
- sage/ext_data/magma/spec +9 -0
- sage/geometry/all__sagemath_symbolics.py +8 -0
- sage/geometry/hyperbolic_space/all.py +5 -0
- sage/geometry/hyperbolic_space/hyperbolic_coercion.py +755 -0
- sage/geometry/hyperbolic_space/hyperbolic_constants.py +5 -0
- sage/geometry/hyperbolic_space/hyperbolic_geodesic.py +2419 -0
- sage/geometry/hyperbolic_space/hyperbolic_interface.py +206 -0
- sage/geometry/hyperbolic_space/hyperbolic_isometry.py +1083 -0
- sage/geometry/hyperbolic_space/hyperbolic_model.py +1502 -0
- sage/geometry/hyperbolic_space/hyperbolic_point.py +621 -0
- sage/geometry/riemannian_manifolds/all.py +7 -0
- sage/geometry/riemannian_manifolds/parametrized_surface3d.py +1632 -0
- sage/geometry/riemannian_manifolds/surface3d_generators.py +461 -0
- sage/interfaces/all__sagemath_symbolics.py +1 -0
- sage/interfaces/magma.py +2991 -0
- sage/interfaces/magma_free.py +90 -0
- sage/interfaces/maple.py +1402 -0
- sage/interfaces/mathematica.py +1345 -0
- sage/interfaces/mathics.py +1312 -0
- sage/interfaces/sympy.py +1398 -0
- sage/interfaces/sympy_wrapper.py +197 -0
- sage/interfaces/tides.py +938 -0
- sage/libs/all__sagemath_symbolics.py +6 -0
- sage/manifolds/all.py +7 -0
- sage/manifolds/calculus_method.py +553 -0
- sage/manifolds/catalog.py +437 -0
- sage/manifolds/chart.py +4010 -0
- sage/manifolds/chart_func.py +3416 -0
- sage/manifolds/continuous_map.py +2183 -0
- sage/manifolds/continuous_map_image.py +155 -0
- sage/manifolds/differentiable/affine_connection.py +2475 -0
- sage/manifolds/differentiable/all.py +1 -0
- sage/manifolds/differentiable/automorphismfield.py +1383 -0
- sage/manifolds/differentiable/automorphismfield_group.py +604 -0
- sage/manifolds/differentiable/bundle_connection.py +1445 -0
- sage/manifolds/differentiable/characteristic_cohomology_class.py +1840 -0
- sage/manifolds/differentiable/chart.py +1241 -0
- sage/manifolds/differentiable/curve.py +1028 -0
- sage/manifolds/differentiable/de_rham_cohomology.py +541 -0
- sage/manifolds/differentiable/degenerate.py +559 -0
- sage/manifolds/differentiable/degenerate_submanifold.py +1668 -0
- sage/manifolds/differentiable/diff_form.py +1660 -0
- sage/manifolds/differentiable/diff_form_module.py +1062 -0
- sage/manifolds/differentiable/diff_map.py +1315 -0
- sage/manifolds/differentiable/differentiable_submanifold.py +291 -0
- sage/manifolds/differentiable/examples/all.py +1 -0
- sage/manifolds/differentiable/examples/euclidean.py +2517 -0
- sage/manifolds/differentiable/examples/real_line.py +897 -0
- sage/manifolds/differentiable/examples/sphere.py +1186 -0
- sage/manifolds/differentiable/examples/symplectic_space.py +187 -0
- sage/manifolds/differentiable/examples/symplectic_space_test.py +40 -0
- sage/manifolds/differentiable/integrated_curve.py +4035 -0
- sage/manifolds/differentiable/levi_civita_connection.py +841 -0
- sage/manifolds/differentiable/manifold.py +4254 -0
- sage/manifolds/differentiable/manifold_homset.py +1826 -0
- sage/manifolds/differentiable/metric.py +3032 -0
- sage/manifolds/differentiable/mixed_form.py +1507 -0
- sage/manifolds/differentiable/mixed_form_algebra.py +559 -0
- sage/manifolds/differentiable/multivector_module.py +800 -0
- sage/manifolds/differentiable/multivectorfield.py +1522 -0
- sage/manifolds/differentiable/poisson_tensor.py +268 -0
- sage/manifolds/differentiable/pseudo_riemannian.py +755 -0
- sage/manifolds/differentiable/pseudo_riemannian_submanifold.py +1839 -0
- sage/manifolds/differentiable/scalarfield.py +1343 -0
- sage/manifolds/differentiable/scalarfield_algebra.py +472 -0
- sage/manifolds/differentiable/symplectic_form.py +912 -0
- sage/manifolds/differentiable/symplectic_form_test.py +220 -0
- sage/manifolds/differentiable/tangent_space.py +412 -0
- sage/manifolds/differentiable/tangent_vector.py +616 -0
- sage/manifolds/differentiable/tensorfield.py +4665 -0
- sage/manifolds/differentiable/tensorfield_module.py +963 -0
- sage/manifolds/differentiable/tensorfield_paral.py +2450 -0
- sage/manifolds/differentiable/tensorfield_paral_test.py +16 -0
- sage/manifolds/differentiable/vector_bundle.py +1725 -0
- sage/manifolds/differentiable/vectorfield.py +1717 -0
- sage/manifolds/differentiable/vectorfield_module.py +2445 -0
- sage/manifolds/differentiable/vectorframe.py +1832 -0
- sage/manifolds/family.py +270 -0
- sage/manifolds/local_frame.py +1490 -0
- sage/manifolds/manifold.py +3090 -0
- sage/manifolds/manifold_homset.py +452 -0
- sage/manifolds/operators.py +359 -0
- sage/manifolds/point.py +994 -0
- sage/manifolds/scalarfield.py +3718 -0
- sage/manifolds/scalarfield_algebra.py +629 -0
- sage/manifolds/section.py +3111 -0
- sage/manifolds/section_module.py +831 -0
- sage/manifolds/structure.py +229 -0
- sage/manifolds/subset.py +2721 -0
- sage/manifolds/subsets/all.py +1 -0
- sage/manifolds/subsets/closure.py +131 -0
- sage/manifolds/subsets/pullback.py +883 -0
- sage/manifolds/topological_submanifold.py +891 -0
- sage/manifolds/trivialization.py +733 -0
- sage/manifolds/utilities.py +1348 -0
- sage/manifolds/vector_bundle.py +1347 -0
- sage/manifolds/vector_bundle_fiber.py +332 -0
- sage/manifolds/vector_bundle_fiber_element.py +111 -0
- sage/matrix/all__sagemath_symbolics.py +1 -0
- sage/matrix/matrix_symbolic_dense.cpython-311-darwin.so +0 -0
- sage/matrix/matrix_symbolic_dense.pxd +6 -0
- sage/matrix/matrix_symbolic_dense.pyx +1030 -0
- sage/matrix/matrix_symbolic_sparse.cpython-311-darwin.so +0 -0
- sage/matrix/matrix_symbolic_sparse.pxd +6 -0
- sage/matrix/matrix_symbolic_sparse.pyx +1038 -0
- sage/modules/all__sagemath_symbolics.py +1 -0
- sage/modules/vector_callable_symbolic_dense.py +105 -0
- sage/modules/vector_symbolic_dense.py +116 -0
- sage/modules/vector_symbolic_sparse.py +118 -0
- sage/rings/all__sagemath_symbolics.py +4 -0
- sage/rings/asymptotic/all.py +6 -0
- sage/rings/asymptotic/asymptotic_expansion_generators.py +1485 -0
- sage/rings/asymptotic/asymptotic_ring.py +4858 -0
- sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py +4106 -0
- sage/rings/asymptotic/growth_group.py +5373 -0
- sage/rings/asymptotic/growth_group_cartesian.py +1400 -0
- sage/rings/asymptotic/term_monoid.py +5205 -0
- sage/rings/function_field/all__sagemath_symbolics.py +2 -0
- sage/rings/polynomial/all__sagemath_symbolics.py +1 -0
- sage/symbolic/all.py +15 -0
- sage/symbolic/assumptions.py +987 -0
- sage/symbolic/benchmark.py +93 -0
- sage/symbolic/callable.py +456 -0
- sage/symbolic/callable.pyi +66 -0
- sage/symbolic/comparison_impl.pyi +38 -0
- sage/symbolic/complexity_measures.py +35 -0
- sage/symbolic/constants.py +1286 -0
- sage/symbolic/constants_c_impl.pyi +10 -0
- sage/symbolic/expression_conversion_algebraic.py +310 -0
- sage/symbolic/expression_conversion_sympy.py +317 -0
- sage/symbolic/expression_conversions.py +1727 -0
- sage/symbolic/function_factory.py +355 -0
- sage/symbolic/function_factory.pyi +41 -0
- sage/symbolic/getitem_impl.pyi +24 -0
- sage/symbolic/integration/all.py +1 -0
- sage/symbolic/integration/external.py +271 -0
- sage/symbolic/integration/integral.py +1075 -0
- sage/symbolic/maxima_wrapper.py +162 -0
- sage/symbolic/operators.py +267 -0
- sage/symbolic/operators.pyi +61 -0
- sage/symbolic/pynac_constant_impl.pyi +13 -0
- sage/symbolic/pynac_function_impl.pyi +8 -0
- sage/symbolic/random_tests.py +461 -0
- sage/symbolic/relation.py +2062 -0
- sage/symbolic/ring.cpython-311-darwin.so +0 -0
- sage/symbolic/ring.pxd +5 -0
- sage/symbolic/ring.pyi +110 -0
- sage/symbolic/ring.pyx +1393 -0
- sage/symbolic/series_impl.pyi +10 -0
- sage/symbolic/subring.py +1025 -0
- sage/symbolic/symengine.py +19 -0
- sage/symbolic/tests.py +40 -0
- sage/symbolic/units.py +1468 -0
|
@@ -0,0 +1,1241 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-symbolics
|
|
2
|
+
r"""
|
|
3
|
+
Coordinate Charts on Differentiable Manifolds
|
|
4
|
+
|
|
5
|
+
The class :class:`DiffChart` implements coordinate charts on a differentiable
|
|
6
|
+
manifold over a topological field `K` (in most applications, `K = \RR` or
|
|
7
|
+
`K = \CC`).
|
|
8
|
+
|
|
9
|
+
The subclass :class:`RealDiffChart` is devoted
|
|
10
|
+
to the case `K=\RR`, for which the concept of coordinate range is meaningful.
|
|
11
|
+
Moreover, :class:`RealDiffChart` is endowed with some plotting
|
|
12
|
+
capabilities (cf. method :meth:`~sage.manifolds.chart.RealChart.plot`).
|
|
13
|
+
|
|
14
|
+
Transition maps between charts are implemented via the class
|
|
15
|
+
:class:`DiffCoordChange`.
|
|
16
|
+
|
|
17
|
+
AUTHORS:
|
|
18
|
+
|
|
19
|
+
- Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version
|
|
20
|
+
|
|
21
|
+
REFERENCES:
|
|
22
|
+
|
|
23
|
+
- Chap. 1 of [Lee2013]_
|
|
24
|
+
"""
|
|
25
|
+
# ****************************************************************************
|
|
26
|
+
# Copyright (C) 2015 Eric Gourgoulhon <eric.gourgoulhon@obspm.fr>
|
|
27
|
+
# Copyright (C) 2015 Michal Bejger <bejger@camk.edu.pl>
|
|
28
|
+
#
|
|
29
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
30
|
+
# as published by the Free Software Foundation; either version 2 of
|
|
31
|
+
# the License, or (at your option) any later version.
|
|
32
|
+
# https://www.gnu.org/licenses/
|
|
33
|
+
# ****************************************************************************
|
|
34
|
+
|
|
35
|
+
from sage.manifolds.chart import Chart, CoordChange, RealChart
|
|
36
|
+
from sage.manifolds.differentiable.vectorframe import CoordFrame
|
|
37
|
+
from sage.misc.cachefunc import cached_method
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class DiffChart(Chart):
|
|
41
|
+
r"""
|
|
42
|
+
Chart on a differentiable manifold.
|
|
43
|
+
|
|
44
|
+
Given a differentiable manifold `M` of dimension `n` over a topological
|
|
45
|
+
field `K`, a *chart* is a member `(U,\varphi)` of the manifold's
|
|
46
|
+
differentiable atlas; `U` is then an open subset of `M` and
|
|
47
|
+
`\varphi: U \rightarrow V \subset K^n` is a homeomorphism from
|
|
48
|
+
`U` to an open subset `V` of `K^n`.
|
|
49
|
+
|
|
50
|
+
The components `(x^1,\ldots,x^n)` of `\varphi`, defined by
|
|
51
|
+
`\varphi(p) = (x^1(p),\ldots,x^n(p))\in K^n` for any point `p\in U`, are
|
|
52
|
+
called the *coordinates* of the chart `(U,\varphi)`.
|
|
53
|
+
|
|
54
|
+
INPUT:
|
|
55
|
+
|
|
56
|
+
- ``domain`` -- open subset `U` on which the chart is defined
|
|
57
|
+
- ``coordinates`` -- (default: '' (empty string)) single string defining
|
|
58
|
+
the coordinate symbols, with ``' '`` (whitespace) as a separator; each
|
|
59
|
+
item has at most three fields, separated by a colon (``:``):
|
|
60
|
+
|
|
61
|
+
1. the coordinate symbol (a letter or a few letters)
|
|
62
|
+
2. (optional) the period of the coordinate if the coordinate is
|
|
63
|
+
periodic; the period field must be written as ``period=T``, where
|
|
64
|
+
``T`` is the period (see examples below)
|
|
65
|
+
3. (optional) the LaTeX spelling of the coordinate; if not provided the
|
|
66
|
+
coordinate symbol given in the first field will be used
|
|
67
|
+
|
|
68
|
+
The order of fields 2 and 3 does not matter and each of them can be
|
|
69
|
+
omitted. If it contains any LaTeX expression, the string ``coordinates``
|
|
70
|
+
must be declared with the prefix 'r' (for "raw") to allow for a proper
|
|
71
|
+
treatment of LaTeX's backslash character (see examples below).
|
|
72
|
+
If no period and no LaTeX spelling are to be set for any coordinate, the
|
|
73
|
+
argument ``coordinates`` can be omitted when the shortcut operator
|
|
74
|
+
``<,>`` is used to declare the chart (see examples below).
|
|
75
|
+
- ``calc_method`` -- (default: ``None``) string defining the calculus
|
|
76
|
+
method for computations involving coordinates of the chart; must be
|
|
77
|
+
one of
|
|
78
|
+
|
|
79
|
+
- ``'SR'`` -- Sage's default symbolic engine (Symbolic Ring)
|
|
80
|
+
- ``'sympy'`` -- SymPy
|
|
81
|
+
- ``None`` -- the default of :class:`~sage.manifolds.calculus_method.CalculusMethod`
|
|
82
|
+
will be used
|
|
83
|
+
- ``names`` -- (default: ``None``) unused argument, except if
|
|
84
|
+
``coordinates`` is not provided; it must then be a tuple containing
|
|
85
|
+
the coordinate symbols (this is guaranteed if the shortcut operator
|
|
86
|
+
``<,>`` is used).
|
|
87
|
+
- ``coord_restrictions`` -- additional restrictions on the coordinates.
|
|
88
|
+
A restriction can be any symbolic equality or inequality involving
|
|
89
|
+
the coordinates, such as ``x > y`` or ``x^2 + y^2 != 0``. The items
|
|
90
|
+
of the list (or set or frozenset) ``coord_restrictions`` are combined
|
|
91
|
+
with the ``and`` operator; if some restrictions are to be combined with
|
|
92
|
+
the ``or`` operator instead, they have to be passed as a tuple in some
|
|
93
|
+
single item of the list (or set or frozenset) ``coord_restrictions``.
|
|
94
|
+
For example::
|
|
95
|
+
|
|
96
|
+
coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]
|
|
97
|
+
|
|
98
|
+
means ``(x > y) and ((x != 0) or (y != 0)) and (z^2 < x)``.
|
|
99
|
+
If the list ``coord_restrictions`` contains only one item, this
|
|
100
|
+
item can be passed as such, i.e. writing ``x > y`` instead
|
|
101
|
+
of the single element list ``[x > y]``. If the chart variables have
|
|
102
|
+
not been declared as variables yet, ``coord_restrictions`` must
|
|
103
|
+
be ``lambda``-quoted.
|
|
104
|
+
|
|
105
|
+
EXAMPLES:
|
|
106
|
+
|
|
107
|
+
A chart on a complex 2-dimensional differentiable manifold::
|
|
108
|
+
|
|
109
|
+
sage: M = Manifold(2, 'M', field='complex')
|
|
110
|
+
sage: X = M.chart('x y'); X
|
|
111
|
+
Chart (M, (x, y))
|
|
112
|
+
sage: latex(X)
|
|
113
|
+
\left(M,(x, y)\right)
|
|
114
|
+
sage: type(X)
|
|
115
|
+
<class 'sage.manifolds.differentiable.chart.DiffChart'>
|
|
116
|
+
|
|
117
|
+
To manipulate the coordinates `(x,y)` as global variables, one has to set::
|
|
118
|
+
|
|
119
|
+
sage: x,y = X[:]
|
|
120
|
+
|
|
121
|
+
However, a shortcut is to use the declarator ``<x,y>`` in the left-hand
|
|
122
|
+
side of the chart declaration (there is then no need to pass the string
|
|
123
|
+
``'x y'`` to ``chart()``)::
|
|
124
|
+
|
|
125
|
+
sage: M = Manifold(2, 'M', field='complex')
|
|
126
|
+
sage: X.<x,y> = M.chart(); X
|
|
127
|
+
Chart (M, (x, y))
|
|
128
|
+
|
|
129
|
+
The coordinates are then immediately accessible::
|
|
130
|
+
|
|
131
|
+
sage: y
|
|
132
|
+
y
|
|
133
|
+
sage: x is X[0] and y is X[1]
|
|
134
|
+
True
|
|
135
|
+
|
|
136
|
+
The trick is performed by Sage preparser::
|
|
137
|
+
|
|
138
|
+
sage: preparse("X.<x,y> = M.chart()")
|
|
139
|
+
"X = M.chart(names=('x', 'y',)); (x, y,) = X._first_ngens(2)"
|
|
140
|
+
|
|
141
|
+
Note that ``x`` and ``y`` declared in ``<x,y>`` are mere Python variable
|
|
142
|
+
names and do not have to coincide with the coordinate symbols;
|
|
143
|
+
for instance, one may write::
|
|
144
|
+
|
|
145
|
+
sage: M = Manifold(2, 'M', field='complex')
|
|
146
|
+
sage: X.<x1,y1> = M.chart('x y'); X
|
|
147
|
+
Chart (M, (x, y))
|
|
148
|
+
|
|
149
|
+
Then ``y`` is not known as a global Python variable and the
|
|
150
|
+
coordinate `y` is accessible only through the global variable ``y1``::
|
|
151
|
+
|
|
152
|
+
sage: y1
|
|
153
|
+
y
|
|
154
|
+
sage: latex(y1)
|
|
155
|
+
y
|
|
156
|
+
sage: y1 is X[1]
|
|
157
|
+
True
|
|
158
|
+
|
|
159
|
+
However, having the name of the Python variable coincide with the
|
|
160
|
+
coordinate symbol is quite convenient; so it is recommended to declare::
|
|
161
|
+
|
|
162
|
+
sage: M = Manifold(2, 'M', field='complex')
|
|
163
|
+
sage: X.<x,y> = M.chart()
|
|
164
|
+
|
|
165
|
+
In the above example, the chart X covers entirely the manifold M::
|
|
166
|
+
|
|
167
|
+
sage: X.domain()
|
|
168
|
+
2-dimensional complex manifold M
|
|
169
|
+
|
|
170
|
+
Of course, one may declare a chart only on an open subset of M::
|
|
171
|
+
|
|
172
|
+
sage: U = M.open_subset('U')
|
|
173
|
+
sage: Y.<z1, z2> = U.chart(r'z1:\zeta_1 z2:\zeta_2'); Y
|
|
174
|
+
Chart (U, (z1, z2))
|
|
175
|
+
sage: Y.domain()
|
|
176
|
+
Open subset U of the 2-dimensional complex manifold M
|
|
177
|
+
|
|
178
|
+
In the above declaration, we have also specified some LaTeX writing
|
|
179
|
+
of the coordinates different from the text one::
|
|
180
|
+
|
|
181
|
+
sage: latex(z1)
|
|
182
|
+
{\zeta_1}
|
|
183
|
+
|
|
184
|
+
Note the prefix ``r`` in front of the string ``r'z1:\zeta_1 z2:\zeta_2'``;
|
|
185
|
+
it makes sure that the backslash character is treated as an ordinary
|
|
186
|
+
character, to be passed to the LaTeX interpreter.
|
|
187
|
+
|
|
188
|
+
Periodic coordinates are declared through the keyword ``period=`` in the
|
|
189
|
+
coordinate field::
|
|
190
|
+
|
|
191
|
+
sage: N = Manifold(2, 'N', field='complex')
|
|
192
|
+
sage: XN.<Z1,Z2> = N.chart('Z1:period=1+2*I Z2')
|
|
193
|
+
sage: XN.periods()
|
|
194
|
+
(2*I + 1, None)
|
|
195
|
+
|
|
196
|
+
Coordinates are Sage symbolic variables (see
|
|
197
|
+
:mod:`sage.symbolic.expression`)::
|
|
198
|
+
|
|
199
|
+
sage: type(z1)
|
|
200
|
+
<class 'sage.symbolic.expression.Expression'>
|
|
201
|
+
|
|
202
|
+
In addition to the Python variable name provided in the operator ``<.,.>``,
|
|
203
|
+
the coordinates are accessible by their indices::
|
|
204
|
+
|
|
205
|
+
sage: Y[0], Y[1]
|
|
206
|
+
(z1, z2)
|
|
207
|
+
|
|
208
|
+
The index range is that declared during the creation of the manifold. By
|
|
209
|
+
default, it starts at 0, but this can be changed via the parameter
|
|
210
|
+
``start_index``::
|
|
211
|
+
|
|
212
|
+
sage: M1 = Manifold(2, 'M_1', field='complex', start_index=1)
|
|
213
|
+
sage: Z.<u,v> = M1.chart()
|
|
214
|
+
sage: Z[1], Z[2]
|
|
215
|
+
(u, v)
|
|
216
|
+
|
|
217
|
+
The full set of coordinates is obtained by means of the operator
|
|
218
|
+
``[:]``::
|
|
219
|
+
|
|
220
|
+
sage: Y[:]
|
|
221
|
+
(z1, z2)
|
|
222
|
+
|
|
223
|
+
Each constructed chart is automatically added to the manifold's user
|
|
224
|
+
atlas::
|
|
225
|
+
|
|
226
|
+
sage: M.atlas()
|
|
227
|
+
[Chart (M, (x, y)), Chart (U, (z1, z2))]
|
|
228
|
+
|
|
229
|
+
and to the atlas of the chart's domain::
|
|
230
|
+
|
|
231
|
+
sage: U.atlas()
|
|
232
|
+
[Chart (U, (z1, z2))]
|
|
233
|
+
|
|
234
|
+
Manifold subsets have a *default chart*, which, unless changed via the
|
|
235
|
+
method
|
|
236
|
+
:meth:`~sage.manifolds.manifold.TopologicalManifold.set_default_chart`,
|
|
237
|
+
is the first defined chart on the subset (or on a open subset of it)::
|
|
238
|
+
|
|
239
|
+
sage: M.default_chart()
|
|
240
|
+
Chart (M, (x, y))
|
|
241
|
+
sage: U.default_chart()
|
|
242
|
+
Chart (U, (z1, z2))
|
|
243
|
+
|
|
244
|
+
The default charts are not privileged charts on the manifold, but rather
|
|
245
|
+
charts whose name can be skipped in the argument list of functions having
|
|
246
|
+
an optional ``chart=`` argument.
|
|
247
|
+
|
|
248
|
+
The action of the chart map `\varphi` on a point is obtained by means of
|
|
249
|
+
the call operator, i.e. the operator ``()``::
|
|
250
|
+
|
|
251
|
+
sage: p = M.point((1+i, 2), chart=X); p
|
|
252
|
+
Point on the 2-dimensional complex manifold M
|
|
253
|
+
sage: X(p)
|
|
254
|
+
(I + 1, 2)
|
|
255
|
+
sage: X(p) == p.coord(X)
|
|
256
|
+
True
|
|
257
|
+
|
|
258
|
+
A vector frame is naturally associated to each chart::
|
|
259
|
+
|
|
260
|
+
sage: X.frame()
|
|
261
|
+
Coordinate frame (M, (∂/∂x,∂/∂y))
|
|
262
|
+
sage: Y.frame()
|
|
263
|
+
Coordinate frame (U, (∂/∂z1,∂/∂z2))
|
|
264
|
+
|
|
265
|
+
as well as a dual frame (basis of 1-forms)::
|
|
266
|
+
|
|
267
|
+
sage: X.coframe()
|
|
268
|
+
Coordinate coframe (M, (dx,dy))
|
|
269
|
+
sage: Y.coframe()
|
|
270
|
+
Coordinate coframe (U, (dz1,dz2))
|
|
271
|
+
|
|
272
|
+
.. SEEALSO::
|
|
273
|
+
|
|
274
|
+
:class:`~sage.manifolds.differentiable.chart.RealDiffChart` for charts
|
|
275
|
+
on differentiable manifolds over `\RR`.
|
|
276
|
+
"""
|
|
277
|
+
def __init__(self, domain, coordinates, calc_method=None, periods=None, coord_restrictions=None):
|
|
278
|
+
r"""
|
|
279
|
+
Construct a chart.
|
|
280
|
+
|
|
281
|
+
TESTS::
|
|
282
|
+
|
|
283
|
+
sage: M = Manifold(2, 'M', field='complex')
|
|
284
|
+
sage: X.<x,y> = M.chart()
|
|
285
|
+
sage: X
|
|
286
|
+
Chart (M, (x, y))
|
|
287
|
+
sage: type(X)
|
|
288
|
+
<class 'sage.manifolds.differentiable.chart.DiffChart'>
|
|
289
|
+
sage: assumptions() # no assumptions on x,y set by X._init_coordinates
|
|
290
|
+
[]
|
|
291
|
+
sage: TestSuite(X).run()
|
|
292
|
+
"""
|
|
293
|
+
super().__init__(domain, coordinates, calc_method=calc_method,
|
|
294
|
+
periods=periods, coord_restrictions=coord_restrictions)
|
|
295
|
+
# Construction of the coordinate frame associated to the chart:
|
|
296
|
+
self._frame = CoordFrame(self)
|
|
297
|
+
self._coframe = self._frame._coframe
|
|
298
|
+
|
|
299
|
+
def transition_map(self, other, transformations, intersection_name=None,
|
|
300
|
+
restrictions1=None, restrictions2=None):
|
|
301
|
+
r"""
|
|
302
|
+
Construct the transition map between the current chart,
|
|
303
|
+
`(U,\varphi)` say, and another one, `(V,\psi)` say.
|
|
304
|
+
|
|
305
|
+
If `n` is the manifold's dimension, the *transition map* is the
|
|
306
|
+
map
|
|
307
|
+
|
|
308
|
+
.. MATH::
|
|
309
|
+
|
|
310
|
+
\psi\circ\varphi^{-1}: \varphi(U\cap V) \subset K^n
|
|
311
|
+
\rightarrow \psi(U\cap V) \subset K^n,
|
|
312
|
+
|
|
313
|
+
where `K` is the manifold's base field. In other words, the
|
|
314
|
+
transition map expresses the coordinates `(y^1,\ldots,y^n)` of
|
|
315
|
+
`(V,\psi)` in terms of the coordinates `(x^1,\ldots,x^n)` of
|
|
316
|
+
`(U,\varphi)` on the open subset where the two charts intersect, i.e.
|
|
317
|
+
on `U\cap V`.
|
|
318
|
+
|
|
319
|
+
By definition, the transition map `\psi\circ\varphi^{-1}` must be
|
|
320
|
+
of class `C^k`, where `k` is the degree of differentiability of the
|
|
321
|
+
manifold (cf.
|
|
322
|
+
:meth:`~sage.manifolds.differentiable.manifold.DifferentiableManifold.diff_degree`).
|
|
323
|
+
|
|
324
|
+
INPUT:
|
|
325
|
+
|
|
326
|
+
- ``other`` -- the chart `(V,\psi)`
|
|
327
|
+
- ``transformations`` -- tuple (or list) `(Y_1,\ldots,Y_2)`, where
|
|
328
|
+
`Y_i` is the symbolic expression of the coordinate `y^i` in terms
|
|
329
|
+
of the coordinates `(x^1,\ldots,x^n)`
|
|
330
|
+
- ``intersection_name`` -- (default: ``None``) name to be given to the
|
|
331
|
+
subset `U\cap V` if the latter differs from `U` or `V`
|
|
332
|
+
- ``restrictions1`` -- (default: ``None``) list of conditions on the
|
|
333
|
+
coordinates of the current chart that define `U\cap V` if the
|
|
334
|
+
latter differs from `U`. ``restrictions1`` must be a list of
|
|
335
|
+
of symbolic equalities or inequalities involving the
|
|
336
|
+
coordinates, such as x>y or x^2+y^2 != 0. The items of the list
|
|
337
|
+
``restrictions1`` are combined with the ``and`` operator; if some
|
|
338
|
+
restrictions are to be combined with the ``or`` operator instead,
|
|
339
|
+
they have to be passed as a tuple in some single item of the list
|
|
340
|
+
``restrictions1``. For example, ``restrictions1`` = [x>y,
|
|
341
|
+
(x!=0, y!=0), z^2<x] means (x>y) and ((x!=0) or (y!=0)) and (z^2<x).
|
|
342
|
+
If the list ``restrictions1`` contains only one item, this item can
|
|
343
|
+
be passed as such, i.e. writing x>y instead of the single-element
|
|
344
|
+
list [x>y].
|
|
345
|
+
- ``restrictions2`` -- (default: ``None``) list of conditions on the
|
|
346
|
+
coordinates of the chart `(V,\psi)` that define `U\cap V` if the
|
|
347
|
+
latter differs from `V` (see ``restrictions1`` for the syntax)
|
|
348
|
+
|
|
349
|
+
OUTPUT:
|
|
350
|
+
|
|
351
|
+
- The transition map `\psi\circ\varphi^{-1}` defined on `U\cap V`, as an
|
|
352
|
+
instance of :class:`DiffCoordChange`.
|
|
353
|
+
|
|
354
|
+
EXAMPLES:
|
|
355
|
+
|
|
356
|
+
Transition map between two stereographic charts on the circle `S^1`::
|
|
357
|
+
|
|
358
|
+
sage: M = Manifold(1, 'S^1')
|
|
359
|
+
sage: U = M.open_subset('U') # Complement of the North pole
|
|
360
|
+
sage: cU.<x> = U.chart() # Stereographic chart from the North pole
|
|
361
|
+
sage: V = M.open_subset('V') # Complement of the South pole
|
|
362
|
+
sage: cV.<y> = V.chart() # Stereographic chart from the South pole
|
|
363
|
+
sage: M.declare_union(U,V) # S^1 is the union of U and V
|
|
364
|
+
sage: trans = cU.transition_map(cV, 1/x, intersection_name='W',
|
|
365
|
+
....: restrictions1= x!=0, restrictions2 = y!=0)
|
|
366
|
+
sage: trans
|
|
367
|
+
Change of coordinates from Chart (W, (x,)) to Chart (W, (y,))
|
|
368
|
+
sage: trans.display()
|
|
369
|
+
y = 1/x
|
|
370
|
+
|
|
371
|
+
The subset `W`, intersection of `U` and `V`, has been created by
|
|
372
|
+
``transition_map()``::
|
|
373
|
+
|
|
374
|
+
sage: F = M.subset_family(); F
|
|
375
|
+
Set {S^1, U, V, W} of open subsets of the 1-dimensional differentiable manifold S^1
|
|
376
|
+
sage: W = F['W']
|
|
377
|
+
sage: W is U.intersection(V)
|
|
378
|
+
True
|
|
379
|
+
sage: M.atlas()
|
|
380
|
+
[Chart (U, (x,)), Chart (V, (y,)), Chart (W, (x,)), Chart (W, (y,))]
|
|
381
|
+
|
|
382
|
+
Transition map between the polar chart and the Cartesian one on
|
|
383
|
+
`\RR^2`::
|
|
384
|
+
|
|
385
|
+
sage: M = Manifold(2, 'R^2')
|
|
386
|
+
sage: c_cart.<x,y> = M.chart()
|
|
387
|
+
sage: U = M.open_subset('U') # the complement of the half line {y=0, x >= 0}
|
|
388
|
+
sage: c_spher.<r,phi> = U.chart(r'r:(0,+oo) phi:(0,2*pi):\phi')
|
|
389
|
+
sage: trans = c_spher.transition_map(c_cart, (r*cos(phi), r*sin(phi)),
|
|
390
|
+
....: restrictions2=(y!=0, x<0))
|
|
391
|
+
sage: trans
|
|
392
|
+
Change of coordinates from Chart (U, (r, phi)) to Chart (U, (x, y))
|
|
393
|
+
sage: trans.display()
|
|
394
|
+
x = r*cos(phi)
|
|
395
|
+
y = r*sin(phi)
|
|
396
|
+
|
|
397
|
+
In this case, no new subset has been created since `U\cap M = U`::
|
|
398
|
+
|
|
399
|
+
sage: M.subset_family()
|
|
400
|
+
Set {R^2, U} of open subsets of the 2-dimensional differentiable manifold R^2
|
|
401
|
+
|
|
402
|
+
but a new chart has been created: `(U, (x, y))`::
|
|
403
|
+
|
|
404
|
+
sage: M.atlas()
|
|
405
|
+
[Chart (R^2, (x, y)), Chart (U, (r, phi)), Chart (U, (x, y))]
|
|
406
|
+
"""
|
|
407
|
+
dom1 = self.domain()
|
|
408
|
+
dom2 = other.domain()
|
|
409
|
+
dom = dom1.intersection(dom2, name=intersection_name)
|
|
410
|
+
if dom is dom1:
|
|
411
|
+
chart1 = self
|
|
412
|
+
else:
|
|
413
|
+
chart1 = self.restrict(dom, restrictions1)
|
|
414
|
+
if dom is dom2:
|
|
415
|
+
chart2 = other
|
|
416
|
+
else:
|
|
417
|
+
chart2 = other.restrict(dom, restrictions2)
|
|
418
|
+
if not isinstance(transformations, (tuple, list)):
|
|
419
|
+
transformations = [transformations]
|
|
420
|
+
return DiffCoordChange(chart1, chart2, *transformations)
|
|
421
|
+
|
|
422
|
+
def frame(self):
|
|
423
|
+
r"""
|
|
424
|
+
Return the vector frame (coordinate frame) associated with ``self``.
|
|
425
|
+
|
|
426
|
+
OUTPUT:
|
|
427
|
+
|
|
428
|
+
- a :class:`~sage.manifolds.differentiable.vectorframe.CoordFrame`
|
|
429
|
+
representing the coordinate frame
|
|
430
|
+
|
|
431
|
+
EXAMPLES:
|
|
432
|
+
|
|
433
|
+
Coordinate frame associated with some chart on a 2-dimensional
|
|
434
|
+
manifold::
|
|
435
|
+
|
|
436
|
+
sage: M = Manifold(2, 'M')
|
|
437
|
+
sage: c_xy.<x,y> = M.chart()
|
|
438
|
+
sage: c_xy.frame()
|
|
439
|
+
Coordinate frame (M, (∂/∂x,∂/∂y))
|
|
440
|
+
sage: type(c_xy.frame())
|
|
441
|
+
<class 'sage.manifolds.differentiable.vectorframe.CoordFrame_with_category'>
|
|
442
|
+
|
|
443
|
+
Check that ``c_xy.frame()`` is indeed the coordinate frame associated
|
|
444
|
+
with the coordinates `(x,y)`::
|
|
445
|
+
|
|
446
|
+
sage: ex = c_xy.frame()[0] ; ex
|
|
447
|
+
Vector field ∂/∂x on the 2-dimensional differentiable manifold M
|
|
448
|
+
sage: ey = c_xy.frame()[1] ; ey
|
|
449
|
+
Vector field ∂/∂y on the 2-dimensional differentiable manifold M
|
|
450
|
+
sage: ex(M.scalar_field(x)).display()
|
|
451
|
+
1: M → ℝ
|
|
452
|
+
(x, y) ↦ 1
|
|
453
|
+
sage: ex(M.scalar_field(y)).display()
|
|
454
|
+
zero: M → ℝ
|
|
455
|
+
(x, y) ↦ 0
|
|
456
|
+
sage: ey(M.scalar_field(x)).display()
|
|
457
|
+
zero: M → ℝ
|
|
458
|
+
(x, y) ↦ 0
|
|
459
|
+
sage: ey(M.scalar_field(y)).display()
|
|
460
|
+
1: M → ℝ
|
|
461
|
+
(x, y) ↦ 1
|
|
462
|
+
"""
|
|
463
|
+
return self._frame
|
|
464
|
+
|
|
465
|
+
def coframe(self):
|
|
466
|
+
r"""
|
|
467
|
+
Return the coframe (basis of coordinate differentials) associated
|
|
468
|
+
with ``self``.
|
|
469
|
+
|
|
470
|
+
OUTPUT:
|
|
471
|
+
|
|
472
|
+
- a :class:`~sage.manifolds.differentiable.vectorframe.CoordCoFrame`
|
|
473
|
+
representing the coframe
|
|
474
|
+
|
|
475
|
+
EXAMPLES:
|
|
476
|
+
|
|
477
|
+
Coordinate coframe associated with some chart on a 2-dimensional
|
|
478
|
+
manifold::
|
|
479
|
+
|
|
480
|
+
sage: M = Manifold(2, 'M')
|
|
481
|
+
sage: c_xy.<x,y> = M.chart()
|
|
482
|
+
sage: c_xy.coframe()
|
|
483
|
+
Coordinate coframe (M, (dx,dy))
|
|
484
|
+
sage: type(c_xy.coframe())
|
|
485
|
+
<class 'sage.manifolds.differentiable.vectorframe.CoordCoFrame_with_category'>
|
|
486
|
+
|
|
487
|
+
Check that ``c_xy.coframe()`` is indeed the coordinate coframe
|
|
488
|
+
associated with the coordinates `(x, y)`::
|
|
489
|
+
|
|
490
|
+
sage: dx = c_xy.coframe()[0] ; dx
|
|
491
|
+
1-form dx on the 2-dimensional differentiable manifold M
|
|
492
|
+
sage: dy = c_xy.coframe()[1] ; dy
|
|
493
|
+
1-form dy on the 2-dimensional differentiable manifold M
|
|
494
|
+
sage: ex = c_xy.frame()[0] ; ex
|
|
495
|
+
Vector field ∂/∂x on the 2-dimensional differentiable manifold M
|
|
496
|
+
sage: ey = c_xy.frame()[1] ; ey
|
|
497
|
+
Vector field ∂/∂y on the 2-dimensional differentiable manifold M
|
|
498
|
+
sage: dx(ex).display()
|
|
499
|
+
dx(∂/∂x): M → ℝ
|
|
500
|
+
(x, y) ↦ 1
|
|
501
|
+
sage: dx(ey).display()
|
|
502
|
+
dx(∂/∂y): M → ℝ
|
|
503
|
+
(x, y) ↦ 0
|
|
504
|
+
sage: dy(ex).display()
|
|
505
|
+
dy(∂/∂x): M → ℝ
|
|
506
|
+
(x, y) ↦ 0
|
|
507
|
+
sage: dy(ey).display()
|
|
508
|
+
dy(∂/∂y): M → ℝ
|
|
509
|
+
(x, y) ↦ 1
|
|
510
|
+
"""
|
|
511
|
+
return self._coframe
|
|
512
|
+
|
|
513
|
+
def restrict(self, subset, restrictions=None):
|
|
514
|
+
r"""
|
|
515
|
+
Return the restriction of ``self`` to some subset.
|
|
516
|
+
|
|
517
|
+
If the current chart is `(U, \varphi)`, a *restriction* (or
|
|
518
|
+
*subchart*) is a chart `(V, \psi)` such that `V \subset U`
|
|
519
|
+
and `\psi = \varphi |_V`.
|
|
520
|
+
|
|
521
|
+
If such subchart has not been defined yet, it is constructed here.
|
|
522
|
+
|
|
523
|
+
The coordinates of the subchart bare the same names as the
|
|
524
|
+
coordinates of the original chart.
|
|
525
|
+
|
|
526
|
+
INPUT:
|
|
527
|
+
|
|
528
|
+
- ``subset`` -- open subset `V` of the chart domain `U`
|
|
529
|
+
- ``restrictions`` -- (default: ``None``) list of coordinate
|
|
530
|
+
restrictions defining the subset `V`
|
|
531
|
+
|
|
532
|
+
A restriction can be any symbolic equality or inequality involving
|
|
533
|
+
the coordinates, such as ``x > y`` or ``x^2 + y^2 != 0``. The items
|
|
534
|
+
of the list ``restrictions`` are combined with the ``and`` operator;
|
|
535
|
+
if some restrictions are to be combined with the ``or`` operator
|
|
536
|
+
instead, they have to be passed as a tuple in some single item
|
|
537
|
+
of the list ``restrictions``. For example::
|
|
538
|
+
|
|
539
|
+
restrictions = [x > y, (x != 0, y != 0), z^2 < x]
|
|
540
|
+
|
|
541
|
+
means ``(x > y) and ((x != 0) or (y != 0)) and (z^2 < x)``.
|
|
542
|
+
If the list ``restrictions`` contains only one item, this
|
|
543
|
+
item can be passed as such, i.e. writing ``x > y`` instead
|
|
544
|
+
of the single element list ``[x > y]``.
|
|
545
|
+
|
|
546
|
+
OUTPUT:
|
|
547
|
+
|
|
548
|
+
- a :class:`DiffChart` `(V, \psi)`
|
|
549
|
+
|
|
550
|
+
EXAMPLES:
|
|
551
|
+
|
|
552
|
+
Coordinates on the unit open ball of `\CC^2` as a subchart
|
|
553
|
+
of the global coordinates of `\CC^2`::
|
|
554
|
+
|
|
555
|
+
sage: M = Manifold(2, 'C^2', field='complex')
|
|
556
|
+
sage: X.<z1, z2> = M.chart()
|
|
557
|
+
sage: B = M.open_subset('B')
|
|
558
|
+
sage: X_B = X.restrict(B, abs(z1)^2 + abs(z2)^2 < 1); X_B
|
|
559
|
+
Chart (B, (z1, z2))
|
|
560
|
+
"""
|
|
561
|
+
if subset == self.domain():
|
|
562
|
+
return self
|
|
563
|
+
if subset not in self._dom_restrict:
|
|
564
|
+
resu = Chart.restrict(self, subset, restrictions=restrictions)
|
|
565
|
+
# Update of superframes and subframes:
|
|
566
|
+
resu._frame._superframes.update(self._frame._superframes)
|
|
567
|
+
for sframe in self._frame._superframes:
|
|
568
|
+
sframe._subframes.add(resu._frame)
|
|
569
|
+
sframe._restrictions[subset] = resu._frame
|
|
570
|
+
# The subchart frame is not a "top frame" in the supersets
|
|
571
|
+
# (including self.domain()):
|
|
572
|
+
for dom in self.domain().open_supersets():
|
|
573
|
+
if resu._frame in dom._top_frames:
|
|
574
|
+
# it was added by the Chart constructor invoked in
|
|
575
|
+
# Chart.restrict above
|
|
576
|
+
dom._top_frames.remove(resu._frame)
|
|
577
|
+
return self._dom_restrict[subset]
|
|
578
|
+
|
|
579
|
+
def symbolic_velocities(self, left='D', right=None):
|
|
580
|
+
r"""
|
|
581
|
+
Return a list of symbolic variables ready to be used by the
|
|
582
|
+
user as the derivatives of the coordinate functions with respect
|
|
583
|
+
to a curve parameter (i.e. the velocities along the curve).
|
|
584
|
+
It may actually serve to denote anything else than velocities,
|
|
585
|
+
with a name including the coordinate functions.
|
|
586
|
+
The choice of strings provided as 'left' and 'right' arguments
|
|
587
|
+
is not entirely free since it must comply with Python
|
|
588
|
+
prescriptions.
|
|
589
|
+
|
|
590
|
+
INPUT:
|
|
591
|
+
|
|
592
|
+
- ``left`` -- (default: ``D``) string to concatenate to the left
|
|
593
|
+
of each coordinate functions of the chart
|
|
594
|
+
- ``right`` -- (default: ``None``) string to concatenate to the
|
|
595
|
+
right of each coordinate functions of the chart
|
|
596
|
+
|
|
597
|
+
OUTPUT: list of symbolic expressions with the desired names
|
|
598
|
+
|
|
599
|
+
EXAMPLES:
|
|
600
|
+
|
|
601
|
+
Symbolic derivatives of the Cartesian coordinates of the
|
|
602
|
+
3-dimensional Euclidean space::
|
|
603
|
+
|
|
604
|
+
sage: R3 = Manifold(3, 'R3', start_index=1)
|
|
605
|
+
sage: cart.<X,Y,Z> = R3.chart()
|
|
606
|
+
sage: D = cart.symbolic_velocities(); D
|
|
607
|
+
[DX, DY, DZ]
|
|
608
|
+
sage: D = cart.symbolic_velocities(left='d', right='/dt'); D
|
|
609
|
+
Traceback (most recent call last):
|
|
610
|
+
...
|
|
611
|
+
ValueError: The name "dX/dt" is not a valid Python
|
|
612
|
+
identifier.
|
|
613
|
+
sage: D = cart.symbolic_velocities(left='d', right='_dt'); D
|
|
614
|
+
[dX_dt, dY_dt, dZ_dt]
|
|
615
|
+
sage: D = cart.symbolic_velocities(left='', right="'"); D
|
|
616
|
+
Traceback (most recent call last):
|
|
617
|
+
...
|
|
618
|
+
ValueError: The name "X'" is not a valid Python
|
|
619
|
+
identifier.
|
|
620
|
+
sage: D = cart.symbolic_velocities(left='', right='_dot'); D
|
|
621
|
+
[X_dot, Y_dot, Z_dot]
|
|
622
|
+
sage: R.<t> = manifolds.RealLine()
|
|
623
|
+
sage: canon_chart = R.default_chart()
|
|
624
|
+
sage: D = canon_chart.symbolic_velocities() ; D
|
|
625
|
+
[Dt]
|
|
626
|
+
"""
|
|
627
|
+
|
|
628
|
+
from sage.symbolic.ring import var
|
|
629
|
+
|
|
630
|
+
# The case len(self[:]) = 1 is treated apart due to the
|
|
631
|
+
# following fact.
|
|
632
|
+
# In the case of several coordinates, the argument of 'var' (as
|
|
633
|
+
# implemented below after the case len(self[:]) = 1) is a list
|
|
634
|
+
# of strings of the form ['Dx1', 'Dx2', ...] and not a unique
|
|
635
|
+
# string of the form 'Dx1 Dx2 ...'.
|
|
636
|
+
# Although 'var' is supposed to accept both syntaxes, the first
|
|
637
|
+
# one causes an error when it contains only one argument, due to
|
|
638
|
+
# line 784 of sage/symbolic/ring.pyx :
|
|
639
|
+
# "return self.symbol(name, latex_name=formatted_latex_name, domain=domain)"
|
|
640
|
+
# In this line, the first argument 'name' of 'symbol' is a list
|
|
641
|
+
# and not a string if the argument of 'var' is a list of one
|
|
642
|
+
# string (of the type ['Dt']), which causes error in 'symbol'.
|
|
643
|
+
# This might be corrected.
|
|
644
|
+
if len(self[:]) == 1:
|
|
645
|
+
string_vel = left + format(self[:][0]) # will raise an error
|
|
646
|
+
# in case left is not a string
|
|
647
|
+
if right is not None:
|
|
648
|
+
string_vel += right # will raise an error in case right
|
|
649
|
+
# is not a string
|
|
650
|
+
|
|
651
|
+
# If the argument of 'var' contains only one word, for
|
|
652
|
+
# instance::
|
|
653
|
+
# var('Dt')
|
|
654
|
+
# then 'var' does not return a tuple containing one symbolic
|
|
655
|
+
# expression, but the symbolic expression itself.
|
|
656
|
+
# This is taken into account below in order to return a list
|
|
657
|
+
# containing one symbolic expression.
|
|
658
|
+
return [var(string_vel)]
|
|
659
|
+
|
|
660
|
+
list_strings_velocities = [left + format(coord_func)
|
|
661
|
+
for coord_func in self[:]] # will
|
|
662
|
+
# raise an error in case left is not a string
|
|
663
|
+
|
|
664
|
+
if right is not None:
|
|
665
|
+
list_strings_velocities = [str_vel + right for str_vel
|
|
666
|
+
in list_strings_velocities] # will
|
|
667
|
+
# raise an error in case right is not a string
|
|
668
|
+
|
|
669
|
+
return list(var(list_strings_velocities))
|
|
670
|
+
|
|
671
|
+
|
|
672
|
+
#*****************************************************************************
|
|
673
|
+
|
|
674
|
+
class RealDiffChart(DiffChart, RealChart):
|
|
675
|
+
r"""
|
|
676
|
+
Chart on a differentiable manifold over `\RR`.
|
|
677
|
+
|
|
678
|
+
Given a differentiable manifold `M` of dimension `n` over `\RR`,
|
|
679
|
+
a *chart* is a member `(U,\varphi)` of the manifold's
|
|
680
|
+
differentiable atlas; `U` is then an open subset of `M` and
|
|
681
|
+
`\varphi: U \rightarrow V \subset \RR^n` is a homeomorphism from
|
|
682
|
+
`U` to an open subset `V` of `\RR^n`.
|
|
683
|
+
|
|
684
|
+
The components `(x^1,\ldots,x^n)` of `\varphi`, defined by
|
|
685
|
+
`\varphi(p) = (x^1(p),\ldots,x^n(p))\in \RR^n` for any point `p\in U`, are
|
|
686
|
+
called the *coordinates* of the chart `(U,\varphi)`.
|
|
687
|
+
|
|
688
|
+
INPUT:
|
|
689
|
+
|
|
690
|
+
- ``domain`` -- open subset `U` on which the chart is defined
|
|
691
|
+
- ``coordinates`` -- (default: '' (empty string)) single string defining
|
|
692
|
+
the coordinate symbols, with ``' '`` (whitespace) as a separator; each
|
|
693
|
+
item has at most four fields, separated by a colon (``:``):
|
|
694
|
+
|
|
695
|
+
1. the coordinate symbol (a letter or a few letters)
|
|
696
|
+
2. (optional) the interval `I` defining the coordinate range: if not
|
|
697
|
+
provided, the coordinate is assumed to span all `\RR`; otherwise
|
|
698
|
+
`I` must be provided in the form ``(a,b)`` (or equivalently
|
|
699
|
+
``]a,b[``); the bounds ``a`` and ``b`` can be ``+/-Infinity``,
|
|
700
|
+
``Inf``, ``infinity``, ``inf`` or ``oo``; for *singular*
|
|
701
|
+
coordinates, non-open intervals such as ``[a,b]`` and ``(a,b]``
|
|
702
|
+
(or equivalently ``]a,b]``) are allowed; note that the interval
|
|
703
|
+
declaration must not contain any whitespace
|
|
704
|
+
3. (optional) indicator of the periodic character of the coordinate,
|
|
705
|
+
either as ``period=T``, where ``T`` is the period, or as the keyword
|
|
706
|
+
``periodic`` (the value of the period is then deduced from the
|
|
707
|
+
interval `I` declared in field 2; see examples below)
|
|
708
|
+
4. (optional) the LaTeX spelling of the coordinate; if not provided the
|
|
709
|
+
coordinate symbol given in the first field will be used
|
|
710
|
+
|
|
711
|
+
The order of fields 2 to 4 does not matter and each of them can be
|
|
712
|
+
omitted. If it contains any LaTeX expression, the string ``coordinates``
|
|
713
|
+
must be declared with the prefix 'r' (for "raw") to allow for a proper
|
|
714
|
+
treatment of LaTeX's backslash character (see examples below).
|
|
715
|
+
If interval range, no period and no LaTeX spelling are to be set for any
|
|
716
|
+
coordinate, the argument ``coordinates`` can be omitted when the shortcut
|
|
717
|
+
operator ``<,>`` is used to declare the chart (see examples below).
|
|
718
|
+
- ``calc_method`` -- (default: ``None``) string defining the calculus
|
|
719
|
+
method for computations involving coordinates of the chart; must be
|
|
720
|
+
one of
|
|
721
|
+
|
|
722
|
+
- ``'SR'`` -- Sage's default symbolic engine (Symbolic Ring)
|
|
723
|
+
- ``'sympy'`` -- SymPy
|
|
724
|
+
- ``None`` -- the default of :class:`~sage.manifolds.calculus_method.CalculusMethod`
|
|
725
|
+
will be used
|
|
726
|
+
- ``names`` -- (default: ``None``) unused argument, except if
|
|
727
|
+
``coordinates`` is not provided; it must then be a tuple containing
|
|
728
|
+
the coordinate symbols (this is guaranteed if the shortcut operator
|
|
729
|
+
``<,>`` is used).
|
|
730
|
+
- ``coord_restrictions`` -- additional restrictions on the coordinates.
|
|
731
|
+
A restriction can be any symbolic equality or inequality involving
|
|
732
|
+
the coordinates, such as ``x > y`` or ``x^2 + y^2 != 0``. The items
|
|
733
|
+
of the list (or set or frozenset) ``coord_restrictions`` are combined
|
|
734
|
+
with the ``and`` operator; if some restrictions are to be combined with
|
|
735
|
+
the ``or`` operator instead, they have to be passed as a tuple in some
|
|
736
|
+
single item of the list (or set or frozenset) ``coord_restrictions``.
|
|
737
|
+
For example::
|
|
738
|
+
|
|
739
|
+
coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]
|
|
740
|
+
|
|
741
|
+
means ``(x > y) and ((x != 0) or (y != 0)) and (z^2 < x)``.
|
|
742
|
+
If the list ``coord_restrictions`` contains only one item, this
|
|
743
|
+
item can be passed as such, i.e. writing ``x > y`` instead
|
|
744
|
+
of the single element list ``[x > y]``. If the chart variables have
|
|
745
|
+
not been declared as variables yet, ``coord_restrictions`` must
|
|
746
|
+
be ``lambda``-quoted.
|
|
747
|
+
|
|
748
|
+
EXAMPLES:
|
|
749
|
+
|
|
750
|
+
Cartesian coordinates on `\RR^3`::
|
|
751
|
+
|
|
752
|
+
sage: M = Manifold(3, 'R^3', r'\RR^3', start_index=1)
|
|
753
|
+
sage: c_cart = M.chart('x y z'); c_cart
|
|
754
|
+
Chart (R^3, (x, y, z))
|
|
755
|
+
sage: type(c_cart)
|
|
756
|
+
<class 'sage.manifolds.differentiable.chart.RealDiffChart'>
|
|
757
|
+
|
|
758
|
+
To have the coordinates accessible as global variables, one has to set::
|
|
759
|
+
|
|
760
|
+
sage: (x,y,z) = c_cart[:]
|
|
761
|
+
|
|
762
|
+
However, a shortcut is to use the declarator ``<x,y,z>`` in the left-hand
|
|
763
|
+
side of the chart declaration (there is then no need to pass the string
|
|
764
|
+
``'x y z'`` to ``chart()``)::
|
|
765
|
+
|
|
766
|
+
sage: M = Manifold(3, 'R^3', r'\RR^3', start_index=1)
|
|
767
|
+
sage: c_cart.<x,y,z> = M.chart(); c_cart
|
|
768
|
+
Chart (R^3, (x, y, z))
|
|
769
|
+
|
|
770
|
+
The coordinates are then immediately accessible::
|
|
771
|
+
|
|
772
|
+
sage: y
|
|
773
|
+
y
|
|
774
|
+
sage: y is c_cart[2]
|
|
775
|
+
True
|
|
776
|
+
|
|
777
|
+
The trick is performed by Sage preparser::
|
|
778
|
+
|
|
779
|
+
sage: preparse("c_cart.<x,y,z> = M.chart()")
|
|
780
|
+
"c_cart = M.chart(names=('x', 'y', 'z',)); (x, y, z,) = c_cart._first_ngens(3)"
|
|
781
|
+
|
|
782
|
+
Note that ``x, y, z`` declared in ``<x,y,z>`` are mere Python variable
|
|
783
|
+
names and do not have to coincide with the coordinate symbols; for instance,
|
|
784
|
+
one may write::
|
|
785
|
+
|
|
786
|
+
sage: M = Manifold(3, 'R^3', r'\RR^3', start_index=1)
|
|
787
|
+
sage: c_cart.<x1,y1,z1> = M.chart('x y z'); c_cart
|
|
788
|
+
Chart (R^3, (x, y, z))
|
|
789
|
+
|
|
790
|
+
Then ``y`` is not known as a global variable and the coordinate `y`
|
|
791
|
+
is accessible only through the global variable ``y1``::
|
|
792
|
+
|
|
793
|
+
sage: y1
|
|
794
|
+
y
|
|
795
|
+
sage: y1 is c_cart[2]
|
|
796
|
+
True
|
|
797
|
+
|
|
798
|
+
However, having the name of the Python variable coincide with the
|
|
799
|
+
coordinate symbol is quite convenient; so it is recommended to declare::
|
|
800
|
+
|
|
801
|
+
sage: forget() # for doctests only
|
|
802
|
+
sage: M = Manifold(3, 'R^3', r'\RR^3', start_index=1)
|
|
803
|
+
sage: c_cart.<x,y,z> = M.chart()
|
|
804
|
+
|
|
805
|
+
Spherical coordinates on the subset `U` of `\RR^3` that is the
|
|
806
|
+
complement of the half-plane `\{y=0, x\geq 0\}`::
|
|
807
|
+
|
|
808
|
+
sage: U = M.open_subset('U')
|
|
809
|
+
sage: c_spher.<r,th,ph> = U.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi')
|
|
810
|
+
sage: c_spher
|
|
811
|
+
Chart (U, (r, th, ph))
|
|
812
|
+
|
|
813
|
+
Note the prefix 'r' for the string defining the coordinates in the
|
|
814
|
+
arguments of ``chart``.
|
|
815
|
+
|
|
816
|
+
Coordinates are Sage symbolic variables (see
|
|
817
|
+
:mod:`sage.symbolic.expression`)::
|
|
818
|
+
|
|
819
|
+
sage: type(th)
|
|
820
|
+
<class 'sage.symbolic.expression.Expression'>
|
|
821
|
+
sage: latex(th)
|
|
822
|
+
{\theta}
|
|
823
|
+
sage: assumptions(th)
|
|
824
|
+
[th is real, th > 0, th < pi]
|
|
825
|
+
|
|
826
|
+
Coordinate are also accessible by their indices::
|
|
827
|
+
|
|
828
|
+
sage: x1 = c_spher[1]; x2 = c_spher[2]; x3 = c_spher[3]
|
|
829
|
+
sage: [x1, x2, x3]
|
|
830
|
+
[r, th, ph]
|
|
831
|
+
sage: (x1, x2, x3) == (r, th, ph)
|
|
832
|
+
True
|
|
833
|
+
|
|
834
|
+
The full set of coordinates is obtained by means of the operator [:]::
|
|
835
|
+
|
|
836
|
+
sage: c_cart[:]
|
|
837
|
+
(x, y, z)
|
|
838
|
+
sage: c_spher[:]
|
|
839
|
+
(r, th, ph)
|
|
840
|
+
|
|
841
|
+
Let us check that the declared coordinate ranges have been taken into
|
|
842
|
+
account::
|
|
843
|
+
|
|
844
|
+
sage: c_cart.coord_range()
|
|
845
|
+
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)
|
|
846
|
+
sage: c_spher.coord_range()
|
|
847
|
+
r: (0, +oo); th: (0, pi); ph: (0, 2*pi)
|
|
848
|
+
sage: bool(th>0 and th<pi)
|
|
849
|
+
True
|
|
850
|
+
sage: assumptions() # list all current symbolic assumptions
|
|
851
|
+
[x is real, y is real, z is real, r is real, r > 0, th is real,
|
|
852
|
+
th > 0, th < pi, ph is real, ph > 0, ph < 2*pi]
|
|
853
|
+
|
|
854
|
+
The coordinate ranges are used for simplifications::
|
|
855
|
+
|
|
856
|
+
sage: simplify(abs(r)) # r has been declared to lie in the interval (0,+oo)
|
|
857
|
+
r
|
|
858
|
+
sage: simplify(abs(x)) # no positive range has been declared for x
|
|
859
|
+
abs(x)
|
|
860
|
+
|
|
861
|
+
A coordinate can be declared periodic by adding the keyword ``periodic``
|
|
862
|
+
to its range::
|
|
863
|
+
|
|
864
|
+
sage: V = M.open_subset('V')
|
|
865
|
+
sage: c_spher1.<r,th,ph1> = \
|
|
866
|
+
....: V.chart(r'r:(0,+oo) th:(0,pi):\theta ph1:(0,2*pi):periodic:\phi_1')
|
|
867
|
+
sage: c_spher1.periods()
|
|
868
|
+
(None, None, 2*pi)
|
|
869
|
+
sage: c_spher1.coord_range()
|
|
870
|
+
r: (0, +oo); th: (0, pi); ph1: [0, 2*pi] (periodic)
|
|
871
|
+
|
|
872
|
+
It is equivalent to give the period as ``period=2*pi``, skipping the
|
|
873
|
+
coordinate range::
|
|
874
|
+
|
|
875
|
+
sage: c_spher2.<r,th,ph2> = \
|
|
876
|
+
....: V.chart(r'r:(0,+oo) th:(0,pi):\theta ph2:period=2*pi:\phi_2')
|
|
877
|
+
sage: c_spher2.periods()
|
|
878
|
+
(None, None, 2*pi)
|
|
879
|
+
sage: c_spher2.coord_range()
|
|
880
|
+
r: (0, +oo); th: (0, pi); ph2: [0, 2*pi] (periodic)
|
|
881
|
+
|
|
882
|
+
Each constructed chart is automatically added to the manifold's
|
|
883
|
+
user atlas::
|
|
884
|
+
|
|
885
|
+
sage: M.atlas()
|
|
886
|
+
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
|
|
887
|
+
Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2))]
|
|
888
|
+
|
|
889
|
+
and to the atlas of its domain::
|
|
890
|
+
|
|
891
|
+
sage: U.atlas()
|
|
892
|
+
[Chart (U, (r, th, ph))]
|
|
893
|
+
|
|
894
|
+
Manifold subsets have a *default chart*, which, unless changed via the
|
|
895
|
+
method
|
|
896
|
+
:meth:`~sage.manifolds.manifold.TopologicalManifold.set_default_chart`,
|
|
897
|
+
is the first defined chart on the subset (or on a open subset of it)::
|
|
898
|
+
|
|
899
|
+
sage: M.default_chart()
|
|
900
|
+
Chart (R^3, (x, y, z))
|
|
901
|
+
sage: U.default_chart()
|
|
902
|
+
Chart (U, (r, th, ph))
|
|
903
|
+
|
|
904
|
+
The default charts are not privileged charts on the manifold, but rather
|
|
905
|
+
charts whose name can be skipped in the argument list of functions having
|
|
906
|
+
an optional ``chart=`` argument.
|
|
907
|
+
|
|
908
|
+
The action of the chart map `\varphi` on a point is obtained by means of
|
|
909
|
+
the call operator, i.e. the operator ``()``::
|
|
910
|
+
|
|
911
|
+
sage: p = M.point((1,0,-2)); p
|
|
912
|
+
Point on the 3-dimensional differentiable manifold R^3
|
|
913
|
+
sage: c_cart(p)
|
|
914
|
+
(1, 0, -2)
|
|
915
|
+
sage: c_cart(p) == p.coord(c_cart)
|
|
916
|
+
True
|
|
917
|
+
sage: q = M.point((2,pi/2,pi/3), chart=c_spher) # point defined by its spherical coordinates
|
|
918
|
+
sage: c_spher(q)
|
|
919
|
+
(2, 1/2*pi, 1/3*pi)
|
|
920
|
+
sage: c_spher(q) == q.coord(c_spher)
|
|
921
|
+
True
|
|
922
|
+
sage: a = U.point((1,pi/2,pi)) # the default coordinates on U are the spherical ones
|
|
923
|
+
sage: c_spher(a)
|
|
924
|
+
(1, 1/2*pi, pi)
|
|
925
|
+
sage: c_spher(a) == a.coord(c_spher)
|
|
926
|
+
True
|
|
927
|
+
|
|
928
|
+
Cartesian coordinates on `U` as an example of chart construction with
|
|
929
|
+
coordinate restrictions: since `U` is the complement of the half-plane
|
|
930
|
+
`\{y=0, x\geq 0\}`, we must have `y\not=0` or `x<0` on U. Accordingly,
|
|
931
|
+
we set::
|
|
932
|
+
|
|
933
|
+
sage: c_cartU.<x,y,z> = U.chart(coord_restrictions=lambda x,y,z: (y!=0, x<0))
|
|
934
|
+
....: # the tuple (y!=0, x<0) means y!=0 or x<0
|
|
935
|
+
....: # [y!=0, x<0] would have meant y!=0 AND x<0
|
|
936
|
+
sage: U.atlas()
|
|
937
|
+
[Chart (U, (r, th, ph)), Chart (U, (x, y, z))]
|
|
938
|
+
sage: M.atlas()
|
|
939
|
+
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
|
|
940
|
+
Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2)),
|
|
941
|
+
Chart (U, (x, y, z))]
|
|
942
|
+
sage: c_cartU.valid_coordinates(-1,0,2)
|
|
943
|
+
True
|
|
944
|
+
sage: c_cartU.valid_coordinates(1,0,2)
|
|
945
|
+
False
|
|
946
|
+
sage: c_cart.valid_coordinates(1,0,2)
|
|
947
|
+
True
|
|
948
|
+
|
|
949
|
+
A vector frame is naturally associated to each chart::
|
|
950
|
+
|
|
951
|
+
sage: c_cart.frame()
|
|
952
|
+
Coordinate frame (R^3, (∂/∂x,∂/∂y,∂/∂z))
|
|
953
|
+
sage: c_spher.frame()
|
|
954
|
+
Coordinate frame (U, (∂/∂r,∂/∂th,∂/∂ph))
|
|
955
|
+
|
|
956
|
+
as well as a dual frame (basis of 1-forms)::
|
|
957
|
+
|
|
958
|
+
sage: c_cart.coframe()
|
|
959
|
+
Coordinate coframe (R^3, (dx,dy,dz))
|
|
960
|
+
sage: c_spher.coframe()
|
|
961
|
+
Coordinate coframe (U, (dr,dth,dph))
|
|
962
|
+
|
|
963
|
+
Chart grids can be drawn in 2D or 3D graphics thanks to the method
|
|
964
|
+
:meth:`~sage.manifolds.chart.RealChart.plot`.
|
|
965
|
+
"""
|
|
966
|
+
def __init__(self, domain, coordinates, calc_method=None,
|
|
967
|
+
bounds=None, periods=None, coord_restrictions=None):
|
|
968
|
+
r"""
|
|
969
|
+
Construct a chart on a real differentiable manifold.
|
|
970
|
+
|
|
971
|
+
TESTS::
|
|
972
|
+
|
|
973
|
+
sage: forget() # for doctests only
|
|
974
|
+
sage: M = Manifold(2, 'M')
|
|
975
|
+
sage: X.<x,y> = M.chart()
|
|
976
|
+
sage: X
|
|
977
|
+
Chart (M, (x, y))
|
|
978
|
+
sage: type(X)
|
|
979
|
+
<class 'sage.manifolds.differentiable.chart.RealDiffChart'>
|
|
980
|
+
sage: assumptions() # assumptions set in X._init_coordinates
|
|
981
|
+
[x is real, y is real]
|
|
982
|
+
sage: TestSuite(X).run()
|
|
983
|
+
"""
|
|
984
|
+
RealChart.__init__(self, domain, coordinates, calc_method=calc_method,
|
|
985
|
+
bounds=bounds, periods=periods, coord_restrictions=coord_restrictions)
|
|
986
|
+
# Construction of the coordinate frame associated to the chart:
|
|
987
|
+
self._frame = CoordFrame(self)
|
|
988
|
+
self._coframe = self._frame._coframe
|
|
989
|
+
|
|
990
|
+
def restrict(self, subset, restrictions=None):
|
|
991
|
+
r"""
|
|
992
|
+
Return the restriction of the chart to some subset.
|
|
993
|
+
|
|
994
|
+
If the current chart is `(U, \varphi)`, a *restriction* (or
|
|
995
|
+
*subchart*) is a chart `(V, \psi)` such that `V \subset U`
|
|
996
|
+
and `\psi = \varphi |_V`.
|
|
997
|
+
|
|
998
|
+
If such subchart has not been defined yet, it is constructed here.
|
|
999
|
+
|
|
1000
|
+
The coordinates of the subchart bare the same names as the
|
|
1001
|
+
coordinates of the original chart.
|
|
1002
|
+
|
|
1003
|
+
INPUT:
|
|
1004
|
+
|
|
1005
|
+
- ``subset`` -- open subset `V` of the chart domain `U`
|
|
1006
|
+
- ``restrictions`` -- (default: ``None``) list of coordinate
|
|
1007
|
+
restrictions defining the subset `V`
|
|
1008
|
+
|
|
1009
|
+
A restriction can be any symbolic equality or inequality involving
|
|
1010
|
+
the coordinates, such as ``x > y`` or ``x^2 + y^2 != 0``. The items
|
|
1011
|
+
of the list ``restrictions`` are combined with the ``and`` operator;
|
|
1012
|
+
if some restrictions are to be combined with the ``or`` operator
|
|
1013
|
+
instead, they have to be passed as a tuple in some single item
|
|
1014
|
+
of the list ``restrictions``. For example::
|
|
1015
|
+
|
|
1016
|
+
restrictions = [x > y, (x != 0, y != 0), z^2 < x]
|
|
1017
|
+
|
|
1018
|
+
means ``(x > y) and ((x != 0) or (y != 0)) and (z^2 < x)``.
|
|
1019
|
+
If the list ``restrictions`` contains only one item, this
|
|
1020
|
+
item can be passed as such, i.e. writing ``x > y`` instead
|
|
1021
|
+
of the single element list ``[x > y]``.
|
|
1022
|
+
|
|
1023
|
+
OUTPUT:
|
|
1024
|
+
|
|
1025
|
+
- a :class:`RealDiffChart` `(V, \psi)`
|
|
1026
|
+
|
|
1027
|
+
EXAMPLES:
|
|
1028
|
+
|
|
1029
|
+
Cartesian coordinates on the unit open disc in `\RR^2` as a subchart
|
|
1030
|
+
of the global Cartesian coordinates::
|
|
1031
|
+
|
|
1032
|
+
sage: M = Manifold(2, 'R^2')
|
|
1033
|
+
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
|
|
1034
|
+
sage: D = M.open_subset('D') # the unit open disc
|
|
1035
|
+
sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
|
|
1036
|
+
sage: p = M.point((1/2, 0))
|
|
1037
|
+
sage: p in D
|
|
1038
|
+
True
|
|
1039
|
+
sage: q = M.point((1, 2))
|
|
1040
|
+
sage: q in D
|
|
1041
|
+
False
|
|
1042
|
+
|
|
1043
|
+
Cartesian coordinates on the annulus `1 < \sqrt{x^2+y^2} < 2`::
|
|
1044
|
+
|
|
1045
|
+
sage: A = M.open_subset('A')
|
|
1046
|
+
sage: c_cart_A = c_cart.restrict(A, [x^2+y^2>1, x^2+y^2<4])
|
|
1047
|
+
sage: p in A, q in A
|
|
1048
|
+
(False, False)
|
|
1049
|
+
sage: a = M.point((3/2,0))
|
|
1050
|
+
sage: a in A
|
|
1051
|
+
True
|
|
1052
|
+
"""
|
|
1053
|
+
if subset == self.domain():
|
|
1054
|
+
return self
|
|
1055
|
+
if subset not in self._dom_restrict:
|
|
1056
|
+
resu = RealChart.restrict(self, subset, restrictions=restrictions)
|
|
1057
|
+
# Update of superframes and subframes:
|
|
1058
|
+
resu._frame._superframes.update(self._frame._superframes)
|
|
1059
|
+
for sframe in self._frame._superframes:
|
|
1060
|
+
sframe._subframes.add(resu._frame)
|
|
1061
|
+
sframe._restrictions[subset] = resu._frame
|
|
1062
|
+
# The subchart frame is not a "top frame" in the supersets
|
|
1063
|
+
# (including self.domain()):
|
|
1064
|
+
for dom in self.domain().open_supersets():
|
|
1065
|
+
if resu._frame in dom._top_frames:
|
|
1066
|
+
# it was added by the Chart constructor invoked in
|
|
1067
|
+
# Chart.restrict above
|
|
1068
|
+
dom._top_frames.remove(resu._frame)
|
|
1069
|
+
return self._dom_restrict[subset]
|
|
1070
|
+
|
|
1071
|
+
#******************************************************************************
|
|
1072
|
+
|
|
1073
|
+
|
|
1074
|
+
class DiffCoordChange(CoordChange):
|
|
1075
|
+
r"""
|
|
1076
|
+
Transition map between two charts of a differentiable manifold.
|
|
1077
|
+
|
|
1078
|
+
Giving two coordinate charts `(U,\varphi)` and `(V,\psi)` on a
|
|
1079
|
+
differentiable manifold `M` of dimension `n` over a topological field `K`,
|
|
1080
|
+
the *transition map from* `(U,\varphi)` *to* `(V,\psi)` is the map
|
|
1081
|
+
|
|
1082
|
+
.. MATH::
|
|
1083
|
+
|
|
1084
|
+
\psi\circ\varphi^{-1}: \varphi(U\cap V) \subset K^n
|
|
1085
|
+
\rightarrow \psi(U\cap V) \subset K^n,
|
|
1086
|
+
|
|
1087
|
+
In other words, the transition map `\psi\circ\varphi^{-1}` expresses the
|
|
1088
|
+
coordinates `(y^1,\ldots,y^n)` of `(V,\psi)` in terms of the coordinates
|
|
1089
|
+
`(x^1,\ldots,x^n)` of `(U,\varphi)` on the open subset where the two
|
|
1090
|
+
charts intersect, i.e. on `U\cap V`.
|
|
1091
|
+
|
|
1092
|
+
By definition, the transition map `\psi\circ\varphi^{-1}` must be
|
|
1093
|
+
of class `C^k`, where `k` is the degree of differentiability of the
|
|
1094
|
+
manifold (cf.
|
|
1095
|
+
:meth:`~sage.manifolds.differentiable.manifold.DifferentiableManifold.diff_degree`).
|
|
1096
|
+
|
|
1097
|
+
INPUT:
|
|
1098
|
+
|
|
1099
|
+
- ``chart1`` -- chart `(U,\varphi)`
|
|
1100
|
+
- ``chart2`` -- chart `(V,\psi)`
|
|
1101
|
+
- ``transformations`` -- tuple (or list) `(Y_1,\ldots,Y_2)`, where
|
|
1102
|
+
`Y_i` is the symbolic expression of the coordinate `y^i` in terms
|
|
1103
|
+
of the coordinates `(x^1,\ldots,x^n)`
|
|
1104
|
+
|
|
1105
|
+
EXAMPLES:
|
|
1106
|
+
|
|
1107
|
+
Transition map on a 2-dimensional differentiable manifold::
|
|
1108
|
+
|
|
1109
|
+
sage: M = Manifold(2, 'M')
|
|
1110
|
+
sage: X.<x,y> = M.chart()
|
|
1111
|
+
sage: Y.<u,v> = M.chart()
|
|
1112
|
+
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
|
|
1113
|
+
sage: X_to_Y
|
|
1114
|
+
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
|
|
1115
|
+
sage: type(X_to_Y)
|
|
1116
|
+
<class 'sage.manifolds.differentiable.chart.DiffCoordChange'>
|
|
1117
|
+
sage: X_to_Y.display()
|
|
1118
|
+
u = x + y
|
|
1119
|
+
v = x - y
|
|
1120
|
+
"""
|
|
1121
|
+
def __init__(self, chart1, chart2, *transformations):
|
|
1122
|
+
r"""
|
|
1123
|
+
Construct a transition map.
|
|
1124
|
+
|
|
1125
|
+
TESTS::
|
|
1126
|
+
|
|
1127
|
+
sage: M = Manifold(2, 'M')
|
|
1128
|
+
sage: X.<x,y> = M.chart()
|
|
1129
|
+
sage: Y.<u,v> = M.chart()
|
|
1130
|
+
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
|
|
1131
|
+
sage: X_to_Y
|
|
1132
|
+
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
|
|
1133
|
+
sage: type(X_to_Y)
|
|
1134
|
+
<class 'sage.manifolds.differentiable.chart.DiffCoordChange'>
|
|
1135
|
+
sage: TestSuite(X_to_Y).run(skip='_test_pickling')
|
|
1136
|
+
|
|
1137
|
+
.. TODO::
|
|
1138
|
+
|
|
1139
|
+
fix _test_pickling
|
|
1140
|
+
"""
|
|
1141
|
+
CoordChange.__init__(self, chart1, chart2, *transformations)
|
|
1142
|
+
# Jacobian matrix:
|
|
1143
|
+
self._jacobian = self._transf.jacobian()
|
|
1144
|
+
# If the two charts are on the same open subset, the Jacobian matrix is
|
|
1145
|
+
# added to the dictionary of changes of frame:
|
|
1146
|
+
if chart1.domain() == chart2.domain():
|
|
1147
|
+
domain = chart1.domain()
|
|
1148
|
+
frame1 = chart1._frame
|
|
1149
|
+
frame2 = chart2._frame
|
|
1150
|
+
vf_module = domain.vector_field_module()
|
|
1151
|
+
ch_basis = vf_module.automorphism()
|
|
1152
|
+
ch_basis.add_comp(frame1)[:, chart1] = self._jacobian
|
|
1153
|
+
ch_basis.add_comp(frame2)[:, chart1] = self._jacobian
|
|
1154
|
+
vf_module._basis_changes[(frame2, frame1)] = ch_basis
|
|
1155
|
+
for sdom in domain.open_supersets():
|
|
1156
|
+
sdom._frame_changes[(frame2, frame1)] = ch_basis
|
|
1157
|
+
# The inverse is computed only if it does not exist already
|
|
1158
|
+
# (because if it exists it may have a simpler expression than that
|
|
1159
|
+
# obtained from the matrix inverse)
|
|
1160
|
+
if (frame1, frame2) not in vf_module._basis_changes:
|
|
1161
|
+
ch_basis_inv = ch_basis.inverse()
|
|
1162
|
+
vf_module._basis_changes[(frame1, frame2)] = ch_basis_inv
|
|
1163
|
+
for sdom in domain.open_supersets():
|
|
1164
|
+
sdom._frame_changes[(frame1, frame2)] = ch_basis_inv
|
|
1165
|
+
|
|
1166
|
+
def jacobian(self):
|
|
1167
|
+
r"""
|
|
1168
|
+
Return the Jacobian matrix of ``self``.
|
|
1169
|
+
|
|
1170
|
+
If ``self`` corresponds to the change of coordinates
|
|
1171
|
+
|
|
1172
|
+
.. MATH::
|
|
1173
|
+
|
|
1174
|
+
y^i = Y^i(x^1,\ldots,x^n)\qquad 1\leq i \leq n
|
|
1175
|
+
|
|
1176
|
+
the Jacobian matrix `J` is given by
|
|
1177
|
+
|
|
1178
|
+
.. MATH::
|
|
1179
|
+
|
|
1180
|
+
J_{ij} = \frac{\partial Y^i}{\partial x^j}
|
|
1181
|
+
|
|
1182
|
+
where `i` is the row index and `j` the column one.
|
|
1183
|
+
|
|
1184
|
+
OUTPUT:
|
|
1185
|
+
|
|
1186
|
+
- Jacobian matrix `J`, the elements `J_{ij}` of which being
|
|
1187
|
+
coordinate functions
|
|
1188
|
+
(cf. :class:`~sage.manifolds.chart_func.ChartFunction`)
|
|
1189
|
+
|
|
1190
|
+
EXAMPLES:
|
|
1191
|
+
|
|
1192
|
+
Jacobian matrix of a 2-dimensional transition map::
|
|
1193
|
+
|
|
1194
|
+
sage: M = Manifold(2, 'M')
|
|
1195
|
+
sage: X.<x,y> = M.chart()
|
|
1196
|
+
sage: Y.<u,v> = M.chart()
|
|
1197
|
+
sage: X_to_Y = X.transition_map(Y, [x+y^2, 3*x-y])
|
|
1198
|
+
sage: X_to_Y.jacobian()
|
|
1199
|
+
[ 1 2*y]
|
|
1200
|
+
[ 3 -1]
|
|
1201
|
+
|
|
1202
|
+
Each element of the Jacobian matrix is a coordinate function::
|
|
1203
|
+
|
|
1204
|
+
sage: parent(X_to_Y.jacobian()[0,0])
|
|
1205
|
+
Ring of chart functions on Chart (M, (x, y))
|
|
1206
|
+
"""
|
|
1207
|
+
return self._jacobian # has been computed in __init__
|
|
1208
|
+
|
|
1209
|
+
@cached_method
|
|
1210
|
+
def jacobian_det(self):
|
|
1211
|
+
r"""
|
|
1212
|
+
Return the Jacobian determinant of ``self``.
|
|
1213
|
+
|
|
1214
|
+
The Jacobian determinant is the determinant of the Jacobian
|
|
1215
|
+
matrix (see :meth:`jacobian`).
|
|
1216
|
+
|
|
1217
|
+
OUTPUT:
|
|
1218
|
+
|
|
1219
|
+
- determinant of the Jacobian matrix `J` as a coordinate
|
|
1220
|
+
function
|
|
1221
|
+
(cf. :class:`~sage.manifolds.chart_func.ChartFunction`)
|
|
1222
|
+
|
|
1223
|
+
EXAMPLES:
|
|
1224
|
+
|
|
1225
|
+
Jacobian determinant of a 2-dimensional transition map::
|
|
1226
|
+
|
|
1227
|
+
sage: M = Manifold(2, 'M')
|
|
1228
|
+
sage: X.<x,y> = M.chart()
|
|
1229
|
+
sage: Y.<u,v> = M.chart()
|
|
1230
|
+
sage: X_to_Y = X.transition_map(Y, [x+y^2, 3*x-y])
|
|
1231
|
+
sage: X_to_Y.jacobian_det()
|
|
1232
|
+
-6*y - 1
|
|
1233
|
+
sage: X_to_Y.jacobian_det() == det(X_to_Y.jacobian())
|
|
1234
|
+
True
|
|
1235
|
+
|
|
1236
|
+
The Jacobian determinant is a coordinate function::
|
|
1237
|
+
|
|
1238
|
+
sage: parent(X_to_Y.jacobian_det())
|
|
1239
|
+
Ring of chart functions on Chart (M, (x, y))
|
|
1240
|
+
"""
|
|
1241
|
+
return self._transf.jacobian_det()
|